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Simultaneous Virtual-Machine Logging and Replay
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This paper proposes simultaneous virtual-machine logging and replay. It
performs logging and replay simultaneously on the same machine through the
use of two virtual machines, one for the primary execution and the other for
the backup execution. While the primary execution produces the execution
history, the backup execution consumes the history by replaying it. The size
of an execution log can be limited to a certain size; thus, huge storage devices
becomes unnecessary. We developed such a logging and replaying feature in
a VMM. It can log and replay the execution of the Linux operating system.
Our experiment results show the overhead of the primary execution is only
fractional.

1. Introduction

This paper proposes simultaneous virtual-machine logging and replay. Virtual-
machine logging and replay is a technique where a virtual machine monitor
(VMM) 4),12) logs the execution history of a virtual machine (VM) and the iden-
tical execution is replayed later. The technique can be used to analyze failures
and possible intrusions 3),13). One of the shortcomings of virtual-machine logging
and replay is the size of the log in which the execution history is saved; thus, it is
not very realistic to apply the technique to commodity embedded systems since
such huge storage devices are not available to them. These commodity embedded
systems, such as mobile phones, car navigation systems, HD TV systems, and so
on, become very complicated. Therefore, they can benefit from the logging and
replay technique since it is almost impossible to make them free from defects.

The proposed system performs virtual-machine logging and replay simultane-
ously on the same machine 8),11). It employs two virtual machines, one for the
primary execution and the other for the backup execution. These two virtual ma-
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chines run on a VMM of a single system. While the primary execution produces
its execution history, the backup execution consumes the history by replaying it.
The size of an execution log can be limited to a certain size; thus, huge storage
devices become unnecessary and the logging and replay technique can be applied
more easily. The backup virtual machine can maintain the past state of the pri-
mary virtual machine along with the log to make the backup the same state as
the primary. In case of the primary’s failure, replaying the backup virtual ma-
chine from the saved state by following the saved log allows the execution path to
the failure to be completely analyzed. Since the latencies from faults to failures
are relatively short 5),7), the cause of the failure can be captured and replayed for
analysis. Therefore, simultaneous virtual-machine logging and replay can benefit
from performing logging and replay.

We developed such a logging and replaying feature in a VMM. The VMM is
developed from scratch to run on an SMP PC compatible system. It can log and
replay the execution of the Linux operating system. The experiments show that
the overhead of the primary execution is only fractional, and the overhead of the
replaying execution to boot up the backup is less than 2%. This paper presents
the detailed design and implementation of the logging and replaying mechanisms.

The rest of this paper is organized as follows. Section 2 shows the overview
of the proposed system architecture. Section 3 describes the rationale of the
logging and replaying of the operating system execution. Section 4 describes the
design and implementation of the logging and replaying mechanisms. Section 5
describes the current status and the experiment results, and Section 6 discusses
the current issues and possible improvements. Section 7 describes the related
work. Finally, Section 8 concludes the paper.

2. System Overview

This section provides an overview of the proposed system architecture. Fig-
ure 1 shows the overview of the architecture. The system runs on an SMP
system with 2 processors. In the figure, there are 2 processor cores, Core 0 and
1, which share physical memory. The primary VMM runs on Core 0, and creates
the primary virtual machine. The primary virtual machine executes the primary
guest OS. Core 1 is used for the backup. The primary and backup VMMs are
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Fig. 1 Overall architecture of the proposed system.

the same except that they run on different cores. The memory is divided into
three parts, one for the primary, another for the backup, and the last one for the
shared memory between the primary and the backup.

Users use the the primary guest OS. It interacts with devices through the
primary VMM; thus, it is executed just like an ordinary guest OS that runs on a
VMM. The only difference is that the primary VMM records the events that is
described in the next section, so that its execution can be replayed on the backup.

The execution log is transferred from the primary to the backup via shared
memory. For every event that has to be logged, the primary VMM writes its
record to the shared memory, and the backup VMM reads the record. The
mapping is created at boot time of the VMM. The shared memory is used only
by the VMM since the log data is written and read by the VMM but not by
Linux; thus, the existence of the shared memory region is not notified to Linux.
The size of the shared memory is currently set to 4 MB. The size should be
adjusted to an appropriate value depending on system usage.

The backup VMM reads the execution log from the shared memory, and pro-
vides the backup guest OS with the same events for replaying. The backup guest

OS does not take any inputs from devices but only takes the replayed data from
the backup VMM. The outputs produced by the backup guest OS are processed
by the backup VMM. They can be output to a different unit of the same device
or to an emulated device.

3. Rationale

This section describes the rationale for the design of our logging and replaying
system and clarifies what needs to be logged. The basic idea of the logging
and replaying of instruction execution is the treatment of factors external to
the programs. These factors include inputs to programs and interrupts because
they can change instruction execution streams and produced values. This paper
describes the rationale specific to the IA-32 architecture 6).

3.1 Inputs
If a function contains the necessary data for its computation and does not

interact with the outside of it, it always returns the same result regardless of the
timing and the state of its execution. For example, the following code written in
the IA-32 assembly language defines a function that adds 1 and 2, and returns
the result, which is 3, in the %eax register:
1: add_noarg:

2: movl $1, %eax

3: movl $2, %ecx

4: addl %ecx, %eax

5: ret

Because the data necessary to compute the result is included in the function
definition, the returned result is always the same.

The following function defines a function that takes two arguments, adds them,
and returns the result:
1: add_2args:

2: movl 8(%esp), %eax

3: addl 4(%esp), %eax

4: ret

It does not contain the data necessary to compute the result, but obtains the
data as the two arguments. Thus, the result depends on the arguments passed
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from its caller. From the caller’s point of view, however, the above function
behaves always the same. It returns the same value if the data passed to the
above function is the same; thus, the program behavior is always the same if the
data passed to the function is included in the program as follows:
1: movl $2, 4(%esp)

2: movl $1, (%esp)

3: call add_2args

The following function is, however, totally different:
1: add_in_1arg:

2: inl $1, %eax

3: addl 4(%esp), %eax

4: ret

In this case, add_in_1arg takes one argument, copies the value from I/O port
address 1, adds the argument and the value from the I/O port, and returns the
result �1. The value copied from the I/O port is not included in the program; thus,
the result returned by the above function can be different because it depends on
factors that are outside of the executed program.

Therefore, in order to make the instruction execution streams and the produced
values the same on the primary and the backup, the values copied from I/O ports
must be recorded on the primary, and the same value must be provided from the
corresponding port in the same order on the backup. If the values copied from
I/O ports are different and those values are used for the conditions of branch
instructions, the instruction execution stream of a program becomes different,
and can produce and output different values. If the values copied from I/O ports
are different and those values are copied to different I/O ports, a program outputs
different values.

3.2 External Interupts
Interrupts change instruction execution streams. If only executed instruction

addresses are examined, the inconsistent address changes caused by interrupts
look the same as those by branches �2. Software interrupts can, therefore, be

�1 The use of I/O port address 1 is arbitrary and has no specific meaning.
�2 Because IA-32 instructions are variable length, near forward jumps may look consistent.

treated in the same way as branches because they are caused by specific instruc-
tions. External interrupts are, however, caused by factors that are outside of
the executed program. For example, when a key of the keyboard is pushed, an
interrupt is asserted on a PC compatible system. The timing of a key stroke is
not controlled by the program. Even when the program prompts a user to push
a key, the user can push a key at a different time for each run of the program.
Thus, the program cannot be expected to know the points where external inter-
rupts are taken. Furthermore, external interrupts are vectored requests. There
are interrupt request numbers (IRQ#) that are associated with devices. Different
IRQ# can be used in order to ease the differentiation between interrupt sources.

Therefore, in order to make the instruction execution streams the same on the
primary and the backup, the specific points where external interrupts are taken
in the instruction execution stream and their IRQ# must be recorded on the
primary, and the interrupts with the same IRQ# must occur at the same points
on the backup.

The problem is how to specify the point where an external interrupt is taken.
If there is no branch instruction in a program, an instruction address can be used
to specify the point. There are, however, branches in most programs.

The following program defines the function that calls function do_something a
certain number of times as specified by the argument. After initializing registers,
at line 4 it jumps to line 9 where the counter in the %ecx register is compared
with the value given by the argument. If the counter is less than or equal to
the argument value, it jumps to line 5, and calls do_something with the counter
value as its argument. The loop is continued until the counter becomes greater
than the argument value.
1: loop_calling:

2: movl $1, %ecx

3: movl 4(%esp), %edx

4: jmp .L2

5: .L3: pushl %ecx

6: call do_something

7: addl $4, %esp

8: incl %ecx
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9: .L2: cmpl %edx, %ecx

10: jle .L3

11: ret

Let us consider an interrupt that was taken between lines 6 and 7. Just forcing
the execution on the backup to call the interrupt handler after the first execution
of line 6 may make many cases where the instruction execution streams on the
backup are different from that of the primary. The interrupt could be taken
after the second or later execution of line 6; thus, just recording the instruction
address of line 6 as the point to call the interrupt handler is not enough. As
this example illustrates, what we need to know is the number of times line 6 was
executed. Counting that number, however, does not work because the arrival
of an interrupt is unknown in advance; thus, we do not know for which line the
number of iterations needs to be counted.

Instead, counting the number of branches works well even before an interrupt
is coming in. For example, just before the first execution of line 7, after returning
from do_something, the number of branches is 4, supposing there are no branches
in do_something. It is because there are 2 jumps at lines 4 and 10, and 2 branches
for calling and returning from do_something. Just before the second execution
of line 7, the number of branches is 7. 3 is added because calling do_something

causes 2 branches and 1 jump at line 10; thus, there are increments of 3 every
time the execution reaches line 7.

Therefore, by recording the instruction address and the number of branches
since the last interrupt, it is possible to specify the point where the interrupt is
replayed.

The IA-32 architecture includes instructions that loops within a single instruc-
tion, and does not change the number of branches. The REP instruction repeats
some types of load or store instructions for the number of times specified in the
%ecx register. The following instruction repeats storing the value in the %eax
register from the address specified by the %es:%edi register for the number of
the times in the %ecx register:
1: rep stosl

The repeating operation can be suspended by an interrupt, and be resumed again
after the interrupt processing is finished. Therefore, the value of the %ecx register

also needs to be recorded in order to cope with the cases when interrupts happen
while the REP instruction is being executed.

3.3 Summary
In summary, the information needed to retrieve and record while logging on

the primary is summarized as follows:
( 1 ) the type of an event, an input or an interrupt,
( 2 ) the input value or the IRQ#,
( 3 ) the instruction address where the event happened,
( 4 ) the number of branches since the last event, and
( 5 ) the value of the %ecx register.
The information from ( 3 ) to ( 5 ) does not need to be recorded to replay an input
event. If recorded, it can be used to make sure that an input event, which is going
to be replayed, is the same as the recorded one.

4. Logging and Replay

This section describes the design and implementation of the logging and replay-
ing mechanism on the proposed system architecture. Our VMM is implemented
on the IA-32 processor with the Intel VT-x 10) feature. We take advantage of the
capabilities available only to Intel VT-x for the efficient handling of the logging
and replaying.

4.1 Logging
We first describe the retrieval of the information needed for logging, and then

its recording. There are the two types of events that need to be logged, IN
instructions and external interrupts. Event types can be captured from the VM
exit reason. Intel VT-x implements the hardware mechanism that notifies the
VMM about guest OS events. A VM exit is a transfer of control from the guest
OS to the VMM, and it comes with the reason. By examining the VM exit
reason, the VMM can determine which type of event happened.

For an IN instruction event, the VMM needs to capture the result of the in-
struction execution. In order to do so, the VMM obtains control when the guest
OS executes an IN instruction. It then executes the IN instruction with the
same operand on behalf of the guest OS. Intel VT-x has a setting that causes
a VM exit when an IN instruction is executed in the guest OS. The primary
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processor-based VM-execution controls define various reasons that can cause a
VM exit. Bit 24 of the controls determines whether the executions of IN and
OUT instructions cause VM exits. By setting this bit, the VMM can obtain the
control when the guest OS executes an IN instruction. The I/O port number
that the IN instruction is about to access is provided in the VM exit qualifica-
tion. The result of an IN instruction execution is returned in the %eax register.
The VMM copies the value to the guest %eax register, and it also records the
value in the log along with the event type.

For an external interrupt event, the VMM needs to capture the IRQ#, the
instruction address where the interrupt happened, the number of branches since
the last event, and the value of the %ecx register. The IRQ# is available from the
VM-Exit interruption-information field. The instruction address of the guest OS
is defined in the guest register state. The number of branches is counted by the
Performance Monitoring Counter (PMC). The IA-32 architecture has the PMC
facilities in order to count a variety of event types for performance measurement.
Those event types include branches. The value of the %ecx register is saved by
the VMM at a VM-exit.

The retrieved event record is saved in an entry of the ring buffer constructed
in the shared memory. Figure 2 shows the definition of the ring buffer entry
structure in the C programming language. The fixed sized structure is used for
both types of events. Structure members index, address, and ecx contain the

typedef struct {

unsigned long index;

unsigned long address;

unsigned long ecx;

unsigned long reserved;

unsigned long result_h;

unsigned long result_l;

unsigned long counter_h;

unsigned long counter_l;

} RingBuffer;
Fig. 2 Definition of the ring buffer entry.

event type, the instruction address where the event happened, and the value of
the %ecx register, respectively. The result value associated with an event can hold
up to 8 bytes (64 bits) in result_h and result_l. counter_h and counter_l

contain the number of branches since the last event. A PMC register can be up
to 8 bytes (64 bits) long, and it is 40 bits long for the processor we currently use
for the implementation; thus, 2 unsigned long members are used to contain the
number of branches. The size of the structure is 32 bytes, which is well aligned
with the IA-32 processor’s cache line size of 64 bytes.

The ring buffer on the shared memory is managed by 3 variables, ringbuf,
write_p, and read_p. Variable ringbuf points to the virtual address of the
shared memory. The 4MB region for the shared memory is statically allocated
by the configuration; thus, the variable is initialized to a fixed value at boot time.
Variable write_p points to the index variable that indicates where a new event
is recorded. Variable read_p points to the index variable that indicates where
an unread event is stored. Because these indices are shared by both the logging
side and the replaying side, they need to be shared.

4.2 Replaying
We describe the execution of the replaying that is performed by following the

recorded log. In order to replay an event, the VMM first reads the next event
record from the shared memory. The read event record contains the event type
information. The event type determines the next action for the VMM to perform.
As described above, there are two types of the events, an IN instruction event and
an external interrupt event. We first describe the replaying of an IN instruction
event, and then an external interrupt event.

In order to replay an IN instruction event, the VMM needs to obtain control
when the backup guest OS executes an IN instruction. The VMM on the backup
sets up the Intel VT-x in the same way as the primary to cause a VM exit when
an IN instruction is executed in the guest OS. The record of an IN instruction
event contains the data returned by the IN instruction on the primary. The
VMM does not execute an IN instruction on behalf of the guest OS. The VMM
simply returns the recorded data, instead, as the data read by the emulated IN
instruction. We ensure the IN instructions are executed in the same order on the
backup as the primary as long as the results returned by the IN instructions are
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maintained the same.
The replaying of an external interrupt event is much harder. It is because an

external interrupt can happen anywhere an interrupt is not disabled. In other
words, there is no specific instruction that specifies where an external interrupt
happens. Therefore, the VMM relies upon the information recorded on the pri-
mary and needs to point out the place and timing where an external interrupt
event is injected into the guest OS.

The VMM determines the point to inject an external interrupt event by the
following steps:
( 1 ) Execute the guest OS until the instruction address where the interrupt is

supposed to be injected.
( 2 ) Compare the number of branches of the guest OS and the event record.

( a ) Proceed to the next step if they match. Go back to Step 1 above if
they do not.

( 3 ) Compare the values of the %ecx register of the guest OS and the event
record.
( a ) Proceed to the next step if they match. Execute a single instruction

and go back to Step 3 if they do not.
( 4 ) Inject the interrupt into the guest OS.

At Step 1, the VMM needs to obtain control when the guest OS is about to
execute the specific instruction address. The event record contains the instruction
address. We use a debug register to cause a VM exit and for the VMM to obtain
the control. The IA-32 architecture has hardware debug facilities that can cause
a debug exception when executing the specific instruction address. The address is
specified in a debug register. For Intel VT-x, the exception bitmap defines which
exception causes a VM exit. By setting the exception bitmap appropriately, a
debug exception causes a VM exit; thus, the VMM obtains control.

At Step 3, we use the single-step execution mode, and do not use a debug
register. It is a special mode for debugging. It executes only a single instruction
and causes a debug exception; thus, by using this mode, the VMM obtains control
after the single-step execution.

5. Current Status and Experiment Results

This section describes the current status and the experiment results. We im-
plemented the proposed logging and replaying mechanism in our VMM that was
developed from scratch. The Linux operating system can boot and also be re-
played on the VMM. All experiments described below were performed on a Dell
Precision 490 system, which is equipped with a Xeon 5130 2.00 GHz CPU and
1 GB memory. The version of the Linux kernel is 2.6.23.

First, we show the implementation cost of the logging and replaying mechanism.
Second, we show the overheads needed to boot Linux. Finally, we show the size
of the log and a breakdown of the logged events.

5.1 Implementation Cost
The logging and replaying mechanism described in this paper was implemented

in our own VMM. Table 1 shows the source lines of code (SLOC) including
empty lines and comments. In order to support an SMP environment and to run
two Linux instances, one for the primary and another for the backup, 3,123 SLOC
were added. They include the code for the initialization of the secondary core,
SMP related devices, such as Local APIC and I/O APIC, the necessary modifi-
cations to shadow paging, and shared memory. In order to support the logging
and replaying mechanism, 1,694 SLOC were added. They include the code for
logging, constructing the ring buffer, and replaying. In total, SLOC increased
52.9% in order to realize the proposed system architecture.

5.2 Boot Time Overheads
In order to evaluate the overhead of the logging and replaying, we first measured

the boot time of Linux. The time measured is from startup_32, which is the
beginning of the Linux kernel’s boot sequence, up to the point where the init
script invokes sh, which is the user level shell program. The measurements were

Table 1 Source line of code to support the logging and replaying mechanism in VMM.

Part SLOC Ratio [%]
VMM without logging and replay 9,099 65.4

SMP Support 3,123 22.4
Logging and replaying mechanism 1,694 12.2

Total 13,916 100
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Table 2 Time to boot Linux with and without logging and replaying.

Time to boot Linux [sec] Ratio [%]
No logging 2.284 100.0

Primary with logging 2.286 100.1
Backup with replaying 2.319 101.5

performed several times, and their averages are shown as the results.
Table 2 shows the results of the measurements. The table shows the actual

boot times in seconds and also the ratio relative to the boot time of the original
Linux. The logging imposes almost no overhead (only 0.1% �1), and the replaying
imposes 1.5% of the overhead.

The logging and replaying impose 2 milliseconds and 35 milliseconds of the over-
head, respectively. The logging requires VM exits everywhere events need to be
recorded while the replaying also requires VM exits everywhere events may need
to be replayed. The replaying imposes more overhead than the logging because
the replaying requires the VMM to point out the exact addresses and timings
where events need to be replayed. As described in Section 3, loops and repeating
instructions make such pointing more difficult because the same instruction ad-
dresses are executed multiple times; thus, the difference in the overheads between
logging and replaying is caused by the cost to point out the exact addresses and
timings where events need to be replayed.

5.3 Benchmark Overheads
We further performed the measurements using two benchmark programs. One

benchmark program measures the cost of the fork system call, and the other one
measures the combined cost of the fork and exec system calls. They basically
perform the same as those included in the LMbench benchmark suite 9), but were
modified to use the RDTSC instruction in order to measure the execution times.
The measurements were performed 1,000 times, and their averages are reported.

Table 3 shows the results of the measurements. The results show that the
overhead of the logging is small for both the fork and fork+excec system calls.
The overhead of the replaying for the fork+exec system call is, however, higher.
In order to further examine the source of the overhead, we calculate the costs of

�1 It is actually slightly less since it has been rounded up to 0.1%.

Table 3 Benchmark results with and without logging and replaying.

fork [millisec] fork+exec [millisec]
No logging 1.336 2.087

Primary with logging 1.357 2.153
Backup with replaying 1.393 2.462

Table 4 Breakdown of logged events.

Event Count Ratio [%]
Timer interrupts 207.5 8.00

Serial line interrupts 2 0.08
IN instruction 2,385 91.93

Total 2,594.5 100.01

the exec system call from the measured values. The calculated costs of the exec
system call from Table 3 is 0.751, 0.796, and 1.069 milliseconds for no logging,
primary with logging, and backup with replaying, respectively. The ratios are
106%, 142%, and 134% for primary per no logging, backup per no logging, and
backup per primary, respectively. Since the use of only the exec system call
is not typical, those calculated overheads will directly impact overall system
performance. They merely give insights into the analysis of the overheads.

The fork and exec system calls behave quite differently since they provide
totally different functions. The fork system call creates a copy of the calling
process. It needs to allocate an in-kernel data structure that represents a new
process, while it can reuse the most of the other memory images for a new
process by using the copy-on-write technique. The exec system call, on the other
hand, frees most of the memory images except for the in-kernel data structure
of the calling process. It then allocates necessary memory regions in order to
load an newly executing program. Such loading causes the numerous times of
data copying that typically uses REP instruction; thus, external interrupt events
during the data copying instructions are expensive to replay. It is very likely to
be a reason why the overhead to replay the exec system call is high.

5.4 Size of Log and Breakdown of Logged Events
Table 4 shows a breakdown of the logged events while the Linux was booted �2.

�2 The total of the ratios is 100.01%, due to a rounding off error of 0.01%.
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From the ratios of the breakdown, we can see that most of the logged events are IN
instructions. The device driver of the serial line often uses IN instructions in order
to examine if the device is ready to transmit data so that data can be written
into it. The drivers of the other devices, such as PIC (Programmable Interrupt
Controller) and PIT (Programmable Interval Timer), also use IN instructions.
Especially, PIC is manipulated every time an interrupt handler is invoked in
order to acknowledge an EOI (End of Interrupt handling) and also to mask and
unmask the corresponding IRQ#.

From the number of total events, the size of the log after booting Linux is
calculated as 83.02 KB. 83.02 KB of the log is produced for 2.286 seconds of boot
time, meaning 36.32 KB of the log for every second; thus, by using 4 MB of the
log buffer, the execution of the backup can be deferred for 112.8 seconds if the
production rate of the log is assumed constant.

6. Discussion for Improvements

This section discusses possible improvements for the described logging and
replaying mechanism. There are two obvious issues, one is the log size and the
other is the overhead. We also discuss the current limitation of I/O and its
possible improvements.

6.1 Reduction of Log Size
We discuss several ways to reduce the log size in order to make the deferred

time longer. The purpose of simultaneous logging and replay is to enable the
analysis of the execution path until failure; thus, making the deferred time longer
increases the possibility for users to find causes of failures by replaying. Since
the size of memory that can be used for logging is limited, the deferred time is
also limited. Previous studies using fault injection techniques 5),7), however, show
that latencies from fault injections to system crash are relatively short; thus, the
proposed system can very likely capture most causes of failures.

A straightforward way to reduce the log size is by reducing the size of each
event. Currently, the fixed size of 32 bytes is used to record each event. 32 bytes
was chosen because it is well aligned with the IA-32 processor’s cache line size of
64 bytes.

In order to reduce the record size, we can change the data size for the different

event types. In other words, by employing the exact size for each event type, the
log size can be reduced. The record size of an IN instruction event can be reduced
to 2 bytes, which consists of 1 byte for the event type and 1 byte for input data.
The record size of an interrupt event can be reduced to 15 bytes, which consists
of 1 byte for the event type, 1 byte for IRQ#, 4 bytes for the instruction address,
5 bytes for the number of branches, and 4 bytes for the value of the %ecx register.
If we can decode the instruction where an interrupt was injected at the time of
the logging, an interrupt event can be divided into two types, one with the value
of the %ecx register and the other without it.

By using record sizes of 2 bytes for an IN instruction event and 15 bytes for an
interrupt event, the size of the log after booting Linux can be reduced to 7.91 KB.
It is only 9.5% of the original log size; thus, a significant reduction of the log size
is possible. By using these record sizes, 4 MB of the log buffer can defer the
execution of the backup for 1,183.7 seconds (19 minutes and 43.7 seconds).

Another way to reduce the log size is to allow the VMM to emulate a serial
device in a specific way. The serial line device driver of the Linux kernel executes
a loop to wait until the device becomes ready to transmit data by examining the
status of the device issuing the IN instruction. Instead, the VMM can always tell
the Linux kernel that the device is ready to transmit data, and executes a loop
to wait until the device becomes ready to transmit data. In this way, the Linux
kernel does not need to issue a number of IN instructions, reducing the number
of events that need to be logged.

6.2 Reduction of Overheads
We focus on reducing the replaying overhead since the replaying overhead is

larger and the logging overhead is relatively small. The benchmark results de-
scribed in Section 5.3 revealed that replaying the exec system call is expensive,
and the high overhead of replaying external interrupt events during the data
copying instructions is a possible reason. This is because the REP instruction is
commonly used for data copying since it provides the most efficient way to copy
data from one place to another. The REP instruction followed by the MOVS
instruction copies the data pointed by the %esi register to the region specified by
the %edi register using the %ecx register as its counter. It is a single instruction
but repeats the execution of the MOVS instruction for the times specified by the
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%ecx. An interrupt is serviced between the executions of the MOVS instruction
within a single instruction pointer address. Thus, the only way to pinpoint the
time to deliver an external interrupt within the REP instruction is to execute
the instruction in single step mode until the value of the %ecx register becomes
equal to the logged value. Execution in single step mode causes a VM exit after
the execution of every MOVS instruction within the REP instruction. The VMM
checks the value of the %ecx register. If the value is not equal to the logged one,
it resumes in the single step mode. If the value becomes equal to the logged one,
the VMM cancels the single step mode and injects the logged external interrupt.
Therefore, the overhead of replaying the REP instruction becomes larger as its
execution in single step mode is longer.

From the above reasoning, one straightforward way to reduce the replaying
overhead is to avoid the use of the single step mode. It can be done by dividing
the execution of the REP instruction into two parts, pre-injection and post-
injection. The pre-injection and post-injection parts are executed before and
after the injection of an external interrupt, respectively. By adjusting the value
of the %ecx register and setting the breakpoint after the corresponding REP
instruction, the execution of the pre-injection part finishes without a VM exit at
every MOVS instruction within the REP instruction. The breakpoint is taken
after the execution of the pre-injection part. Then, the VMM injects an external
interrupt. After handling the injected external interrupt, the post-injection part
is executed. It works because the value of the %ecx register is not used by the
MOVS instruction within the REP instruction. This way significantly reduces
the number of VM exits; thus, we can expect the reduction of the replaying
overhead by a certain amount.

Avoiding the use of the single step mode is also possible by a device on the
primary at the time of logging. When an external interrupt is delivered, the VMM
first takes it and examines the current instruction. If the current instruction is
not REP, the VMM injects the interrupt. If the current instruction is REP, the
VMM sets the breakpoint at the next instruction and resumes execution. After
the execution of the REP instruction, the VMM injects the interrupt. This way
is much simpler, but the delivery of interrupts can be delayed.

6.3 Device I/O Modes
There are several modes to obtain inputs from I/O devices depending upon

the processor architecture and the implementations of systems. Since the IA-32
architecture is equipped with the I/O port address space along with the memory
address space, devices can be connected to either the I/O port address space or
the memory address space. If a device is connected to the I/O port address space,
it is accessed by separate instructions, IN and OUT. If a device is connected to
the memory address space, it can be accessed by ordinary memory load and store
instructions. This mode of I/O access is called memory-mapped I/O (MMIO).
If a device is connected to the memory address space, it is possible to directly
transfer between a device and memory without processor intervention. This mode
of I/O access is called direct memory access (DMA).

The proposed system currently supports only devices connected to the I/O
port address space. As described in Section 4, the result of the IN instruction
is saved for the logging, and the saved data is used to replay an IN instruction
event. Although the proposed system does not currently support MMIO devices,
it can apply the same rationale also to the MMIO. If the VMM is notified when
the guest OS is about to read data from MMIO devices, the VMM can log and
replay accesses to MMIO devices. Such notifications can be enabled by setting
up shadow page table entries appropriately. If the shadow page table entries
that map MMIO devices are invalid, accessing those devices causes page faults.
The VMM examines the faulted addresses and emulates accesses to them. At
this time, it can save data for the logging or it can return the saved data for
replaying. Therefore, MMIO devices can be supported easily.

The proposed system does not support DMA, and describing its support is
outside the scope of this paper.

7. Related Work

There are several other studies on the logging and replaying mechanisms in
VMMs. We took a similar approach to ReVirt 3), Takeuchi’s Lightweight Vir-
tual Machine Monitor 13), and Aftersight 14) in terms of the basic mechanisms.
PMC is effectively used to count the number of events in their work as well as
ours. They, however, store the log in storage devices, and perform the replay-
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ing later. We propose a system where both logging and replaying are executed
simultaneously but with some time difference on the same machine. The details
of the mechanism and implementation of our work are also different from them.
ReVirt employs UMLinux as its VMM, which neither uses the Intel VT-x nor
emulates devices. Aftersight performs the replaying on the QEMU system em-
ulator but not a virtual machine on a VMM. Takeuchi’s Lightweight Virtual
Machine Monitor uses Intel VT-x but only supports a simple RTOS without the
memory protection feature of an MMU.

Bressoud’s fault tolerant system 1) uses a different mechanism from ours to
enable the logging and replaying. It performs the logging and the replaying pe-
riodically while our mechanism performs them on demand. The performance
of Bressoud’s system heavily depends of the timing parameter that defines the
period for the logging and the replaying; thus, it does not perform well for inter-
active uses. It is different from ours also in terms of the system configuration that
the primary and the backup are implemented on different machines connected
with each other by a network.

Remus 2) implements fault tolerance by checkpoint and restart mechanisms. A
checkpoint mechanism saves the current state of an executing program, and a
restart mechanism restores the saved state of an executing program and restarts
its execution from the saved state. If a machine executing the program fails,
its execution can be restarted on another backup machine from the saved state.
Remus employs a VMM to save the state of an operating system and its ap-
plications and to restart the execution on a backup machine. Checkpoint and
restart mechanisms may achieve better performance than the logging and replay-
ing mechanism since it is possible for a checkpoint mechanism to save only the
states changed from the previous checkpoint. Remus, however, does not redo the
same execution on the backup machine; thus, it cannot provide execution paths
towards failures.

8. Summary

We proposed a system that enables simultaneous virtual-machine logging and
replay on the same system. It employs two virtual machines, one for the primary
execution and the other for the backup execution. These two virtual machines

run on a VMM of a single system. While the primary execution produces its
execution history, the backup execution consumes the history by replaying it.
The size of an execution log can be limited to a certain size; thus, huge storage
devices becomes unnecessary and the logging and replay technique can be applied
more easily.

We developed such a logging and replaying feature in a VMM. The VMM is
developed from scratch to run on an SMP PC compatible system. It can log and
replay the execution of the Linux operating system. The experiments show that
the overhead of the primary execution is only fractional, and the overhead of the
replaying execution to boot up the backup is less than 2%.
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