
Journal of Information Processing Vol. 19 411–420 (Aug. 2011)

Regular Paper

Making a Virtual Machine Monitor Interruptible

Megumi Ito†1,∗1 and Shuichi Oikawa†2

This paper describes our approach to making the Gandalf Virtual Machine
Monitor (VMM) interruptible. Gandalf is designed to be a lightweight VMM
for use in embedded systems. Hardware interrupts are directly notified to its
guest operating system (OS) kernel without the interventions of the VMM, and
the VMM only processes the exceptions caused by the guest kernel. Since the
VMM processes those exceptions with interrupts disabled, the detailed perfor-
mance analysis using PMC (Performance Monitoring Counters) revealed that
the time duration while the interrupts are disabled is rather long. By making
Gandalf interruptible, we are able to make VMM based systems more suitable
for embedded systems. We analyzed the requirements for making Gandalf in-
terruptible, and designed and implemented mechanisms to achieve this. The
experimental results show that making Gandalf interruptible significantly re-
duces a duration of execution time with interrupts disabled while it does not
impact performance.

1. Introduction

As more and more embedded systems are rapidly moving towards having multi-
core CPUs in order to balance performance and power consumption, there are
increasing needs for virtualized execution environments to be used in those sys-
tems. These virtualized execution environments are realized upon virtual ma-
chine monitors (VMMs) 4). VMM based systems enable the provision of secure,
reliable, and high functional execution environments.

A major barrier to employing VMMs on embedded systems is their limited
resources. In order to overcome such a barrier, we have been developing a
lightweight VMM called Gandalf, that targets those resource constrained sys-
tems 7),8). It currently operates on IA-32 CPUs and two independent Linux op-
erating systems (OSes) concurrently run on it as its guest OSes. The code size

†1 IBM Research – Tokyo
†2 Department of Computer Science, University of Tsukuba
∗1 Work conducted when she was with University of Tsukuba.

and memory footprint of Gandalf is much smaller than that of full virtualization.
The number of the modified parts and lines is significantly fewer than in para-
virtualization, so that the cost to bring up a guest OS on Gandalf is extremely
cheap. Guest Linux on Gandalf performs better than XenLinux. Therefore, Gan-
dalf is an efficient and lightweight VMM that is ideal for resource constrained
embedded systems. Those features of Gandalf are made possible by its design.
Hardware interrupts are directly notified to its guest OS kernel without the in-
tervention of the VMM, and the VMM only processes exceptions caused by the
guest kernel. Since the VMM processes those exceptions with interrupts disabled,
a detailed performance analysis using PMC (Performance Monitoring Counters)
revealed that a time duration with interrupts disabled is rather long 8).

This paper describes our effort to make Gandalf interruptible. We analyzed the
requirements to make this possible, designed and implemented the mechanisms
to achieve this. The experimental results show that making Gandalf interrupt-
ible significantly reduces the duration of execution time with interrupts disabled
while it does not impact the performance. Our VMM runs only on the IA-32 ar-
chitecture and does not utilize a hardware assisted virtualization feature, such as
Intel VT-x and AMD-V technologies. The importance of the technique described
in this paper, however, remains the same. This is because hardware assisted vir-
tualization makes it easier to notify hardware interrupts to guest OS kernels. If
VMMs are designed in that way but run with interrupts disabled, systems with
those VMMs suffer long interrupt latencies. Therefore, it is important to make
VMMs interruptible and to notify hardware interrupts to guest OS kernels as
quickly as possible.

The rest of this paper is organized as follows. Section 2 describes the overview
of Gandalf VMM. Section 3 proposes a design to made Gandalf interruptible,
and Section 4 evaluates performance of interruptible Gandalf. Section 5 describes
related work. Finally, Section 6 concludes the paper.

2. Overview of Gandalf

This section first describes the overall architecture of Gandalf, a multi-core
CPU oriented lightweight VMM. It targets the IA-32 architecture 6) as a CPU
and Linux as a guest OS. It then shows the preliminary evaluation results that

411 c© 2011 Information Processing Society of Japan



412 Making a Virtual Machine Monitor Interruptible

Fig. 1 Structure of Gandalf based system.

motivated the work described in this paper.
2.1 Architecture
Gandalf is a Type-I VMM, which is executed directly upon a host physical ma-

chine and creates multiple virtual machines for guest OSes. The virtual machines
are isolated from each other, so that a guest OS can be executed independently
on each virtual machine. Figure 1 shows the structure of a Gandalf VMM
based system. Gandalf keeps the management of physical hardware resources
as simple as possible in order to implement a lightweight VMM for embedded
systems. Therefore, Gandalf tries to manage resource spatially rather than tem-
porarily whenever possible. For example, Gandalf maps one physical CPU to
one virtual CPU while many other VMMs multiplex multiple virtual CPUs on
one physical CPU to be shared among multiple virtual machines. Gandalf’s spa-
tial resource management scheme enables a simpler and smaller implementation
and then leads to a lightweight VMM, while the multiplexing model tends to
impose higher overheads for the management of virtual CPUs and virtual ma-
chines. In this paper, we use the term VMM interchangeably to mean Gandalf
unless otherwise specified.

The IA-32 architecture provides 4 privilege levels (rings) from 0 to 3. The lower
the number the higher the privilege level so Ring 0 is the highest privilege level.
Some important instructions, which operate on the machine state, are called
privileged instructions, and can be executed only in Ring 0. As the left part of
Fig. 2 shows, Linux normally executes its kernel in Ring 0 and its user processes
in Ring 3. Thus, the kernel can manage CPUs using privileged instructions and

Fig. 2 Privilege level usage.

can protect itself from user processes. A VMM needs to be executed in a more
privileged (numerically low) level than Linux kernels because the VMM has to
manage CPUs and Linux kernels. Therefore, as the right part of Fig. 2 shows, we
execute the VMM in Ring 0 and the Linux kernels in Ring 1, which is one level
less privileged than the VMM. Because we moved the Linux kernels from Ring
0 to 1, their use of privileged instructions causes general protection faults. The
VMM handles those faults to emulate privileged instructions appropriately. The
privileged instruction emulator of Gandalf handles faulted instructions. The em-
ulator first reads the instruction words at a faulted address and decodes them to
find out which instruction caused the fault. Decoding instructions is complicated
especially for IA-32 because of variable length instruction words. A lightweight
emulator requires a simpler instruction decoder. Thus, the emulator handles only
the privileged instructions that the Linux kernels execute.

Native Linux kernels normally use the entire physical memory in the system.
However, when executing multiple Linux kernels on a VMM at the same time,
they need to divide up the physical memory. We allocate the upper area of the
physical address space for the VMM, divide the remaining area, and allocate a
divided part for each Linux. The left most part of Fig. 3 shows the physical
memory map. Shadow paging is used to enforce Linux kernels to use only the
allocated physical memories 8). Shadow paging lets Linux kernels manage their
own page tables (guest page tables) and separates them from the shadow page
table that is referenced by a physical CPU. The VMM manages the shadow page
table in order to keep its consistency with guest page tables and also to observe

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



413 Making a Virtual Machine Monitor Interruptible

Fig. 3 Memory map.

improper use of physical memories. Concerning a virtual address space, there
needs to be an area where a VMM resides. Linux kernels, however, normally
use the entire virtual address space, which overlaps the virtual memory area for
the VMM. To avoid Linux kernels accessing the VMM, we exclude the virtual
memory area for the VMM from the available virtual memory for Linux kernels
by modifying the source code �1. We also use the segment mechanism to limit
the accessible virtual memory space. For simplicity, we allocate the upper area
of the virtual address space to the VMM.

2.2 Interrupt Handling
Embedded systems require quick and timely responses to interrupts. An in-

terrupt can be an event that processes have been waiting for. In that case, the
interrupt unblocks those processes. For example, a timer interrupt unblocks a
process that has been sleeping for a certain time. Gandalf enables the quick
and timely handling of an interrupt by a guest OS when Gandalf is not running.
An interrupt directly invokes the guest Linux’s corresponding interrupt handler
without Gandalf’s intervention. This is possible because Gandalf’s spatial re-
source management scheme maps one physical CPU to one virtual CPU, and all
interrupts are guaranteed to go to the same guest Linux.

In contrast, the other VMMs usually intervene interrupts, and notify them to

�1 Only one line of a modification is needed for this change.

the corresponding guest OS. This approach is required if multiple guest OSes
are multiplexed upon a single CPU. An interrupt may be directed to a guest
OS that is not currently running; thus, a VMM first handles an interrupt, and
decides which guest OS it is delivered to. If the interrupt needs to be delivered to
a higher priority guest OS than the current one, the VMM switches the context
to the higher priority one, and delivers the interrupt to it. If a VMM intervenes
interrupts, it can handle interrupts while it is running because this is analogous to
an OS kernel’ handling interrupts while the execution is in the kernel. Therefore,
there is no problem with making this type of VMMs interruptible.

We did not take the approach that a VMM intervenes interrupts, but chose to
deliver interrupts directly to a guest OS. We made this decision because 1) the
IA-32 architecture allows such direct interrupt delivery by setting the interrupt
descriptor table (IDT) appropriately, and 2) it obviously causes less overhead to
deliver interrupts directly rather than a VMM intervenes them. The drawback
of this approach is that interrupts cannot be delivered to a guest OS while the
execution is in a VMM because interrupts need to be handled in a less privilege
ring. This is a limitation brought on by the IA-32 architecture; thus, a special
care needs to be taken by a VMM to make it possible. We assumed that the
execution time of a VMM is much shorter than that of a guest OS, and opted
to leave the VMM uninterruptible. This assumption was, however, incorrect as
described below.

2.3 Preliminary Evaluation Results
We show preliminary results obtained by experimenting with a single guest OS

to evaluate the overheads incurred by Gandalf. We used the Dell Precision 490
equipped with the Intel Xeon 5130 2.0 GHz processor. We used Linux 2.6.18 with
few changes required for the guest OS to run on Gandalf VMM. We performed the
same experiments with the native Linux 2.6.18 and paravirtualized XenLinux �2

on Xen 3.1 1), and compared their results with those of Gandalf.
We employed PMC (Performance Monitoring Counter) to measure the details

of the overheads. PMC counts the number of occurrences of the selected events.

�2 This version of XenLinux is also based on Linux 2.6.18. Therefore, we used the same version
2.6.18 of the original Linux, XenLinux, and Linux on Gandalf for fair comparisons.

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



414 Making a Virtual Machine Monitor Interruptible

Table 1 PMC event types.

Event Name Event Type
INST RETIRED.ANY.P The number of instructions executed
RESOURCE STALLS.ANY The number of stalls
L1I MISSES The number of L1 instruction cache misses
L1D MISSES The number of L1 data cache misses
ITLB MISSES The number of instruction TLB misses
DTLB MISSES The number of data TLB misses
PAGE WALKS.COUNT The number of page table walks
SEGMENT REG LOADS The number of segment register loads
CYCLES INT MASKED The number of cycles with interrupts disabled

PMC can also be configured to count an event that occurred only when the
execution is in Ring 0. By this feature, we can see what portion of the number of
events occurred in a VMM, which executes in Ring 0. Table 1 shows the event
names and types that are measured. L1D MISSES is not provided by PMC, so
that L1D REPL was used instead. The table does not show the number of L2
cache misses. Since the footprints of the benchmark programs fit in the L2 cache,
there were no L2 cache misses.

We performed the measurements using three programs, pipe latency, process
fork-and-exit and process fork-and-exec, which are not from the LMbench bench-
mark but function the same as them. We show the results of process fork-and-exit
in Fig. 4 because we can find similarities in the results from all the three pro-
grams. The results shown in the figure were normalized relative to the original
Linux. The results show that Xen causes more cache and TLB misses than Gan-
dalf. Especially, Xen causes significantly more data TLB misses and page table
walks. From the results, we can assume the larger memory footprint of Xen is
the major source of its overheads. In other words, the simplicity of Gandalf’s
design makes its footprints smaller and contributes to its performance.

There is, however, only one event that Xen performs better than Gandalf.
The number of the CYCLES INT MASKED event is smaller for Xen. It counts
the cycles while interrupts are disabled (masked). The larger number of the
CYCLES INT MASKED event means that hardware interrupt latencies can
be longer. Since Gandalf targets embedded systems, such latencies should be
shorter; the number of the CYCLES INT MASKED event should therefore be
improved.

Fig. 4 Preliminary results – fork+exit.

3. Interruptible Gandalf

As described in the previous section, the evaluations using CPU’s performance
monitoring counters (PMC) revealed Gandalf executes with interrupts disabled
for a rather long duration of time. This is because Gandalf handles events that
are reported as faults, such as general protection faults and page faults. A guest
Linux’s execution of a privileged instruction causes a general protection fault, and
Gandalf handles the fault to emulate the instruction. When a page fault occurs,
Gandalf handles the fault to maintain the shadow page table. If a lower priority
process caused a fault and invoked a VMM before the timer interrupt occurred,
however, the delivery and handling of the interrupt is delayed because the VMM
executes with interrupts disabled. Such a delay of handling an interrupt causes
the priority inversion problem. Therefore, it is important for a VMM to be
interruptible, so that it can handle interrupts that occur even while the VMM
are handling a fault.

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



415 Making a Virtual Machine Monitor Interruptible

Fig. 5 Example of an execution path to invoke Linux’s interrupt handler in order to respond
to an interrupt that occurred when Gandalf is running.

We improved the design of Gandalf by making Gandalf interruptible, and solved
the design issue that Gandalf executes with interrupts disabled for a rather long
duration of time. The rest of this section describes in detail the design and
implementation of interruptible Gandalf.

3.1 Rationale
We first investigate the mechanisms to make Gandalf interruptible. Assuming

that Gandalf is interruptible, Fig. 5 depicts a typical execution path by which
Gandalf responds to an interrupt that occurred when Gandalf is handling a page
fault of a user process. When a user process of Linux causes a page fault, Gan-
dalf’s page fault handler is invoked. An interrupt occurs while the page fault
handler is still running. Since the corresponding interrupt handler is in the
Linux kernel and a CPU does not allow a handler in a lower privilege ring to be
invoked, an attempt to invoke the handler in Ring 1, which is for the Linux ker-
nel, causes a general protection fault. Gandalf’s general protection fault handler
finds that the interrupt caused the fault; thus, it manually invokes the Linux’s
corresponding interrupt handler. When Linux finishes the interrupt handling, it
executes the IRET instruction to return from the handler. Such an execution of
IRET again causes a general protection fault because IRET cannot be used to
return to the higher privilege ring. Gandalf’s general protection fault handler
takes this chance to resume the execution of the page fault handler.

This example suggests that, in order to handle interrupts that occurred during
Gandalf’s execution, Gandalf needs to support the nest of traps because appro-
priate handling of general protection faults is required during the original trap

handling. Specifically, interruptible Gandalf needs to be able to invoke Linux’s
interrupt handler during Gandalf’s execution and to have the handler return to
Gandalf to resume its execution. In this scheme, during the execution of Linux’s
kernel or user process, an interrupt still can directly invoke Linux’s interrupt
handler without Gandalf’s intervention. Since the execution is in Linux for the
most of time, it is advantageous to keep the lightweight interrupt handling im-
plemented in Gandalf.

3.2 Invoking Linux’s Interrupt Handler
If an interrupt occurs during the execution of Gandalf with interrupts enabled,

the invocation of Linux’s interrupt handler causes a general protection fault be-
cause of the IA-32’s protection architecture as described above. Gandalf’s general
protection fault handler is invoked by two reasons, Linux’s execution of privileged
instructions and interrupts; thus, it has to be able to differentiate between them
and to identify the exact cause of the fault. The handler can distinguish inter-
rupts from the execution of privileged instructions by looking at the error code
of a fault. A general protection fault pushed an error code onto the VMM stack,
and its value is different for each reason. If it finds the fault was caused by an in-
terrupt, it reads the ISR (In-Service Register) in APIC (Advanced Programmable
Interrupt Controller) to obtain the interrupt number; therefore, all information
needed to invoke Linux’s interrupt handler can be obtained.

Once Gandalf’s general protection fault handler obtains the necessary informa-
tion to invoke Linux’s interrupt handler, Gandalf sets up the stacks of Gandalf
and the Linux kernel to prepare for the invocation. Both of the stacks need to
be manipulated because they carry different information. The preparation takes
the following three steps. First, Gandalf saves the current context by copying the
current stack frame on the Gandalf stack to the old context save area, which was
allocated in advance at boot time (Fig. 6 (1) save). It also needs to save some
additional bytes above the current frame because they are corrupted by the third
step, which will be described below. Only one save area is needed because the
following interrupts are handled directly in Linux and can avoid general protec-
tion faults. Second, Gandalf pushes the interrupted context information onto the
Linux kernel stack and creates the structure as if the interrupt directly invoked
the Linux’s interrupt handler (Fig. 6 (2) copy). The pushed data is used to return

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



416 Making a Virtual Machine Monitor Interruptible

Fig. 6 Manipulation of Gandalf and the Linux kernel stacks for the preparation to invoke
Linux’s interrupt handler from Gandalf.

to Gandalf after Linux’s interrupt handler finished handling the interrupt. The
next section describes the returning to Gandalf in detail. Finally, Gandalf sets
up the stack frame on the Gandalf stack so that it can upcall Linux’s handler
using the IRET instruction (Fig. 6 (3) copy). IRET restores the data, such as
the instruction pointer (EIP), the stack pointer (ESP), and the text and data
segment selectors (CS, DS), which were pushed onto the Gandalf stack by the
third step, and then the execution starts from the address specified by EIP at
the privilege specified by CS. Since the current implementation pushes the DS
and ESP values onto the previous trap stack frame and corrupts 8 bytes, these
are also saved in the first step described above.

Fig. 7 Stack usage when return to Gandalf.

3.3 Returning to Gandalf
After Linux’s interrupt handler finished handling an interrupt, Linux executes

the IRET instruction to resume the interrupted execution. When Gandalf invokes
Linux’s interrupt handler as described above, the execution of IRET with the
stack frame created by Gandalf causes a general protection fault. The CS in the
stack frame to be used by IRET points to Gandalf’s text segment whose privilege
is higher than that of the Linux’s segment. Since IRET does not allow the
execution to return to the higher privilege, Gandalf receives a general protection
fault handler and finds that Linux’s interrupt handler has finished its execution.

When Gandalf’s general protection fault handler finds that the cause of a fault
is Linux’s execution of IRET and also that there is valid information saved in
the old context save area, it determines that is needs to resume the interrupted
execution. The information to be restored was saved at the first step to invoke
Linux’s interrupt handler (Fig. 6 (1) save). Gandalf restores the interrupted con-
text by copying data from the old context save area back to the Gandalf stack
(Fig. 7) and makes the stack the same as the point when interrupt just occurred.
Gandalf then executes IRET to return to the interrupted point and resume the
execution.

3.4 Implementation
We implemented the mechanisms to make Gandalf interruptible as described in

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



417 Making a Virtual Machine Monitor Interruptible

the previous sections, and enabled interrupts at the following sections in Gandalf:
• handle set pte() hypercall,
• flush shadow pgd() hypercall,
• a part of the page fault handler where the shadow page table is updated,
• INVLPG emulator in the general protection handler.

These sections manipulate shadow page tables and the number of executing in-
structions are large. Making these sections interruptible is therefore considered
an effective way to lower the total number of interrupt masked cycles in Gandalf.

The implementation requires complicated stack contents manipulation in order
to save and to move around data on the VMM stack. The complication comes
from the limitation of the IA-32 architecture, which does not expect an interrupt
handler to be executed in a less privilege ring. The generalization is possible by
processing interrupts in separate contexts. This is analogous to treating inter-
rupts as threads 11) and also to transforming interrupts to IPC messages 5). Such
a generalization may, however, incur a greater overhead.

4. Performance

We experimented with both the original and modified Gandalf to determine
the cost required to make it interruptible and the improvement over the total
number of interrupt masked cycles. The experiments were performed under the
same environments described in Section 2.3.

4.1 Evaluation with LMbench Microbenchmark
First, we show the results from the LMbench benchmark programs 12) in Fig. 8

to see the costs required to make Gandalf interruptible. The LMbench consists
of a number of benchmark programs that measure the basic operation costs of an
OS. We chose three programs, pipe latency, process fork-and-exit, and process
fork-and-exec. From the results, we can compare the performance of interruptible
Gandalf with the non-interruptible version of Gandalf, the original Linux, and
Xen.

The results show that Linux on Gandalf performs slightly slower than the orig-
inal Linux for those benchmark programs, but much faster than Xen. Although
Xen applies paravirtualization to XenLinux for better performance, Gandalf out-
performs Xen by its simple and lightweight design and implementation.

Fig. 8 Basic performance evaluation performed by using the LMbench benchmark programs.

The differences between the interruptible and non-interruptible versions of Gan-
dalf are negligible. Interruptible Gandalf slows down only 5% at most for process
fork-and-exit, but it performs almost the same (less than 1%) for the rest of the
benchmark programs.

4.2 Interrupt Masked Cycles
We analyzed the differences between the interruptible and non-interruptible

versions of Gandalf by using PMC. We focus on the CYCLES INT MASKED
event, by which PMC counts the cycles when interrupts are disabled (masked).
We used the same programs used in Section 2.3 for the measurements. Figure 9
shows the results that were performed on the both versions of Gandalf and the
original Linux. Measurements were performed on both versions of Gandalf to
count events that occurred in all protection rings and only in Ring 0. The events
in Ring 0 signify that they occurred during the execution of Gandalf only.

The results show that the interrupt masked cycles are significantly reduced
on interruptible Gandalf for the process fork-and-exit and process fork-and-exec
programs. The results from the pipe latency program are almost the same. As
described in Section 3.4, Gandalf currently enables interrupts only during certain
sections, which are considered large enough to make the expense of upcalling

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



418 Making a Virtual Machine Monitor Interruptible

Fig. 9 Comparison of CYCLES INT MASKED counts.

Table 2 Results of interrupt latency.

Native Linux Gandalf Interruptible Gandalf Xen
TSC counts 21,868 22,908 22,977 23,902

latency (μsec) 10.96 11.48 11.52 11.98

Linux’s interrupt handler cost-effective. Those sections are mostly related to the
manipulation of shadow page tables. The process fork-and-exit and process fork-
and-exec programs utilize those sections that are made interruptible. We can
therefore see a significant difference. On the other hand, the execution of the
pipe latency program does not involve the manipulation of shadow page tables;
thus, we do not see any improvement.

4.3 Interrupt Latency
Finally, we show the measurement results of the interrupt latency on the both

versions of Gandalf, the original Linux, and Xen, in Table 2. We measured the
latency from the time the interrupt handler in the Linux kernel starts to handle
the interrupt until the time the process waiting for the interrupt resumes its
work, using the RTC (Real-Time Clock) device.

Compared with the native Linux, interruptible Gandalf is 5.1% slower while
the non-interruptible version of Gandalf is 4.8% slower. The differences between

the interruptible and non-interruptible versions of Gandalf are very small and
negligible. Although Gandalf is slower than the native Linux, it can respond to
interrupts faster than Xen.

The evaluation results described in Section 4 have shown that the effort of
making Gandalf interruptible significantly reduced the sections where interrupts
are disabled while it does not impact the performance. We, however, need to
investigate where we can further reduce the sections where interrupts are still
disabled.

5. Related Work

There have been lots of efforts to make OS kernels preemptive in order to im-
prove the real-timeliness of systems. Preemptive kernels can dispatch a higher
priority process, which was made runnable by an event, such as an interrupt or a
message, while another process is executing in the kernel. Non-preemptive kernels
allow another process to be dispatched only at the certain point where the cur-
rent process finished its execution in the kernel and is returning to the user level.
There are mainly two approaches to making kernels preemptive. One is to place
multiple preemption points where the current process can be safely preempted.
The DEC ULTRIX 2), Sun OS 5.0 10), and Linux 2.6’s CONFIG PREEMPT op-
tion took this approach. The other approach is to handle interrupts in the context
of kernel threads and to make such interrupt handling threads schedulable. Sun
Solaris 11) took this approach, and there is an effort to incorporate such changes
in Linux 14). This approach, however, requires the significant changes to the ker-
nel software architecture and thus quite a number of modifications in the kernel
source code. L4 5) is a microkernel that converts interrupts into IPC messages,
and then threads handle the messages at the user level. L4 microkernel is, how-
ever, not itself preemptive. REAL/IX 3) comes between the two approaches.

Our work is somewhat similar to the above efforts to make OS kernels preemp-
tive, supposing an OS kernel is a VMM and a user process is a guest OS. Our
work is, however, inherently different since the major components of Gandalf are
the handlers of exceptions and faults, of which causes are themselves indivisible.
We incorporated the first approach, placing preemption points, to make Gandalf
interruptible. Although the approach itself is not new, the architecture of the tar-

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



419 Making a Virtual Machine Monitor Interruptible

get software system is completely different; this work is therefore one more step
toward making VMM more suitable for resource constrained embedded systems.

6. Conclusion

We described our approach to enable Gandalf VMM to be interruptible. Al-
though Gandalf was designed to be a lightweight VMM, the detailed performance
analysis using PMC showed that Gandalf executes with interrupts disabled for
a rather long duration of time. By making Gandalf interruptible, we are able
to make VMM based systems more suitable for embedded systems. We ana-
lyzed the requirements needed for making Gandalf interruptible, designed and
implemented mechanisms to achieve this. The experimental results showed that
making Gandalf interruptible significantly reduced a duration of execution time
with interrupts disabled while it did not impact the performance.

References

1) Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I. and Warfield, A.: Xen and the Art of Virtualization, Proc. 19th ACM
Symposium on Operating System Principles, pp.164–177 (Oct. 2003).

2) Fisher, T.: Real-Time Scheduling Support in Ultrix-4.2 for Multimedia Communi-
cation, Proc. 3rd International Workshop of Network and Operating System Support
for Digital Audio and Video, LNCS 712, pp.321–327, Springer-Verlag (1993).

3) Furht, B., Parker, J. and Grostick, D.: Performance of REAL/IX-Fully Preemptive
Real Time UNIX, ACM SIGOPS Operating Systems Review, Vol.23, No.4, pp.45–52
(Oct. 1989).

4) Goldberg, R.P.: Survey of Virtual Machine Research, IEEE Computer (June 1974).
5) Hartig, H., Hohmuth, M., Liedtke, J., Schonberg, S. and Wolter, J.: The Per-

formance of µ-Kernel-Based Systems, Proc. 16th ACM Symposium on Operating
System Principles (Oct. 1997).

6) Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual.
7) Ito, M. and Oikawa, S.: Mesovirtualization: Lightweight Virtualization Technique

for Embedded Systems, Proc. 5th IFIP International Workshop on Software Tech-
nologies for Future Embedded and Ubiquitous Systems (SEUS 2007 ), LNCS 4761,
pp.496–505, Springer-Verlag (May 2007).

8) Ito, M. and Oikawa, S.: Lightweight Shadow Paging for Efficient Memory Isola-
tion in Gandalf VMM, Proc. 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC 2008 ), pp.508–515
(May 2008).

9) Ito, M. and Oikawa, S.: Improving Real-Time Performance of a Virtual Machine
Monitor Based System, Proc. 6th IFIP International Workshop on Software Tech-
nologies for Future Embedded and Ubiquitous Systems (SEUS 2008 ), LNCS 5287,
pp.114–125, Springer-Verlag (Oct. 2008).

10) Khanna, S., Serbree, M. and Zolnowsky, J.: Realtime Scheduling in SunOS 5.0,
Proc. Winter ’92 Usenix Conference, pp.375–390 (1992).

11) Kleiman, S. and Eykholt, J.: Interrupts as Threads, ACM SIGOPS Operating
Systems Review, Vol.29, No.2, pp.21–26 (Apr. 1995).

12) McVoy, L. and Staelin, C.: LMbench: Portable Tools for Performance Analysis,
Proc. USENIX Annual Technical Conference, pp.279–294 (Jan. 1996).

13) Meyer, R. and Seawright, L.: A Virtual Machine Time Sharing System, IBM Sys-
tems Journal, Vol.9, No.3, pp.199–218 (1970).

14) Real-Time Linux Wiki. http://rt.wiki.kernel.org/
15) Rosenblum, M. and Garfinkel, T.: Virtual Machine Monitors: Current Technology

and Future Trends, IEEE Computer, pp.39–47 (May 2005).

(Received November 29, 2010)
(Accepted May 14, 2011)

(Released August 10, 2011)

Megumi Ito received her B.E. and M.E. from University of
Tsukuba in 2006 and 2008, respectively. She has been a researcher
at IBM Research – Tokyo from 2008. Her major research interest
is systems software.

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan



420 Making a Virtual Machine Monitor Interruptible

Shuichi Oikawa received his B.S., M.S., and Ph.D. degrees
in Computer Science from Keio University in 1989, 1991, and
1996, respectively. He has served as an Associate Professor of
the Department of Computer Science at University of Tsukuba
since 2004. Before joining University of Tsukuba, he worked at
Keio University, Carnegie Mellon University, Intel Corporation,
Sun Microsystems, and Waseda University. His research interest

is systems software including operating systems and virtual machine monitors.
He is a member of IPSJ, IEICE, and IEEE.

Journal of Information Processing Vol. 19 411–420 (Aug. 2011) c© 2011 Information Processing Society of Japan


