
IPSJ SIG Technical Report

Soft Error-Aware Scheduling in High-Level Synthesis

Yuko Hara-Azumi,†1,†2,†3 Hiroyuki Tomiyama,†3

Takuya Azumi,†3 Shigeru Yamashita,†3

Nikil D. Dutt†4 and Hiroaki Takada †2

Due to the continuous reduction in chip feature size and supply voltage,
soft errors are becoming a serious problem in the today’s LSI design. This
paper proposes a soft error-aware scheduling method in high-level synthesis.
The reliability of the datapath circuit is determined not only by those of its
computations, which depend on their assigned hardware resources, but also by
those of its values, which are affected by their lifetime length. By considering
both influences, our proposed method schedules operations for maximizing the
reliability of the datapath circuit.

1. Introduction

The vulnerability of circuits against soft errors induced mainly by cosmic rays
is becoming a serious problem not only for safety critical applications but also
for commercial consumer ones1). So far, various reliability-aware LSI design
techniques have been studied for mitigating the potential consequences of soft
errors. Most existing works2),3) focus on memory elements since the soft error
susceptibility of memory elements has been considered more serious than those
of combinational circuits (i.e., datapath circuits). However, 4) warned that dat-
apath circuits will become more susceptible due to the continuous reduction in
geometries, higher density, and lower supply voltage of the circuits.

Incorporating reliability concerns into the higher level of the LSI design can
more effectively design fault-tolerant circuits5). Several works recently have stud-
ied High-Level Synthesis (HLS) techniques of fault-tolerant systems against soft
errors. Most of the works adopt N Modular Redundancy (NMR), which makes

†1 Research Fellow of the Japan Society for the Promotion of Science
†2 Nagoya University
†3 Ritsumeikan University
†4 University of California, Irvine

N duplications of hardware resources and takes a vote of the results in order to
filter out the propagation of faults to outputs of the circuit. Triple Modular Re-
dundancy (TMR) is the most commonly-used amongst such techniques. Various
works such as 6)–8) spacially and/or temporarily employ TMR. The drawback of
NMR is that it requires large area or performance overhead, e.g., spacial NMR
of a hardware resource with area A requires another (N − 1)× A in area. Since
embedded systems generally have strict area and performance constraints, it is
difficult to apply NMR techniques to such systems.

Instead of adopting NMR techniques, 5) tries to improve the reliability of the
datapath circuit by exploiting various versions of Functional Units (FUs) which
have different area, performance (latency), and reliability, under area and latency
constraints. However, the work focuses on only the reliabilities of operations and
does not consider those of values (i.e., operational results), which also contribute
the reliability of the datapath circuit. The longer the lifetime of the value is, the
more the value has a chance of being affected by soft errors, that is, the lower
reliability the value has9),10). Ignoring such influence may disable the work to
generate in practice fault-tolerant circuits.

This paper studies a scheduling technique considering the reliabilities of both
operations and values. Utilizing various versions of FUs, this technique simulta-
neously assigns operations to FUs with the highest reliability and minimizes the
lifetime of values so that the reliability of the datapath circuit is maximized un-
der the given constraints on the area and latency. Experiments demonstrate that
our work is more effective in the area-performance-reliability trade-off exploration
than a traditional TMR technique and the existing work 5).

The rest of this paper is organized as follows. Section 2 gives a target error
model and an evaluation metric of the reliability of the datapath circuit. Section
3 presents our soft error-aware scheduling method and formulates it as an ILP
problem. Section 4 demonstrates the effectiveness of our work over previous
works through experiments. Finally, Section 5 concludes this paper.

2. Target Error Model and System Reliability

A soft error, which is mainly induced by cosmic rays such as alpha particles
and neutrons, triggers an incorrect result but no hard/permanent damage to the

1 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.19
Vol.2011-EMB-20 No.19

2011/3/18

IPSJ SIG Technical Report

circuits1). Faults on the circuits caused by soft errors can be classified into two
groups by how they affect the circuits: configurational errors and computational
errors. The former affects the configuration of the circuits. The fault remains
until the circuits are reconfigured and the faults are corrected. This is more likely
to occur on FPGA-based designs since FPGAs are composed of SRAMs. The
latter affects only computational results of the combinational circuits, e.g., a bit
flip on a data being handled in the circuits. A result may be correct even if its
precedent result obtained throuh the same part of the circuit is incorrect. This
may occur both on FPGAs and ASICs. In this paper, we target at the latter.

The reliability of the datapath circuit depends on those of its operations and
values (i.e., operational results), which are determined by their assigned hard-
ware resources because soft error susceptibilities of resources differ even amongst
different implementations for the same type of resources, e.g., ripple-carry adder,
Brent-Kung adder, and Kogge-Stone adder5). In addition, the reliabilities of val-
ues are also determined by their lifetime length because the longer the lifetime of
the value is, the more the value has a chance of being affected by soft errors9),10).
Thus, when operation/value i is implemented by FU/register j, the reliability of
operation/value i, TaskReliabilityi is expressed as follows:

TaskReliabilityi =

{
AgentReliabilityj for operation i

(AgentReliabilityj)ActiveT imei for value i

where AgentReliabilityj and ActiveT imei are the reliability of FU/register j

and the lifetime length of value i, respectively. Then, the reliability of the dat-
apath circuit can be obtained by the total products of TaskReliabilityi (i.e.,∏

i∈Tasks TaskReliabilityi), which is used as an evaluation metric in this paper.
Their more detailed discussion will be given in the next section.

3. Soft Error-Aware Scheduling for Reliability Maximization

This section presents our proposed scheduling method for maximizing the reli-
ability of the datapath circuit.

3.1 Problem Definition
We propose a scheduling method which maximizes the reliability of the datap-

ath circuit by exploiting various versions of FUs. As mentioned in the previous

section, our method considers not only the reliabilities of operations but also
those of values which depend on their lifetime length. This method is formulated
as an ILP problem.

Inputs to our method are a data flow graph (DFG), various versions of FUs
which have different area, performance (latency), and reliability, and constraints
on the datapath circuit area and latency given by a designer. A DFG is an
acyclic directed graph, where nodes and edges represent operations and data
dependencies, respectively. Data which are generated in a clock cycle and used
in another clock cycle are called values and need to be stored in registers. In
the remainder of this paper, operations and values are collectively called tasks,
and FUs and registers are collectively called agents. For simplicity, operation
chaining is not considered in this paper, i.e., all data dependencies are handled
as values according to the above definition.

The goal of our method is to simultaneously determine the operational schedul-
ing (i.e., when and which version of FUs each operation is assigned to) and allo-
cations (i.e., the number of instances for each FU) so that the reliability of the
datapath circuit (i.e., the total reliabilities of operations and values) is maximized
while meeting the area and latency constraint.

Let us consider an example depicted in Fig. 1. Given a DFG in Fig. 1 (a) and
a library in Fig. 1 (b), the schedules shown in Fig. 1 (c) and Fig. 1 (d) can be
obtained under the constraints of nine area units and four control steps. The
lifetime of values in white and gray boxes is one and two control steps, respec-
tively. A previous work 5) which focuses only on the reliabilities of operations
regards the schedule in Fig. 1 (c) as the better result. However, by considering
the reliabilities of both operations and values, it is obvious that the schedule in
Fig. 1 (d) achieves the higher reliability. Therefore, in this example, our work
obtains the schedule in Fig. 1 (d) as the better design and overcomes the work 5).

3.2 ILP Formulation
We formulated our operational scheduling technique for maximizing the total

reliabilities of operations and values as an ILP problem below. Notations in the
following formulas are defined in Table 1. The variables are dependent on xi,j .

Compatibility between tasks and agents: A task can be executed by one
and only one compatible agent.

2 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.19
Vol.2011-EMB-20 No.19

2011/3/18

IPSJ SIG Technical Report

v3 v4

v5

v7

v5 v6

v7

(a) (b)

(c) (d)

v1 v2

v6

v1 v2 v3 v4

Fig. 1 An example: (a)A given DFG, (b)A library, (c)A possible schedule using one ADD1, one
ADD2, and one MULT1, and (d)Another possible schedule using one ADD2 and one MULT1.

xi,j ≤ Compatiblei,j ,∀i ∈ Tasks,∀j ∈ Agents (1)∑

j∈Agents

xi,j = 1, ∀i ∈ Tasks (2)

Active time: The active time of operation i (i.e., the execution time) is the
same as that of agent j which executes operation i.

ActiveT imei =
∑

j∈Agents

(ExecT imej × xi,j),∀i ∈ Tasks, TaskTypei 6= value (3)

For example, ExecT imej = 1 for agent j which completes within a clock cycle.
The active time of value i (i.e., the lifetime) is from when the value is generated

to when the value is used for the last time.
ActiveT imei = EndTimei − InitT imei + 1,∀i ∈ Task, TaskTypei = value(4)
For both operations and values, Activei,t is defined as follow:

Activei,t =

{
1 if InitT imei ≤ t ≤ EndTimei

0 otherwise
(5)

Table 1 Definition of notations.

Tasks A set of types of tasks (e.g., addition, multiplication, and value)
TaskTypei Type of task i
Agents A set of agents (e.g., ripple-carry adder, Brent-Kung adder, and Kogge-

Stone adder)
AgentTypej Type of agent j
Dataflowi1,i2 Dataflowi1,i2 = 1 if there is dataflow from tasks i1 to i2, otherwise 0
Compatiblei,j Compatiblei,j = 1 if task i can be executed by agent j, otherwise 0
xi,j xi,j = 1 if task i is executed by agent j, otherwise 0
PrimaryIni 1 if task i is a primary input value, otherwise 0
PrimaryOuti 1 if task i is a primary output value, otherwise 0
Csteps A set of control steps
ExecT imej Execution time of agent j
InitT imei Initiation time of task i
EndT imei Termination time of task i
ProgEndT ime The time when the input program completes
ActiveT imei Active time of task i
Activei,t 1 if task i is active at control step t
InstanceNumj The number of instances of agent j
TaskReliabilityi Reliability of task i
AgentReliabilityj Reliability of agent j
Areaj Area of agent j
Area const Constraint of area
Latency const Constraint of latency

InitT imei and EndTimei are explained below.
Initiation/Termination time: If Dataflowi2,i1 = 1, value i1 is initiated

when operation i2 generates value i1, that is, when the execution of operation
i2 completes. Note that the initiation time for a primary input value i1 (i.e.,
PrimaryIni1 = 1) is given. In experiments in Section 4, InitT imei1 is set to 1
for all primary input values.
EndTimei2 = InitT imei2 + ActiveT imei2 − 1 = InitT imei1,∀i1, i2 ∈ Tasks,

Dataflowi2,i1 = 1, TaskTypei1 6= value, TaskTypei2 = value(6)
If Dataflowi1,i3 = 1, operation i3 starts only after the start of value i1.

InitT imei1 < InitT imei3, ∀i1, i3 ∈ Tasks, Dataflowi1,i3 = 1,

TaskTypei1 = value, TaskTypei3 6= value (7)
For value i1 which is not a primary output value (i.e., PrimaryOuti1 = 0), its

termination time is when it is read for the last time.

EndTimei1 = max
i2∈Tasks

(EndTimei2 ×Dataflowi1,i2)− 1,

∀i1 ∈ Tasks, TaskTypei1 = value, TaskTypei2 6= value (8)

3 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.19
Vol.2011-EMB-20 No.19

2011/3/18

IPSJ SIG Technical Report

For value i1 which is a primary output value (i.e., PrimaryOuti1 =
1), its termination time is when the program completes, ProgEndT ime =
maxi3∈Tasks EndTimei3, TaskTypei3 6= value.

EndTimei1 = ProgEndT ime,∀i1 ∈ Tasks, PrimaryOuti1 = 1 (9)
Constraints on area and latency: The number of instances of agent j is

its maximum number required at the same control step.

InstanceNumj = max
t∈Csteps

(
∑

i∈Tasks

Activei,t × xi,j),∀j ∈ Agents (10)

The total agent area and all the task execution should not be beyond the
constraint on area and latency, respectively.∑

j∈Agents

InstanceNumj ×Areaj ≤ Area const (11)

ProgEndT ime ≤ Latency const (12)
Reliability: The reliability of operation i depends on its assigned agent j.

TaskReliabilityi =
∑

j∈Agents

AgentReliabilityj × xi,j ,

∀i ∈ Tasks, TaskTypei 6= value (13)
The reliability of value i varies depending on how long value i is active because

register j should keep correct value i while it is active.

TaskReliabilityi = (
∑

j∈Agents

AgentReliabilityj × xi,j)ActiveT imei ,

∀i ∈ Tasks, TaskTypei = value, AgentTypej = register (14)
Objective: The objective is to maximize the reliability of the overall design.

Max :
∏

i∈Tasks

TaskReliabilityi (15)

We linearized the formula (15) by logarithm and use the following objective:

Max :
∑

i∈Tasks

TaskReliabilityi (16)

4. Experiments

This section shows the effectiveness of our work through experiments.
4.1 Experimental Setup
In experiments, two designs, autoregressive lattice (AR) filter11) and 16-point

Table 2 Area, performance, and reliability of hardware resources.

REG ADD1 ADD2 ADD3 MULT1 MULT2 ADD2 (TMR) MULT2 (TMR)
Latency (CSteps) 1 2 1 1 2 1 1 1
Area (Units) 1 1 2 4 2 4 6 12
Reliability 0.999 0.999 0.969 0.987 0.999 0.969 0.997 0.997

symmetric Finite Impulse Response (FIR) filter5), were used as benchmarks.
We utilized one type of register (REG), three types of adders (ADD1, ADD2, and
ADD3), and two types of multipliers (MULT1 and MULT2) for scheduling the two
designs by our proposed method. These FUs have different area, performance in
control steps (latency), and reliability as shown in the second to seventh columns
of Table 2, where the values are normalized5). The ILP problem described in
Section 3 was solved by a commercial ILP solver, CPLEX12), while varying the
constraints on area and latency of the circuits.

To demonstrate the effectiveness of our work, the two benchmarks were also
scheduled by the following two existing works:
• Spacial TMR utilizes only one version of FUs for each adder and multiplier

and adopts spacial redundancy for maximizing the total reliabilities of opera-
tions and values. For the adder and multiplier, ADD2 and MULT2 were selected,
respectively. The area, latency, and reliability of the TMR-employed ADD2

and MULT2?1 are described in the last two columns of Table 2.
• Method 5) utilizes various versions of FUs other than TMR-employed ones

for maximizing the total reliabilities of only operations, i.e., its objective is
to maximize

∑
i∈Tasks TaskReliabilityi, TaskTypei 6= value. In comparison,

we evaluated this work by the total reliabilities of operations and values (i.e.,
formula (16)) as well as our work and Spacial TMR.

Each of the above two methods was also solved as an ILP problem by CPLEX12).
4.2 Experimental Results
In the first sets of experiments, our proposed method was performed for the

two designs while varying the constraints on area and latency. Fig. 2 (a) and
Fig. 2 (b) show the area-reliability tradeoffs under Latency const = 11 and the
performance-reliability trade-offs under Area const = 39, respectively, for AR.

?1 For simplicity, the area and reliability overhead by inserting voters are assumed to be zero
in this paper.

4 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.19
Vol.2011-EMB-20 No.19

2011/3/18

IPSJ SIG Technical Report

(a) (b)

Fig. 2 Trade-offs for AR: (a)Area-reliability trade-offs under Latency = 11 and (b)Latency-
reliability trade-offs under Area = 39.

Due to the space limitation, the other results are omitted, but the similar results
were observed for both AR and FIR.

Fig. 2 (a) describes that the looser the area constraint, the higher reliability
our work achieves even under the same latency constraint. This is because the
looser area constraint permits to utilize an FU which has the higher reliability
without sacrificing the latency, that is, replacement of ADD2 with ADD3. Simi-
larly, Fig. 2 (b) describes that the looser latency constraint, the more reliable
circuits our work explores because FUs with the higher reliability but the longer
latency can be utilized. As the latency constraint is relaxed, the improvement
rate becomes small. This is because the use of the FUs with the longer latency
may lengthen the lifetime of some values, leading to the lower reliabilities of such
values. This can be more prominently observed under the tighter area constraint.

In the second sets of experiments, we scheduled the two designs by our work
and the two previous works while varying the constraints on the area and latency
of the circuits. Table 3 and Table 4 summarize the experimental results for
AR and FIR, respectively. The first and second columns of the tables show the
constraints on the latency and area, respectively. The third to fifth columns
describe the reliability of the circuits obtained by the three methods, and the
sixth and seventh columns give the percentage improvements brought by our
work over the previous works. The eighth to tenth columns describe the elapsed
time of CPLEX for obtaining the results by the three methods. “>1,000” means
that it took more than 1,000 seconds to obtain the optimal solution, so for such
cases, the shown result is the best solution obtained in 1,000 seconds.

Table 3 Experimental results for AR.

Constraints Reliability Improvements (%) Solution time (s)
Latency Area TMR Method 5) Ours TMR Method 5) TMR Method 5) Ours

9 46 0.37166 0.37274 0.37348 0.49 0.20 0.40 0.50 0.46
9 56 0.52423 0.53383 0.53436 1.93 0.10 0.67 0.67 0.96
9 66 0.61950 0.53758 0.53758 -13.22 0.00 0.79 0.61 0.64
11 38 0.35958 0.35848 0.36136 0.49 0.80 1.12 1.76 2.68
11 48 0.50720 0.61775 0.62272 22.78 0.80 8.14 6.43 19.76
11 58 0.73475 0.65692 0.66885 -8.97 1.82 5.75 1.95 2.14
13 42 0.48699 0.70320 0.71812 47.46 2.12 14.18 46.70 18.40
13 52 0.64604 0.74396 0.75823 17.37 1.92 226.62 4.28 3.14
15 39 0.35958 0.73001 0.73882 105.47 1.21 44.78 878.07 281.89
15 49 0.68735 0.77071 0.77847 13.26 1.01 >1,000 8.48 11.15
15 59 0.78251 0.76995 0.78314 0.08 1.71 63.98 9.17 5.76
17 39 0.35958 0.77019 0.78812 119.17 2.33 265.50 12.78 85.29
17 49 0.70568 0.76787 0.79763 13.03 3.88 >1,000 26.04 11.87
19 36 0.45389 0.74741 0.78496 72.94 5.02 >1,000 114.84 140.34
19 46 0.68525 0.77560 0.79763 16.40 2.84 >1,000 66.00 37.53
21 35 0.32114 0.62875 0.65593 104.25 4.32 >1,000 >1,000 >1,000
21 45 0.70943 0.71809 0.79604 12.21 10.85 >1,000 58.53 152.26

Our work considerably overcomes TMR especially under the tight area con-
straint since there is no or little space for TMR, leading to the low reliability.
When the area constraint is lower than 40 except for when Latency const = 19 in
Table 3, TMR was employed for no operations. On the contrary, TMR achieves
the better results in some cases with the loose area and strict latency constraints
since our work cannot exploit FUs with the high reliability but the long latency.

Our work overcomes Method 5) because while Method 5) focuses on only op-
erations, our work considers the lifetime of values in addition to the operations.
Our work achieves the bigger improvements under the looser latency constraint
since the values tend to have long lifetime especially if they are not considered.
Studying the results in more detail, we found some cases where our work achieved
the better results even though the assignment of operations to FUs is exactly the
same between the two works. This is because the operational timing differs, that
is, Method 5) scheduled some operations in the later timing, leading to the lower
reliabilities of some values by their longer lifetime.

The results demonstrate the effectiveness of our work over the two previous
works. Unfortunately, however, the improvements over Method 5) were not as
big as expected since the two benchmarks are not large and the influences on the

5 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.19
Vol.2011-EMB-20 No.19

2011/3/18

IPSJ SIG Technical Report

Table 4 Experimental results for FIR.

Constraints Reliability Improvements (%) Solution time (s)
Latency Area TMR Method 5) Ours TMR Method 5) TMR Method 5) Ours

11 32 0.42769 0.52408 0.52460 22.66 0.10 0.71 2.73 3.78
11 42 0.65745 0.77582 0.77893 18.48 0.40 1.96 1.21 1.68
11 52 0.82688 0.78520 0.78913 -4.57 0.50 1.15 0.93 1.01
11 62 0.84107 0.78520 0.78991 -6.08 0.60 1.51 0.95 1.01
13 32 0.42769 0.67349 0.67686 58.26 0.50 1.68 125.23 149.90
13 42 0.65745 0.78460 0.79805 21.39 1.71 20.06 2.46 6.37
13 52 0.82688 0.79327 0.80769 -2.32 1.82 6.62 2.96 1.85
15 32 0.42769 0.71580 0.71794 67.86 0.30 7.23 300.64 392.46
15 42 0.65745 0.79658 0.81187 23.49 1.92 149.25 6.64 21.84
15 52 0.82688 0.77225 0.82168 -0.63 6.40 12.61 5.50 3.59
17 32 0.42769 0.74473 0.74153 73.38 -0.43 26.70 >1,000 >1,000
17 42 0.78262 0.81444 0.82263 5.11 1.01 822.96 12.23 81.18
17 52 0.82688 0.80876 0.83256 0.69 2.94 37.92 5.67 7.76
19 32 0.42769 0.80969 0.81375 90.27 0.50 22.79 270.84 466.25
19 42 0.78262 0.82441 0.83520 6.72 1.31 >1,000 23.57 49.03
19 52 0.82688 0.82854 0.84023 1.61 1.41 59.37 26.28 8.53
21 31 0.40479 0.78576 0.80888 99.83 2.94 >1,000 212.89 >1,000
21 41 0.65745 0.79684 0.83353 26.78 4.60 335.06 51.04 76.48

reliability of the datapath circuit by those of the values are relatively small. We
expect that our work will achieve remarkable effectiveness in practical designs.
To evaluate it for larger benchmarks and to develop a heuristic to obtain solutions
in practical time are our future work.

5. Conclusions

In this paper, we proposed a soft error-aware scheduling technique in HLS.
Our method exploits various versions of FUs with different area, latency, and
reliability, and assigns operations to FUs so that the reliability of the datapath
circuit is maximized under area and latency constraints. Also, at the same time,
our method minimizes the lifetime of values, which also affects the reliability of
the circuit. We formulated this method as an ILP problem. Experimental results
demonstrated that our work achieves better results than existing works.

We will extend this work so that more general cases such as operation chain-
ing and hierarchical DFGs can be handled. Developing a heuristic to solve the
problem in practical time is also the subject of our future work.

Acknowledgements
This work is in part supported by KAKENHI 22700050.

References

1) K.M. Zick and J.P. Hayes, “High-level vulnerability over space and time to insid-
ious soft errors,” in Proc. High Level Design Validation and Test Workshop, 2008,
pp. 161–168.

2) V.Gherman, S.Evain, M.Cartron, N.Seymour, and Y.Bonhomme, “System-level
hardware-based protection of memories against soft-errors,” in Proc. Design, Au-
tomation and Test in Europe, 2009, pp. 1222–1225.

3) P.Revirieo, J.A. Maestro, and C.J. Bleakley, “Reliability analysis of memories
protected with bics and a per-word parity bit,” ACM Trans. on Design Automation
of Electronic Systems, vol.15, no.2, pp. 18:1–18:15, 2010.

4) P.Sivakumar, M.Kistler, S.W. Keckler, D.C. Burger, and L.Alvisi, “Modeling the
effect of technology trends on the soft error rate of combinational logic,” in Proc.
International Conference on Dependable Systems and Networks, 2002, pp. 389–398.

5) S.Tosun, N.Mansouri, E.Arvas, M.Kandemir, and Y.Xie, “Reliability-centric high-
level synthesis,” in Proc. Design, Automation and Test in Europe, 2005, pp. 1258–
1263.

6) G.Lakshminarayana, A.Raghunathan, and N.K. Jha, “Behavioral synthesis of fault
secure controller/datapaths based on aliasing probability analysis,” IEEE Trans.
on Behavioral Synthesis of Fault Secure Controller/Datapaths Based on Aliasing
Probability Analysis, vol.49, no.9, pp. 865–885, 2000.

7) W.Kaijie and R.Karri, “Fault secure datapath synthesis using hybrid time and
hardware redundancy,” IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol.23, no.10, pp. 1476–1485, 2004.

8) S.Golshan and E.Bozorgzadeh, “SEU-aware resource binding for modular redun-
dancy based designs on FPGAs,” in Proc. Design, Automation and Test in Europe,
2009, pp. 1124–1129.

9) P.Montesinos, W.Liu, and J.Torrellas, “Using register lifetime predictions to pro-
tect register files against soft errors,” in Proc. International Conference on Depend-
able Systems and Networks, 2007, pp. 286–296.

10) M.Fazeli, S.N. Ahmadian, and S.G. Miremadi, “A low energy soft error-tolerant
register file architecture for embedded processors,” in Proc. International High As-
surance Systems Engineering Symposium, 2008, pp. 109–116.

11) S.Tosun, O.Ozturk, N.Mansouri, E.Arvas, M.Kandemir, Y.Xie, and W.-L. Hung,
“An ILP formulation for reliability-oriented high-level synthesis,” in Proc. Interna-
tional Symposium on Quality Electronic Design, 2005, pp. 364–369.

12) IBM ILOG CPLEX Optimizer. [Online]. Available: http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/

6 c© 2011 Information Processing Society of Japan

Vol.2011-SLDM-149 No.19
Vol.2011-EMB-20 No.19

2011/3/18

