
IPSJ SIG Technical Report

Cynk: A Hybrid Rsync and SSH Filesystem for

Cloud Computing

Nan Dun,†1 Sugianto Angkasa,†1 Kenjiro Taura†1

and Ting Chen†1

Cynk is a hybrid file system using rsync and SSH for data-intensive cloud
computing. By automatically synchronizing the local file system with a cloud
storage, Cynk enables users to transparently access local/remote data when
they are online and continue working when disconnected from network. The
hybrid architecture of Cynk means that it can allow users to simutaneously
access locally synchronized/cached data or online remote data over the network
via a uniform file system interface. Cynk uses the rsync tool with a partially
reasoning based protocol to synchronize files from local to remote file systems
and vice versa. It only requires the installation of client on local side. By
seamlessly bridging the local file system and cloud storage, Cynk especially
simplifies the work cycle of developing, testing, and deploying data-intensive
applications.

1. Introduction

Cloud platform services, or Platform as a Service (PaaS), have provided scalable

and elastic computation and storage resources for various applications1),6),9),12).

Data-intensive scientific applications7), usually requiring significant computation

power to process a large amount of data, are an important applications category

that can particularly benefit from the cloud platform services.

Though most of cloud services already have a friendly user interface to allow

users seamlessly scale the execution of applications to multiple computer servers

on demand, there are still some inconveniences that prevent the routine practice

from being as easy as we expected.

First, users usually develop and test their applications in their own desktop

machines for convenience in early stage, and then explicitly copy the program

†1 The University of Tokyo

and data to cloud for further test or real execution. This is efficient and economic

for users because: i) directly operating in cloud usually suffers from a much

higher latency than working on local desktop machines; ii) developing and testing

are generally time-costing task but require few computation and storage, while

conducting this task on cloud will receive an additional charge based on the time

or storage usage of the cloud server instances1).

Second, users prefer to separate the data storage locations for different datasets

used in testing and real application execution. Current personal computers are

usually equipped with hundreds of GBs to several TBs of disks, but they are still

not enough to store hundreds of TBs or PBs of data that are typically processed

by large applications. Additionally, users sometimes only need to access a small

fraction of the entire dataset for testing without copying the entire dataset to

local storage, which suggests that the large data in remote cloud storage should

be easily accessible over the network from user’s local desktop.

Being aware of these problems when we conduct our routine practice, we

design and implement Cynk, a hybrid filesystem using rsync and SSH for data-

intensive cloud computing, aiming to simplify the work cycle of developing,

testing, and deploying data-intensive applications. Cynk can automatically

synchronizing the local file system with a cloud storage, which enables users

to transparently access local/remote data when they are online and continue

to work when they are disconnected from network. The hybrid architecture of

Cynk means that it can also allow users to seamlessly and simultaneously access

locally synchronized/cached data or online remote data (without copying) over

the network via a uniform file system interface. Cynk especially targets the

typical usage scenario in practice as follows:

• Users develop and test their component programs and workflows in their

desktop machine with small datasets, which can be done offline, e. g., in a

commuter train or during a trip.

• Once the local development is done, users are able to immediately process

large datasets with remote resources when they are online, without the

need to recompile the application components and explicitly copy/move data

around.

• While the component programs and small dataset are offline available for

c⃝ 2011 Information Processing Society of Japan1

Vol.2011-HPC-130 No.39
2011/7/28



IPSJ SIG Technical Report

testing purpose, user are still able to test it with large datasets by seamlessly

access it when the remote storage is online without copying anything.

Therefore, Cynk allows users to effortlessly bridge the local desktop and a

remote storage system that is co-located with computation resources. The storage

system can be a commercial cloud storage, such as Amazon Simple Storage

Service1), or a distributed file system that federates multiple servers for data

sharing service in the dedicated environments, such as Lustre11) for clusters,

Gfarm16) or GMount file system3) for distributed clusters.

2. Hybrid Remote File System

Cynk is a user-level file system, which can be installed by non-privileged users

and only needs to be installed on the local side. We assume that an Secure

Shell (SSH) server17) is always available on the remote side.

Figure 1 illustrates the hybrid namespace in local filesystem created by

mounting a remote filesystem using Cynk. The local namespace is rooted at

the Cynk mountpoint working directory and its target is a remote directory

tree rooted at workflow. Cynk creates a virtual namespace that is identical to the

target remote namespace. By default, all directories and files under the workflow

directory are kept synchronized with working directory, i. e., source, binary,

small dat directories, which are illustrated by real lines in Figure 1. Directory

is also able to be specified as an online directory, which is not synchronized but

accessed directly over the network, such as big dat directory.

By this design, users can: i) transparently access local/remote data when

they are online, ii) continue working offline when they are disconnected from

network, and iii) separate the data for testing and full execution. As a result, the

application can be developed completely in the local file system with full datasets

access, and then users can just execute the application with full datasets and

computation resources.

2.1 Offline Data Synchronization

The offline data requires an initial replication from one side to another side,

and further synchronizing operations when files are updated on either side. In

Cynk, we use rsync19) to perform the file synchronization. Rsync is a popular

software utility for synchronizing files/directories between two file systems, using

Fig. 1 Hybrid namespace created by Cynk mount

an algorithm to minimize the data transfer by delta encoding18). One important

feature of rsync is that the synchronization can be performed by only one side,

suggesting that there is no need to install additional software on the other side.

Rsync can use its native protocol (requiring installation of rsync on both sides) or

via a remote shell such as Remote Shell (RSH) or SSH, to conduct file operations.

We present the details of synchronization protocols in Section 3.

2.2 Online Data Access

The online access for remote data only requires a proper file transfer protocol for

file manipulation via the file system interface. To achieve this, we use the same

approach of an existing remote filesystem called SSH Filesystem (SSHFS)15).

SSHFS is a file system based on Filesystem in Userspace (FUSE) and SSH File

Transfer Protocol (SFTP)17). It enables users to mount the file system of a

remote machine on local file system via usual SSH channel. Since SSH is widely

available in most Unix servers, thus users do not have to run additional daemons

in advance and the data transfer is as secure as SSH.

3. Synchronization Protocol

Since Cynk is designed to be installed only on user’s desktop side, we are only

able to capture the file system events (i. e., via FUSE interfaces) invoked by

user’s manipulations on local files. Besides, the file updates can also happen on

the remote server side, leading an inconsistency of files on two sides. Therefore,

c⃝ 2011 Information Processing Society of Japan2

Vol.2011-HPC-130 No.39
2011/7/28



IPSJ SIG Technical Report

the challenge is that we lack the knowledge of file updates of the remote side to

conduct a reasoning of the temporal order of update events from both sides.

Our goal is to design a synchronization protocol based on existing rsync

operations to achieve the functionality we proposed, even without a strict

conformity of the file consistency reasoning assurance. Or, more importantly,

the file consistency can be guaranteed under some specific circumstances that

are common usage cases in practice.

3.1 Semantics

We use the following notations to describe the updated file and the status of file

systems before and after the synchronization. S denotes the status of file systems

right after the last synchronization, thus the files are identical for both local and

remote file systems. Arrow “→” denotes a transition with any updates/changes

between two synchronizations. L and R are the statuses of local and remote

file systems, respectively, right before the next synchronization. f denotes the

name of a file that may be updated (i. e., created, written, or removed) during

the period between two synchronization.

Depending on the file system statuses of L and R, there are eight cases that

need to be considered in total:

Case 1: f ∈ S → f ∈ L and f ∈ R. The file existed at the last synchronization

point and it still exists in both sides. It may have been modified, or deleted

and then created since the last sync point. But any way, it does exist right

before the synchronization. Thus, we leave whichever is newer (based on the

modification time of files) between f in L and f in R, i. e., transferring the

newer file from its original side to the other side.

Case 2: f /∈ S → f ∈ L and f ∈ R. The file did not exist at the last

synchronization point but appears on both sides. Somehow, both L and R

must have created f . Clearly there is conflicting, but we have no option other

than leaving whichever is newer between f in L and f in R, i. e., transferring

the newer file from its original side to the other side.

Case 3: f ∈ S → f ∈ L and f /∈ R. The file must have been deleted in R at

least once. There may be conflicting cases, such as it was deleted locally and

then it was recreated again. But in any case, there was a “delete” operation

on R side and we have no way to tell that there is a local create operation after

the remote delete. Thus in this case, deleting f in L is the only reasonable

way.

Case 4: f /∈ S → f ∈ L and f /∈ R. The L side must have created f at least

once. There may be other conflicting operations (e. g., R created f and then

deleted it). But there is no way to tell that delete operation occurred after

the last creation of f on L. Thus, we leave f as it is, i. e., transferring f from

L to R.

Case 5: f ∈ S → f /∈ L and f ∈ R. The opposite of case 3. Deleting f in R is

the only reasonable way.

Case 6: f /∈ S → f /∈ L and f ∈ R. The opposite of case 4. Transfer f from R

to L is the only reasonable way.

Case 7: f ∈ S → f /∈ L and f /∈ R. Somehow, both sides must have deleted f

at least once. Clearly there is conflicting, but we have no option other than

leaving it alone. There is nothing to do for this case.

Case 8: f /∈ S → f /∈ L and f /∈ R. Both side can have created and finally

deleted f . Clearly conflicting, but we have no option other than leaving it

alone. There is nothing to do for this case.

3.2 Rsync Primitives

The synchronizing operation performed by rsync can be well controlled by

specifying its command options (see manual page of rsync for details19)). Here,

we focus on discussing how to control fine-grained rsync operations by using

the combination of different options in the context of synchronization semantics

presented in Section 3.1. We use “⇒” to denote a rsync command to be executed.

3.2.1 Basic Operations

There are several important command options used to control the rsync

behaviors. We list them as a reference for further description.

Default action: ⇒ rsync src dst

- Files existing only on src will be transferred to dst.

- Files existing only on dst will be ignored.

- Overwrite files with the same name but different size or modification time,

transferring from src to dst.

Update action: ⇒ rsync src dst -u

- Same as default action, but does not update/overwrite files that are newer

c⃝ 2011 Information Processing Society of Japan3

Vol.2011-HPC-130 No.39
2011/7/28



IPSJ SIG Technical Report

on dst.

Delete action: ⇒ rsync src dst --delete

- Same as default action, but delete files that exist only on dst.

Exclude action: ⇒ rsync src dst --exclude-from=list

- Same as default action, but do nothing on files that are listed in list.

3.2.2 Two-way Synchronization

Now we discuss the effect of basic operations on the eight cases described in

Section 3.1, with the consideration of file updates on both sides for two-way

synchronization. Basically, a two-way synchronization consists of two directions

of transmissions: a pull phase that transfers files from R to L, and a push phase

that transfers files from L to R.

Read only: There are only read operations on both L and R since S. Thus

following two-way synchronization command does not change anything since

files of both sides are identical.

⇒ rsync R L && rsync L R

Write: There are write operations on either/both L or/and R since S.

According to case 1, we keep files updated to the latest version of copies.

⇒ rsync R L -u && rsync L R -u

Create: There are create operations, but no delete operations, on either/both

L or/and R since S. According to case 2, 4, and 6, we keep files newly created

and updated to the latest version of copies.

⇒ rsync R L -u && rsync L R -u

Delete: There are delete operations, but no create operations, on either/both

L or/and R since S. According to case 3, 5, and 7, we delete the files on

both sides.

⇒ rsync R L -u --delete && rsync L R -u --delete

From above analysis, it is not hard to find that, when using “-u” and “–delete”

options together, there can be conflicts if file updates include both create and

delete operations. Figure 2 and Figure 3 illustrate the conflicting cases.

A straightforward solution for these problems is to use “–exclude-from” options.

Specifically, a file is logged into a list when it is created or deleted, since we are

able to capture the file system events of L by FUSE. Then before the pull

phase of synchronization, the files in this list are all excluded from being touched

Fig. 2 Conflict when creation on L

Fig. 3 Conflict when deletion on L

by rsync operations. For example, in Figure 3 and Figure 2, the command

will equivalently becomes as “rsync R L -u --delete --exclude=foo”. As a

result, a file created in L will not be deleted by pull command (see Figure 2). A

file deleted in L will not be copied back from R by pull command (see Figure 3),

and a following push command “rsync L R -u --delete” will delete the file in

R, resulting a compliance with the semantics in Section 3.1.

We use a born list to record the files with the create type events, and a dead list

to record the files with the delete type events. Note that a create type event is

c⃝ 2011 Information Processing Society of Japan4

Vol.2011-HPC-130 No.39
2011/7/28



IPSJ SIG Technical Report

not only consists of creation, but also includes other events such as mknod, mkdir,

rename (to), and link (to). Similarly, a delete event can be unlink, rmdir, and

rename (from).

Since a file can be created, deleted, created again, and deleted again, etc., the

born list and dead list should be updated accordingly upon create/delete events.

The algorithms for lists updating is straightforward and simple:

• On create event: Check if the file is already logged in the dead list. If exist,

remove it from dead list and return. Otherwise, insert the file into born list.

• On delete event: Check if the file is already logged in born list. If exist,

remove it from born list and return. Otherwise, insert the file into dead list.

As a result, the complete two-way synchronization protocol is:

• Logging the create and delete types events respectively, while maintaining a

born list and a dead list.

• Synthesize an exclude list by adding all files in born and dead lists, and use

this list to conduct a pull phase by

⇒ rsync R L -u --delete --exclude-from=exclude list

• Synthesize another exclude list by addiing files in dead list only, and use this

list to conduct a push phase by

⇒ rsync L R -u --delete --exclude-from=exclude list

4. Implementation

Using FUSE framework, Cynk implements a user-level filesystem by integrating

rsync with the synchronization protocol addressed in Section 3 and SSHFS (see

Figure 4).

FUSE14), consisting of a kernel module and a userspace library, is a popular

framework that allows users to develop their own file systems without touching

the kernel. By implementing FUSE interfaces, users can map file system calls

to specific userspace application and thus existing binaries can run on top of the

local file system without modification.

There a several reasons that we use FUSE rather than other approaches to

implement Cynk. First, FUSE can guarantee the fully capturing of file system

events. While in other file system event monitoring utility such as inotify8),

its implementation mechanism limits its monitoring scalability of large amount

Fig. 4 Implementation architecture of Cynk

events. For example, there are race conditions for recursively directory watching

which can cause events to be missed if they occur in a directory immediately after

that directory is created. Second, FUSE allows us to perform the file system

blocking to avoid the race condition if applications continue to access the file

system while synchronization is in progress. Third, FUSE framework allows us

to integrate SSHFS in a more straightforward approach.

Cynk is implemented in about 5,000 lines of C code, of which 4,000 lines are

adopted from SSHFS source code15) and another 1,000 lines are dedicated to

implementing the two-way synchronization protocol.

5. Evaluation

Since Cynk is only used for file synchronization, we measure its synchronization

performance and use Dropbox2) as a reference. Our experimental environment

consists of two notebook machines with Linux installed. We install Dropbox on

both machines which refer to the same account, but we only run Cynk on one of

machines, which is denoted as local machines. Then, we use following dataset to

test Cynk and Dropbox with the same configurations.

• Data 1: 1000 small size (600B - 1.2KB) text files

• Data 2: 2000 small size (600B - 1.2KB) text files

c⃝ 2011 Information Processing Society of Japan5

Vol.2011-HPC-130 No.39
2011/7/28



IPSJ SIG Technical Report

• Data 3: Several medium size (10[MB] - 50MB) files consisting of video files,

binary files, and compressed files, with a total size of 112.3MB

• Data 4: Several big size (50MB - 150MB) files consisting of video files, binary

files, text files and compressed files, with a total size of 1.9GB.

• Data 5: Several big size (150MB - 350MB) files consisting of video files,

binary files, and compressed files, with a total size of 1.9GB.

Table 1 List of Cynk and Dropbox synchronization time. Note that the number cannot
be compared directly because Dropbox always needs to communicate with its file
servers.

Operation Cynk (sec) Dropbox (sec)

Move data 1 via WiFi connections 59.8 171.2
Delete data 1 via WiFi connections 75.2 61.4
Move data 2 via WiFi connections 69.2 314.6
Delete data via WiFi connections 2 90.6 64.8
Move data 3 via WiFi connections 408 941
Delete data 3 via WiFi connections 79 295
Move data 4 via LAN connections 226 459
Update data 4 via LAN connections 118 1413
Delete data 4 via LAN connections 27 13
Move data 5 via LAN connections 227 1347
Update data 5 via LAN connections 96 2794
Delete data 5 via LAN connections 58 8

Table 1 shows the list of synchronization time by using Cynk and Dropbox.

Note that we are unable to compare the time directly because Dropbox uses

a centralize storage to store and distribute files to multiple clients, where the

latency between client and file servers are much higher than the latency between

two machines used by Cynk.

First, Cynk is better in term of the ease of usage. When using Dropbox, user

needs to install and configure Dropbox on every clients. While for Cynk, user

only need to run Cynk from local site and it is able to synchronize with multiple

remote machines specified with just one command for each remote site. Besides,

Dropbox only synchronizes the files in Dropbox folder, which means that user

needs to explicitly move/import files to the Dropbox folder. Cynk doesn’t have

this restriction because it is able to synchronize with any folder specified by the

command arguments.

Second, Cynk is better in case of moving updated files. In the experiment, we

choose several files of data 4, 5, and 6, and make some changes with the portion of

data with a size of 10MB - 50MB. It is ideal if both tools only move these updated

10MB - 50MB data. For text files both Cynk and Dropbox perform well because

they only moved the changed part of files. But for binary, video, and compressed

files, Dropbox is unable to identify the changes and then move the entire changed

files. However, Cynk only moves the changed portion of data. This is because

Dropbox uses a text-based versioning system to differentiate updated files and

thus unable to detect the changes for non-text files. On the other side, Cynk,

which is actually using rsync, uses the delta differencing approach to identify the

difference of updated file and transfer that part of data only.

However, Dropbox is better if users would like to synchronize files with other

multiple machines. For Dropbox, the time for distributing data to multiple

machines remains almost the same no matter the number of remote sites. But

for Cynk, the time required for distributing data to multiple machines will rise.

6. Related Work

Existing file synchronization utilities for cloud storage include Dropbox2),

Syncplicity13), Ubuntu One20), and Windows Live SkyDrive10). Dropbox is a

client-based application that enable users to share and synchronize their personal

files across multiple platforms. Syncplicity is also a desktop-based file backup

and synchronization service, which allows other popular online service such as

Google Docs5), Zoho21), and Facebook4). Ubuntu One20) is a Ubuntu-dedicated

client application for file synchronization across several platforms. Windows

Live SkyDrive10) is a web-based file hosting server on cloud storage with deep

integration with various Windows Live online services.

However, Cynk is particularly different from above file hosting/synchronization

services in following aspects. First, Cynk targets to help users reduce the

developing effort of running data-intensive applications on cloud service, while

all above file hosting services focus on providing an easy personal data

sharing/distributing services across different platforms and devices. Second,

Cynk allows users to directly synchronize their files with personal servers,

dedicated clusters, or commercial cloud storage. On the other side, existing

c⃝ 2011 Information Processing Society of Japan6

Vol.2011-HPC-130 No.39
2011/7/28



IPSJ SIG Technical Report

file services are supported file servers that are managed in a centralized manner.

7. Conclusions and Future Work

We have developed Cynk, a file system that simplifies the practice of developing

and executing data-intensive applications on cloud platforms. Cynk achieves

its usability and simplicity by 1) integrating rsync and SSHFS into one hybrid

remote file system that enable transparent access of online and offline data in

remote storage system from user’s desktop, and 2) a two-way synchronization

protocol based on partial file updates knowledge.

Our future work includes developing an additional synchronization protocol

that is strictly compliant with the temporal order of file updates on both local

and remote sides. For example, we can implement a Cynk daemon for remote

side if applicable, so the complete file system events can be acquired for conflicts

reasoning. Another direction of enhancement is to make Cynk smarter by

designing a better synchronization triggering mechanism. For example, Cynk

will trigger the synchronization by detecting the specific patterns of file system

activities, instead of periodic synchronizing in current implementation.

Cynk is an open source software and online available at http://cynk.

googlecode.com/.

References

1) Amazon.com: Amazon Web Services, Amazon.com, Inc. (online),
available from ⟨http://aws.amazon.com/⟩ (accessed 2011-06-23).

2) Dropbox: Dropbox, Dropbox Inc. (online),
available from ⟨http://www.dropbox.com/⟩ (accessed 2011-05-05).

3) Dun, N., Taura, K. and Yonezawa, A.: GMount: An Ad Hoc and Locality-Aware
Distributed File System by Using SSH and FUSE, Proceedings of the 9th IEEE
International Symposium on Cluster Computing and the Grid, CCGrid ’09, pp.
188–195 (2009).

4) Facebook, Inc.: Facebook, (online), available from ⟨http://www.facebook.com/⟩
(accessed 2011-06-23).

5) Google, Inc.: Google Docs, (online), available from ⟨http://docs.google.com⟩
(accessed 2011-06-23).

6) Google.com: Google App Engine, Google, Inc. (online),
available from ⟨http://code.google.com/appengine/⟩ (accessed 2011-06-23).

7) He, T., Tansley, S. and Tolle, K.(eds.): The Fourth Paradigm: Data-Intensive

Scientific Discovery, Microsoft Research (2009).
8) Linux man page: inotify, (online),
available from ⟨http://linux.die.net/man/7/inotify⟩ (accessed 2011-06-23).

9) Microsoft: Windows Azure, Microsoft Corporation (online),
available from ⟨http://www.microsoft.com/windowsazure/⟩ (accessed 2011-06-23).

10) Microsoft Corporation: Windows Live SkyDrive, (online),
available from ⟨http://skydrive.live.com/⟩ (accessed 2011-06-23).

11) Oak Ridge National Laboratory: Peta-Scale I/O with the Lustre File System,
Technical report (2008).

12) Salesforce.com: Salesforce, Salesforce.com (online),
available from ⟨http://www.salesforce.com/⟩ (accessed 2011-06-23).

13) Syncplicity, Inc.: Syncplicity, (online),
available from ⟨http://www.syncplicity.com/⟩ (accessed 2011-06-23).

14) Szeredi, M.: FUSE: Filesystem in Userspace, (online),
available from ⟨http://fuse.sf.net/⟩ (accessed 2011-05-08).

15) Szeredi, M.: SSH Filesystem, (online),
available from ⟨http://fuse.sf.net/sshfs.html⟩ (accessed 2011-05-08).

16) Tatebe, O., Hiraga, K. and Soda, N.: Gfarm Grid File System, New Generation
Computing, Vol.28, pp.257–275 (2010).

17) The OpenBSD Project: OpenSSH, (online),
available from ⟨http://www.openssh.org⟩ (accessed 2011-06-23).

18) Tridgell, A.: Efficient Algorithms for Sorting and Synchronization, PhD Thesis,
Australian National University, Canberra, Australia (1999).

19) Tridgell, A., Mackerras, P. and Davison, W.: Rsync, (online),
available from ⟨http://rsync.samba.org/⟩ (accessed 2011-05-05).

20) Ubuntu: Ubuntu One, (online), available from ⟨http://one.ubuntu.com/⟩
(accessed 2011-06-23).

21) Zoho, Inc.: Zoho, (online), available from ⟨http://www.zoho.com⟩
(accessed 2011-06-23).

c⃝ 2011 Information Processing Society of Japan7

Vol.2011-HPC-130 No.39
2011/7/28


