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ウエーブレットに基づくウイナーフィルタを用いた
雑音及び残響に頑健な音声認識

ゴメス・ランディ †1 河 原 　達 也†1

頑健な音声認識のために、ウエーブレット領域で雑音と残響を抑圧する方法を提案
する。ウエーブレット変換のパラメータは、音声・背景雑音・遅い残響成分の各々に対
して最適化し、効果的なウイナーフィルタを行うためのウイナーゲインを求める。具
体的には、背景雑音と遅い残響成分を抑圧するためのウイナーゲインを独立に求めた
後、両者を組み合わせる。様々な雑音や残響条件に対応できるように、雑音プロファ
イルと残響時間の自動同定を導入している。提案手法を大語彙連続音声認識において
評価し、既存の手法に比べて有効性を確認した。

Robust Speech Recognition in Noisy and Reverberant
Environments Using Wavelet-based Wiener Filtering

Randy Gomez †1 and Tatsuya Kawahara†1

We present a method of enhancing the speech signal corrupted by noise and
late reflection in the wavelet domain for robust automatic speech recognition
(ASR). The wavelet parameters for speech, background noise and late reflec-
tion are optimized to achieve a better estimate of the Wiener gain for effective
filtering. Wiener gains to compensate for the effects of background noise and
late reflection are independently estimated and then combined. To cope with
different noise and reverberant conditions, we introduce the noise profiles and
reverberation time identification. The proposed method is evaluated in a large
vocabulary continuous speech recognition (LVCSR) task, and shown to outper-
form several conventional methods.
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1. Introduction

In real-environment conditions, the speech signal is often contaminated with noise

and reverberation resulting to mismatch in the acoustic model (AM). Thus, speech en-

hancement including denoising and dereverberation is one of the most important topics

in ASR. While speech enhancement has been conventionally studied independently from

ASR, we are studying on tight integration of enhancement and ASR using a maximum

likelihood criterion1).

The model of the reverberant speech X(w, f) (short-term spectrum, w: window frame,

f : frequency) we adopt is based on the additive effects of the early XE(w, f) and late

XL(w, f) reflection,

X(w, f) ≈ XE(w, f) + XL(w, f)

≈ S(w, f)H(0, f) +
∑D

d=1
S(w − d, f)H(d, f)

(1)

where S(w, f) and H(w, f) are the frequency response of the clean speech and the

room impulse response (RIR), respectively. D is the number of frames, over which

the reverberation has an effect. The early reflection is due to the direct signal and

some reflections that occur at earlier time. It is mostly addressed through Cepstral

Mean Normalization (CMN) in the ASR system as it falls within the frame. On the

other hand, the late reflection, whose effect spans over frames, can be treated as long-

period noise2)3). Following our assumption above, we include the effects of the additive

background noise N(w, f) by expanding the reverberant model in Eq. (1)

X(w, f) ≈ XE(w, f) + XL(w, f) + N(w, f). (2)

Enhancing the contaminated signal is defined by suppressing the effects of late reflec-

tion XL(w, f) and background noise N(w, f) for ASR in noisy and reverberant condi-

tions. Since the late reflection is treated as noise, the enhancement problem is reduced

to a simple denoising problem. Thus, we can apply existing wavelet-based denoising

techniques to address both the effects of late reflection and background noise based on

the model in Eq. (2). In this paper, we treat the contaminants separately since the

late reflection is dependent on the smearing effect of the previous D frames while the
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background noise is not.

Several wavelet-based speech enhancement methods have been proposed. A typical

method4) is constructed by integrating a voice activity detection (VAD) and introducing

different threshold profiles for different conditions. The use of several threshold profiles

enables to cope with colored and non-stationary signals. A method which relies on

the robustness of the all-pole filter in modeling the clean speech from the contaminant

subspace is also proposed5). By clustering only the wavelet extrema, the reconstructed

signal is robust to the effect of the contaminant subspace. Another method is based

on filtering of the contaminated wavelet coefficients using Wiener gains6), which we

extended for dereverberation in7). The methods4)-6) are generally designed to enhance

the speech waveform, but this does not guarantee an improvement in performance for

the ASR application. Moreover, these methods do not address the problem of both late

reflection and noise simultaneously.

In this paper, we present a method of suppressing the effects of late reflection and

background noise through Wiener filtering in the wavelet domain. In the proposed

scheme, prior to filtering, the wavelet parameters are optimized to improve the likeli-

hood of the acoustic model. The optimization renders the proposed method to be more

effective in the ASR application. In this paper, background noise and late reflection are

jointly referred to as “contaminant signal”.

The paper is organized as follows; Section II presents the proposed enhancement

method based on Wiener filtering in the wavelet domain using optimized wavelet pa-

rameters. In Section III we explain the noise profile and reverberation time identifica-

tion. The experimental setup and ASR evaluation results are presented in Section IV.

Finally, we conclude the paper in Section V.

2. Wavelet-based Wiener Filtering

2.1 Optimizing Wavelet Parameters

A wavelet is generally expressed as

Ψ(υ, τ, t) =
1√
υ

Ψ
(

t − τ

υ

)
, (3)

where t denotes time, υ and τ are the scaling and shifting parameters respectively.

Ψ
(

t−τ
υ

)
is often referred to as the mother wavelet. Assuming that we deal with real-

valued signal, the wavelet transform (WT) is defined as

F (υ, τ) =

∫
f(t)Ψ(υ, τ, t)dt, (4)

where F (υ, τ) is the wavelet coefficient and f(t) is the time-domain function. With an

appropriate training algorithm, we can optimize τ and υ so that the wavelet captures

specific characteristics of a certain signal of interest. The resulting wavelet is sensitive

in detecting the presence of this signal given any arbitrary signal. In the wavelet fil-

tering method, we are interested in detecting the power of clean speech, noise and late

reflection given an observed contaminant. Thus, we optimize the wavelet parameters

to detect these separately based on the AM likelihood as shown in Fig. 1.

2.1.1 Speech

Since we are interested in the speech subspace in general, optimizing a single wavelet

to capture the general speech characteristics is sufficient. In Fig. 1, we illustrate the

optimization of the wavelet for clean speech. Wavelet coefficients S(υ, τ), extracted

through Eq. (4), are converted back to the time domain sυ,τ through inverse wavelet

transform (IWT). Likelihood scores are computed using the clean speech acoustic model

λs, a Gaussian Mixture Model (GMM) of 64 components. This is a text independent

model which captures the statistical information of the speech subspace. A greedy

search process is iterated by adjusting υ and τ . The corresponding υ=a and τ=α that

result to the highest score are selected.

2.1.2 Noise

The same procedure is applied to the case of noise, except for the creation of multiple

profiles (i), representing different types of noise. N(υ, τ)(i) and n
(i)
υ,τ are the wavelet

and time domain of noise profile (i), respectively. Likelihood scores are computed using

the corresponding noise model λn(i) (same model structure as that of λs). This model

is trained using a noise database. The corresponding υ=b(i) and τ=β(i) that maximize

the likelihood score are stored in the profile.

The noise database is originally composed of seven base noise, i.e. Car, Computer,

Office, Crowd, Park, Mall and Vacuum cleaner. To generalize to a variety of noise char-
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図 1 Wavelet parameter optimization scheme.

acteristics, additional entries are made by combining different types of the base noise.

To remove redundancy and suppress the increase of the entries, we measure the cor-

relation of the resulting combinations and select the ones that are less correlated with

existing noise entries. Thus, the expanded noise database referred to as noise profiles

will provide more degree of freedom in characterizing various noise distributions.

2.1.3 Late reflection

In the case of the late reflection in Fig. 1 (bottom), D templates for every reverbera-

tion time T60 (j) are to be optimized for both scale (υ1, ...υD)(j) and shift (τ1, ..., τD)(j).

These correspond to D preceding frames that cause smearing to the current frame of

interest. We note that the effect of smearing is not constant, thus D templates are

created. By estimating the reverberation time T60 (j), we can generate the impulse

response and its corresponding late reflection coefficients h
(j)
L

7). Then, late reflection

observations x
(j)
L are generated by convolving the clean speech with h

(j)
L . Next, wavelet

coefficients X(υ, τ)
(j)
L are extracted through WT. In order to make X(υ, τ)

(j)
L void of

speech characteristics, thresholding is applied to X(υ, τ)
(j)
L . Speech energy is charac-

terized with high coefficient values8)4) and thresholding sets these coefficients to zero,

X̄(υ, τ)
(j)
L =

{
0 , | X(υ, τ)

(j)
L | > thr

X(υ, τ)
(j)
L , | X(υ, τ)

(j)
L | ≤ thr

(5)

thr is calculated similar to that in8). The thresholded signal is converted back to time

domain x̄
(j)
υ,τL

and evaluated against a late reflection model λ
x̄
(j)
L

. The parameters υ and

τ are adjusted and the corresponding υ={e1,...,eD}(j) and τ={ξ1,...,ξD}(j) that result

to the highest likelihood score are selected. We note that λ
x̄
(j)
L

is trained using the

synthetically generated late reflection data (during training) with thresholding applied.

2.2 Filtering Using Wiener Gain

The general expression of the Wiener gain at window frame w and band m for back-

ground noise and late reflection are expressed as

κN
wm =

S(υ, τ)2wm

S(υ, τ)2wm + N(υ, τ)2wm

(6)

and

κXL
wm =

S(υ, τ)2wm

S(υ, τ)2wm + XL(υ, τ)2wm

, (7)

where S(υ, τ)2wm, N(υ, τ)2wm and XL(υ, τ)2wm are wavelet power estimates for the clean
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speech, noise, and late reflection, respectively. By using the optimized values for υ and

τ as described in Section II-A, we can compute the respective power estimates directly

from the observed contaminated signal X(υ, τ)wm. Thus, the speech power estimate

becomes

S(υ, τ)2wm ≈ X(a, α)2wm, (8)

the noise power estimate N(υ, τ)2wm as

N(υ, τ)2wm ≈ X(b(i), β(i))
2

wm, (9)

and the late reflection estimate XL(υ, τ)2wm as

XL(e
(j)
d , ξ

(j)
d )

2

wm
≈


X(e

(j)
1 , ξ

(j)
1 )2wm, d = 1∑d−1

k=1
X(e

(j)
k , ξ

(j)
k )2wm

d − 1
+

X(e
(j)
d , ξ

(j)
d )2wm, otherwise,

(10)

Wiener filtering is conducted by weighting the contaminated wavelet coefficient

X(υ, τ)wm with the Wiener gain as,

X(υ, τ)wm(enhanced) = X(υ, τ)wm . κwm, (11)

where we define

κwm =
κN

wm + κXL
wm

2
. (12)

Although this is not a direct calculation of the Wiener gain based on the combined

effects of both noise and late reflection, we used Eq. (12) for reason of tractability. In

Eq. (11), the Wiener weight κwm dictates the degree of suppression of the contaminant

to the observed signal at particular frame w and band m. If the contaminant power

estimate is greater than the estimate of the speech power, then κwm for that band may

be set to zero or a small value. This attenuates the effect of contamination. On the

other hand, if the power of the clean speech estimate is greater, the Wiener gain will

emphasize its effect. The enhanced wavelet coefficients are converted back to the time

domain through IWT and given to the ASR process.

3. Noise Profile and T60 Identification

Each noise profile (i) and reverberation time T60 (j) has corresponding optimized

wavelet parameters (b(i), β(i)), {e1,...,eD}(j) and {ξ1,...,ξD}(j) as shown in Section II-

A. For actual ASR, it is necessary to identify the profile that corrupts the speech signal

to retrieve the appropriate parameters. To identify the noise profile (i), a GMM-based

classifier is employed. The GMMs (λn(i)) are same as used in optimizing the wavelet

parameters for the noise profiles discussed in Section II-A. Prior to ASR, high-energy

frames are removed from the input noisy speech and the remaining noise segments are

evaluated with the GMMs. Subsequently, the profile (i) that leads to the best likelihood

is selected. The same procedure is applied to the identification of T60 (j), using the

GMM classifier λ
(j)
x̄L

trained with the synthetically generated late reflection data. We

have found out that the identification works well even with only a few frames of data.

4. Experimental Evaluations

We have evaluated the proposed method in large vocabulary continuous speech recog-

nition (LVCSR). The training database is the Japanese Newspaper Article Sentence

(JNAS) corpus with a total of approximately 60 hours of speech. The test set is com-

posed of 200 sentences uttered by 50 speakers. The vocabulary size is 20K and the

language model is a standard word trigram model.

Speech is processed using 25ms-frame with 10ms. shift. The features used are 12-

order MFCCs, ∆MFCCs, and ∆Power. The AM is a phonetically tied mixture (PTM)

HMMs with 8256 Gaussians in total. It is trained using the speech database with super-

imposition of Gaussian noise, that is different from those in the noise profiles9)10). We

note that in our proposed method, we use only a single AM in ASR for different noise

and SNR conditions. We used seven types of real noise (base noise) in the NAIST

database10): Car, Computer, Office, Crowd, Park, Mall and Vacuum cleaner. As the

result of combination of the base noise entries, 20 noise profiles are generated. We

considered reverberation time T60 from 100ms. to 500ms. with 100ms. interval. In the

experiments, we compare the proposed method against modified wavelet-based meth-

ods4)-6) in dealing with the reverberation problem7). Then we perform post-processing
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図 2 Recognition Performance.
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using the ETSI advanced front-end (AFE)11) to deal with the background noise for

these methods.

In Fig. 2, we show the ASR performance in word accuracy for different noise types,

SNRs (10, 20dB) and reverberation time (200, 400ms.). We note that when a particu-

lar noise-type is being evaluated, it is held-out during noise profile generation. (A) is

the result when the contaminated data is not processed and recognized using an AM

re-trained with the same condition. (B) is the result when processed with the improved

wavelet-based enhancement that incorporates VAD and threshold profiles4). Another

method based on extrema clustering5) is evaluated in (C). The result of wavelet filtering

without optimization6)7) is shown in (D), while the result of the proposed method which

incorporates both late reflection and background noise is given in (E). The results in

Fig. 2 show that the proposed method outperforms existing wavelet-based methods in

all cases4)-7). By optimizing the wavelet parameters, the enhancement process is tuned

to improving the acoustic model likelihood. As a result, the proposed method becomes

more effective in the ASR application.

5. Conclusion

The proposed wavelet-based Wiener filtering optimizes the wavelet parameters to

effectively estimate the power of the clean speech, noise, and late reflection. This op-

timization is based on the AM likelihood, and results to a more accurate Wiener gain

estimate in suppressing the contaminant signal. Currently, we deal with simple additive

background noise. In the future, we will further investigate its convolutive effect. This

scenario occurs when the noise source is located at a considerable distance from the

microphone.
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