
IPSJ SIG Technical Report

Implementation and performance evaluation of

new inverse iteration algorithm with Householder

transformation in terms of the compact WY representation

Hiroyuki Ishigami,†1 Kinji Kimura†1

and Yoshimasa Nakamura†1

A new inverse iteration algorithm that can be used to compute all the eigen-
vectors of a real symmetric tridiagonal matrix on parallel computers is devel-
oped. In the classical inverse iteration, the modified Gram-Schmidt orthogo-
nalization is used, and this causes a bottleneck in parallel computing. In this
paper, the use of the compact WY representation is proposed in the orthogo-
nalization process of the inverse iteration with the Householder transformation.
This change results in drastically reduced synchronization cost in parallel com-
puting. The new algorithm is evaluated on a 32-core parallel computer, and it is
shown that the algorithm is up to 7.46 times faster than the classical algorithm
in computing all the eigenvectors of matrices with several thousand dimensions.

1. Introduction

The eigenvalue decomposition of a symmetric matrix, i.e., a decomposition

into a product of matrices consisting of eigenvectors and eigenvalues, is one of

the most important operations in linear algebra. It is used in vibrational analysis,

image processing, data searches, etc.

Owing to recent improvements in the performance of computers equipped with

multicore processors, we have had more opportunities to perform calculations on

parallel computers. As a result, there has been an increase in the demand for an

eigenvalue decomposition algorithm that can be effectively parallelized.

The inverse iteration algorithm is an algorithm for computing eigenvectors in-

dependently associated with mutually distinct eigenvalues. However, when we

use this algorithm, we must reorthogonalize the eigenvectors if some eigenval-

†1 Graduate school of Informatics, Kyoto University

ues are very close to each other. Adding this reorthogonalization increases the

computational cost. Moreover, for this reorthogonalization, we have generally

used the MGS (modified Gram-Schmidt) algorithm. However, this algorithm is

sequential and inefficient for parallel computing. As a result, we are unable to

maximize the performance of parallel computers. Hereinafter, we will refer to

the inverse iteration algorithm with MGS as the classical inverse iteration.

We can also orthogonalize vectors by using the Householder transformation9),

and we call this precess the Householder orthogonalization algorithm. While the

MGS algorithm is unstable in the sense that the orthogonality of the resulting

vectors depends on the condition number of the matrix10), the Householder al-

gorithm is stable because its orthogonality does not depend on the condition

number. The Householder algorithm is also sequential and ineffective for parallel

computing, and its computational cost are higher than those of MGS.

In 1989, the Householder orthogonalization in terms of the compact WY rep-

resentation was proposed8). By adopting this orthogonalization, stability and

effective parallelization can be achieved. Hereafter, we refer to this algorithm as

the compact WY orthogonalization algorithm. In 2010, Yamamoto demonstrated

the fact10): When this algorithm is used in the Arnoldi process, the computation

time for parallel computation is less than that when the MGS algorithm is used,

and the orthogonality of the eigenvectors generated using this algorithm is better

than that of the eigenvectors generated using MGS.

In this paper, we consider an implementation of the compact WY orthogonal-

ization to the inverse iteration algorithm for a real symmetric tridiagonal matrix

and we evaluate its performance. Thereafter, we present a new inverse iteration

algorithm for computing the eigenvectors of a real symmetric tridiagonal matrix.

2. Classical inverse iteration and its defect

2.1 Classical inverse iteration

We consider the problem of computing eigenvectors of a real symmetric tridi-

agonal matrix T ∈ Rn×n. Let λj ∈ R be eigenvalues of T such that λ1 < λ2 <

· · · < λn. Let vj ∈ Rn be the eigenvector associated with λj . When λ̃j , an

approximate value of λj , and a starting vector v
(0)
j are given, we can compute

1 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.8
2011/7/18

IPSJ SIG Technical Report

an eigenvectors of T . To this end, we solve the following equation iteratively:(
T − λ̃jI

)
v
(k)
j = v

(k−1)
j . (1)

Here I is the n × n identity matrix. If the eigenvalues of T are mutually well-

separated, the solution of v
(k)
j , Eq.(1) generically converges to the eigenvector

associated with λj as k goes to ∞. The above iteration method is the inverse

iteration. The computational cost of this method is of O(mn) when we compute

m eigenvectors, and it is less than that of others for eigenvalue decomposition.

In the implementation, we have to normalize the vectors v
(k)
j to avoid overflow.

When some of all the eigenvalues are close together or there are clusters of

eigenvalues, we have to reorthogonalize all the eigenvectors associated with such

eigenvalues because they need to be orthogonal to each other. In the classical

inverse iteration, we apply the MGS to this process and the computational cost of

it is of O(m2n). Therefore, when we calculate eigenvectors of the matrix that has

many clustered eigenvalues, the total computational cost increases significantly.

In addition, the classical inverse iteration is implemented the Peters-Wilkinson

method7). In this method, when the distance between the close eigenvalues is less

than 10−3∥T∥, we regard them as members of the same cluster of eigenvalues,

and we orthogonalize all of the eigenvectors associated with these eigenvalues.

The classical inverse iteration algorithm is shown by Fig.1 and j1 denotes the

index of the minimum eigenvalue of some cluster.

2.2 The defect of the classical inverse iteration

The inverse iteration is a prominent method for computing eigenvectors, be-

cause we can compute eigenvectors independently and this process is easily par-

allelized by assigning each cluster to each core.

Let us consider the Peters-Wilkinson method in the classical inverse iteration.

When the dimension of T is greater than 1000, most of the eigenvalues are re-

garded as being in the same cluster3).

In this case, we have to parallelize the inverse iteration with respect to not the

cluster but the loop described from lines 2 to 16 in Fig.1. This loop includes

the iteration based on Eq.(1) and the orthogonalization of the eigenvectors. This

orthogonalization process becomes a bottleneck of the classical inverse iteration

with respect to the computational time. The MGS algorithm is mainly based on

a BLAS level-1 operation and it is a sequential algorithm. Because of this, when

1: for j = 1 to n do

2: Generate v
(0)
j from random numbers.

3: k = 0.
4: repeat
5: k ← k + 1.

6: Normalize v
(k−1)
j .

7: Eq.(1): Compute v
(k)
j by using v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3∥T∥, then
9: for i = j1 to j − 1 do

10: v
(k)
j ← v

(k)
j − ⟨v(k)

j ,vi⟩vi

11: end for
12: else
13: j1 = j.
14: end if
15: until some condition is met.

16: Normalize v
(k)
j to vj .

17: end for

Fig. 1 Algorithm of classical inverse iteration.

we compute all the eigenvectors in parallel computers, the number of synchro-

nizations is of O(m2). Therefore, the MGS algorithm is ineffective on parallel

computing.

In conclusion, the classical inverse iteration is an ineffective algorithm for paral-

lel computing because the MGS algorithm is used in its orthogonalization process.

3. Other orthogonalization algorithms

3.1 Householder orthogonalization

The Householder orthogonalization, based on the Householder matrices, is one

of the alternative orthogonalization methods. When some vectors v, d ∈ Rn

satisfy ∥v∥2 = ∥d∥2, there exists the symmetric matrix H satisfying HH⊤ =

H⊤H = I, Hv = d defined by H = I− tyy⊤, y = v−d, t = 2/∥y∥22. The trans-
formation by H is called the Householder transformation. We can orthogonalize

some vectors by using the Householder transformations. This orthogonalization

algorithm is shown in Fig.2. The vector yj is the vector in which the elements

from 1 to (j−1) are the same as the elements of v′
j and the elements from (j+1) to

n are zero. The vector ej is the jth vector of I ∈ Rn×n. The orthogonality of the

vectors qj generated by the Householder orthogonalization does not depend on

the condition number of T . Therefore, the Householder orthogonalization is more

2 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.8
2011/7/18

IPSJ SIG Technical Report

1: for j = 1 to m do
2: Generate vj from q1, · · · , qj−1.
3: v′

j =
(
I − tj−1yj−1y

⊤
j−1

)
· · ·

(
I − t2y2y

⊤
2

) (
I − t1y1y

⊤
1

)
vj .

4: Compute yj and tj by using v′
j .

5: qj =
(
I − t1y1y

⊤
1

) (
I − t2y2y

⊤
2

)
· · ·

(
I − tjyjy

⊤
j

)
ej .

6: end for

Fig. 2 Algorithm of Householder orthogonalization.

stable than MGS. On the other hand, being similar to MGS, it is a sequential

algorithm that is mainly based on a BLAS level-1 operation. Its computational

cost is higher than that of MGS. Thus the Householder orthogonalization is an

ineffective algorithm in parallel computing.

3.2 Compact WY orthogonalization

In 2010, Yamamoto presented the Householder orthogonalization in the Arnoldi

process in terms of the compact WY representation10). This study suggests that

the Householder orthogonalization becomes capable of computation with a BLAS

level-2 operation in terms of the compact WY representation8). Yamamoto also

showed that the computation time for orthogonalization on parallel computers

has decreased with the use of the Householder orthogonalization in terms of the

compact WY representation, compared to this computational time in the case of

the MGS algorithm10).

Now, we consider the Householder orthogonalization in Fig.2 and we introduce

the compact WY representation. First, we define Y1 = y1 ∈ Rn×1 and T1 =

t1 ∈ R1×1. Next, we define matrices Yj ∈ Rn×j and upper triangular matrices

Tj ∈ Rj×j recursively as follows:

Yj =
[
Yj−1 yj

]
, Tj =

[
Tj−1 −tjTj−1Y

⊤
j−1yj

0 tj

]
. (2)

In this case, the following equation holds

H1H2 · · ·Hj = I − YjTjY
⊤
j . (3)

As shown by Eq.(3), we can rewrite the product of the Householder matrices

H1H2 · · ·Hj in a simple block matrix form. Here I−YjTjY
⊤
j is called the compact

WY representation of the product of the Householder matrices. Fig.3 shows the

compact WY orthogonalization algorithm.

3.3 Comparison of the orthogonalization algorithms

The compact WY orthogonalization has a stable orthogonality arising from

1: for j = 1 to m do
2: Generate vj from q1, · · · , qj−1.
3: v′

j =
(
I − Yj−1T

⊤
j−1Y

⊤
j−1

)
vj .

4: Compute yj and tj by using v′
j .

5: Eq.(2): Update Yj and Tj by using tj , yj , Tj−1 and Yj−1.
6: qj =

(
I − YjTjY

⊤
j

)
ej .

7: end for

Fig. 3 Algorithm of the compact WY orthogonalization.

Table 1 Comparison of the orthogonalization methods1)10)

orthogonalization Computation Synchronization Orthogonality
MGS O(2m2n) O(m2) O(ϵκ)

Householder O(4m2n) O(m2) O(ϵ)
compact WY O(4m2n) O(m) O(ϵ)

ϵ : machine epsilon κ : condition number of a matrix

the Householder transformations, and its mathematical calculation is mainly per-

formed by BLAS level-2 operations. As a result, this orthogonalization has more

stable and sophisticated orthogonality, and it is more effective for parallel com-

puting than MGS. Table 1 displays the differences in performance of the three

orthogonalization methods, considered in the above sections. In this table, Com-

putation denotes the order of the computational cost. Synchronization denotes

the order of the number of synchronizations. Orthogonality denotes the norm

∥Q⊤Q− I∥, where Q =
[
q1 . . . qn

]
.

4. Inverse iteration algorithm with compact WY orthogonalization

We present a new inverse iteration algorithm. This new algorithm is described

in Fig.4. This algorithm is based on DSTEIN, a LAPACK (Linear Algebra

PACKage)6) code of the inverse iteration algorithm for computing eigenvectors

of a real symmetric tridiagonal matrix code of the classical inverse iteration. Con-

cretely, we change the orthogonalization process of it from MGS to the compact

WY orthogonalization. Next, we explain an application of the compact WY

orthogonalization to the classical inverse iteration. For the DSTEIN algorithm,

we need not know the index jc which denotes the jc-th eigenvalue of the cluster in

computing the jc-th eigenvector. However, we must know the index for the com-

pact WY orthogonalization when we compute and update Tj , Yj . To overcome

3 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.8
2011/7/18

IPSJ SIG Technical Report

1: for j = 1 to n do

2: Generate v
(0)
j from random numbers.

3: k = 0
4: repeat
5: k ← k + 1.

6: Normalize v
(k−1)
j .

7: Eq.(1): Compute v
(k)
j by using v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3∥T∥, then
9: jc ← j − j1.

10: if jc = 1 and k = 1，then
11: Compute Y1 = y1 and T1 = t1 by using vj1(= vj−1).
12: end if

13: Normalize v
(k)
j .

14: if jc = 1, then

15: v′
2 ← v2 − t1⟨y1,v

(k)
j ⟩y1(= (I − Y1T

⊤
1 Y ⊤

1)v
(k)
j).

16: Compute y2 and update Y2 by using v′
2.

17: Compute t2 and T1,2 = −t2t1⟨y1,y2⟩ and update T2.
18: else

19: v′
jc+1 =

(
I − YjcT

⊤
jcY

⊤
jc

)
v
(k)
j .

20: Compute yjc+1 and tjc+1 by using v′
jc+1.

21: Eq.(2): Update Yjc+1 and Tjc+1 by using tjc+1, yjc+1, Tjc and Yjc .
22: end if

23: v
(k)
j ←

(
I − Yjc+1Tjc+1Y

⊤
jc+1

)
ejc+1.

24: else
25: j1 ← j.
26: end if
27: until some condition is met.

28: Normalize v
(k)
j to vj .

29: end for

Fig. 4 Algorithm of the compact WY inverse iteration.

the above difficulty, we introduce a variable jc on line 9, and we can recognize

it. This introduction of jc enables us to execute the intended program. However,

we do not get accurate results because the compact WY orthogonalization algo-

rithm includes many equations with a comparatively large number of elements

such as YjcT
⊤
jc
Y ⊤
jc

and YjcTjcY
⊤
jc

and they may cause overflow. To overcome this

difficulty, we have to normalize v
(k)
j on line 6, and this normalization excludes

overflow.

In the original DSTEIN algorithm, we need not know that λj1 is the first

eigenvalue of the cluster. However, we must compute y1 and t1. Therefore,

at the starting point of the computation of the eigenvector associated with the

Table 2 The specification of Computer 1 and 2

Computer 1 Computer 2
AMD Opteron 2.0GHz Intel Xeon 2.93GHz

CPU
32cores(8cores×4) 8cores(4cores×2)

Memory 16GB 32GB
Compiler Gfortran-4.4.5 Gfortran-4.4.5
LAPACK LAPACK-3.3.0 LAPACK-3.3.0

BLAS GotoBLAS2-1.13 GotoBLAS2-1.13

second eigenvalue λj (j = j1 +1), we compute y1 and t1. At this time, because

T1 is a 1×1 matrix, i.e., a scalar, we can omit the computation of some of Eq.(2)

and only compute them. In addition, because vj−1 is a normalized vector so that

it equals to (I − Y1T1Y
⊤
1)e1, we need not compute y1 it again.

5. Numerical experiments

We describe some numerical experiments performed using DSTEIN and

DSTEIN-cWY in parallel computers, and we compare the computation time.

DSTEIN is implemented in the classical inverse iteration, and DSTEIN-cWY is

implemented in the new inverse iteration presented in the previous section.

5.1 Contents of the numerical experiments

We report computations of all the eigenvectors associated with eigenvalues

of some matrices by using DSTEIN and DSTEIN-cWY on parallel computers,

and we compare the calculation time. In these experiments, we compute the

approximate eigenvalues by using LAPACK’s program DSTEBZ, which is capable

of computing them by using the bisection method. We record the calculation time

for DSTEIN and DSTEIN-cWY using TIME, which is the internal function of

Fortran and returns an integer number of times.

In the experiments, we use two computers equipped with multicore CPUs, and

we implement those algorithms by using GotoBLAS25), which is implemented to

parallelize BLAS operations by assigning them to each CPU core. Table 2 shows

the specifications of two computers. All the matrices in the experiments are the

glued-Wilkinson matrices W †
g , which are real symmetric and have dimensions

on the order of thousands. More precisely, W †
g consists of the block matrix

4 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.8
2011/7/18

IPSJ SIG Technical Report

W †
21 ∈ R21×21 and the scalar parameter δ ∈ R1×1 and is defined as follow:

W †
g =



W †
21 δ
δ W †

21 δ

δ
. . .

. . .

. . .
. . . δ
δ W †

21


, (4)

where W †
21 is defined by

W †
21 =



10 1
1 9 1

1
. . .

. . .

. . . 0
. . .

. . .
. . . 1
1 10


, (5)

and δ satisfies 0 < δ < 1 and is also the semi-diagonal element of W †
g . Since

W †
g is real symmetric tridiagonal and its semi-diagonal elements are nonzero,

all the eigenvalues of W †
g are real and they are divided into 11 clusters of close

eigenvalues. When δ is small, the distance between the minimum and maximum

eigenvalues in any cluster is small. In our experiments, we set δ = 10−4.

Computing eigenvalues and eigenvectors of the glued-Wilkinson matrix is one

of the benchmark problems of eigenvalue decomposition. For example, the glued-

Wilkinson matrix was used to evaluate the performance of the algorithm2)4).

5.2 Results of the experiments

Table 3 shows the results of the experiments on Computer 1 that were men-

tioned in the previous section, and Table 4 shows the results of the experiments

on Computer 2. In tables, n is the dimension of the glued-Wilkinson matrix,

t and tcwy are computation time by DSTEIN and DSTEIN-cWY respectively.

In addition, Fig.5 illustrates the results in Tables 3 and 4 through graphs. The

dotted line corresponds to t and the straight line to tcwy.

From Table 3 and 4, we see that, on both Computers 1 and 2, all the eigenvec-

tors of the glued-Wilkinson matrix W †
g with dimensions of the order of several

thousand are computed in parallel.

Table 3 Numerical results of DSTEIN and DSTEIN-cWY on Computer 1.

n 1050 2010 3150 4200 5250 6300 7350 8400 9450 10500
t [sec.] 2 9 25 55 106 178 276 400 560 758

tcwy [sec.] 1 2 5 10 16 25 37 57 81 113
t/tcwy 2.00 4.50 5.00 5.50 6.63 7.12 7.46 7.02 6.91 6.71

Table 4 Numerical results of DSTEIN and DSTEIN-cWY on Computer 2.

n 1050 2010 3150 4200 5250 6300 7350 8400 9450 10500
t [sec.] 1 3 8 19 37 67 109 159 225 309

tcwy [sec.] 1 1 3 6 13 25 45 73 107 152
t/tcwy 1.00 3.00 2.67 3.16 2.84 2.68 2.42 2.17 2.10 2.03

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1050 2100 3150 4200 5250 6300 7350 8400 9450 10500

T
im

e(
se

c.
)

n : Dimension of matrix

DSTEIN-cWY
DSTEIN

 0

 50

 100

 150

 200

 250

 300

 350

 1050 2100 3150 4200 5250 6300 7350 8400 9450 10500

T
im

e(
se

c.
)

n : Dimension of matrix

DSTEIN-cWY
DSTEIN

Fig. 5 Dimension n of the glued-Wilkinson matrix and the computation time by DSTEIN and
DSTEIN-cWY. the left graph corresponds to Computer1 and the right Computer 2.

It is noted that DSTEIN-cWY is faster than DSTEIN. We see that the change

from MGS to the compact WY orthogonalization on the DSTEIN code in parallel

computing results in a significant reduction in computation time. We introduce

a barometer t/tcwy of the reduction effect by using the program DSTEIN-cWY

which depends on n, the dimension of W †
g . On Computer 1, the maximum value

of t/tcwy is 7.46 for n = 7, 350 and t/tcwy = 6.71 for n = 10, 500. On Computer

2, the maximum value of t/tcwy is 3.16 for n = 4, 200 and t/tcwy = 2.03 for

n = 10, 500. Considering these facts, even if the dimension of W †
g is larger than

that in these examples, we cannot expect that the computation time can be

further shortened by using DSTEIN-cWY.

5.3 Discussion on numerical experiments

It is shown that DSTEIN-cWY is faster than DSTEIN for any dimension n of

5 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.8
2011/7/18

IPSJ SIG Technical Report

the glued-Wilkinson matrix both on Computers 1 and 2. As mentioned earlier,

according to the theoretical background in section 3.3, this result shows that the

compact WY orthogonalization is an effective algorithm in parallel computing.

The cause of this is related to the time required for floating-point arithmetic and

for synchronization in parallel computing. The floating-point computation time

increases with increasing n because the elements of the computation increase.

In comparison, the synchronization cost does not change significantly even if n

becomes larger. Therefore, in parallel computing, DSTEIN, which contains MGS

(for which the number of synchronizations is large), creates a huge bottleneck for

the synchronization cost when n is small. This bottleneck gradually becomes

less when n is larger. However, DSTEIN-cWY has a smaller bottleneck for the

synchronization cost because the compact WY orthogonalization requires less

synchronization, and the floating-point computation time increases to a value

greater than that of DSTEIN. This reduction effect is seen in Table 3 and 4.

6. Conclusions

In this study, we present a new inverse iteration algorithm for computing all

the eigenvectors of a real symmetric tridiagonal matrix. The new algorithm is

equipped with the compact WY algorithm in the orthogonalization process. We

have performed numerical experiments for computing eigenvectors of certain real

symmetric tridiagonal matrices that have many clusters with several thousand

dimensions by using two types of inverse iteration algorithms on parallel com-

puters. The results show that the compact WY inverse iteration is more efficient

than the classical one owing to the reduction in computation time.

The main reason for this outcome is the parallelization efficiency with respect

to computation time. This efficiency of the compact WY orthogonalization is

greater than that of MGS where the classical inverse iteration is used. As the

number of cores of the CPU increases, the parallelization efficiency increases.

In future studies, we will try to apply the new inverse iteration algorithms to

other types of matrix eigenvector problem, such as eigenvectors of a real sym-

metric banded matrix, or singular vectors of a bidiagonal matrix.

Acknowledgments The authors thank Professor Yusaku Yamamoto of

Kobe University for providing several helpful suggestions.

References

1) J. W. Demmel, L. Grigori, M. Hoemmen and J. Langou, Communication-optimal
parallel and sequential QR and LU factorizations, LAPACKWorking Notes, No.204,
2008.

2) J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Performance and
accuracy of LAPACK’s symmetric tridiagonal eigensolvers, SIAM J. Sci. Comput.,
Vol. 30, No. 3, pp. 1508-1526, 2008.

3) I. S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal eigen-
value/eigenvector problem, Ph.D. thesis, Computer Science Division, University
of California, Berkeley, California, available as UC Berkeley Technical Report
UCB//CSD-97-971, 1997.

4) I. S. Dhillon, B. N. Parlett, and C. Vömel, Glued matrices and the MRRR algo-
rithm, SIAM J. Sci. Comput., Vol. 27, No. 2, pp. 496-510, 2005.

5) GotoBLAS2, http://www.tacc.utexas.edu/tacc-projects/gotoblas2/.
6) LAPACK, http://www.netlib.org/lapack/.
7) G. Peters and J. Wilkinson, The calculation of specified eigenvectors by inverse
iteration, contribution II/18, in Linear Algebra, Handbook for Automatic Compu-
tation, Vol. II, Springer-Verlag, Berlin, pp. 418-439, 1971.

8) R. Schreiber and C. van Loan, A storage-efficient WY representation for products
of Householder transformations, SIAM J. Sci. Stat. Comput., Vol. 10, No. 1, pp.
53-57, 1988.

9) H. Walker, Implementation of the GMRES method using Householder transforma-
tions, SIAM J. Sci. Stat. Comput., Vol. 9, No. 1, pp. 152-163, 1988.

10) Y. Yamamoto, Parallelization of orthogonalization in Arnoldi process based on the
compact WY representation, Proceedings of the Annual Conference of JSIAM, pp.
39-40, 2010 (in Japanese).

6 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.8
2011/7/18

