
出力破棄の時刻を利用したABSGの解析

恩賀　嶺 森井　昌克

神戸大学大学院工学研究科
657-8501 神戸市灘区六甲台町 1-1

onga@stu.kobe-u.ac.jp, mmorii@kobe-u.ac.jp

あらまし　圧縮関数は擬似乱数生成器やストリーム暗号等に用いられており，安全性の一部を保障
している．ABSGはストリーム暗号DECIM v2に利用されている圧縮関数である．我々はABSG
の出力が捨てられた時刻の観測が可能であると想定した時，入力系列の一部を回復する手法を提
案した．本稿ではこの時刻の間隔に着目して解析を行い，より多くの入力系列が回復可能である
ことを示す．また，入力系列を探索する際に計算量を削減する手法を明らかにする．

Analysis of ABSG using the timing
that the outputs are dropped

Rei Onga Masakatu Morii

Graduate School of Engineering, Kobe University
1-1, Rokkodai, Nada-ku, Kobe-shi, 657-8501 Japan

onga@stu.kobe-u.ac.jp, mmorii@kobe-u.ac.jp

Abstract A compression function is used for a pseudo-random generator and stream cipher,
and it ensures these security. ABSG is a compression function used by a stream cipher DECIM
v2. We proposed the technique to recover the exact value of ABSG inputs under the assumption
that we can get the timing such that the ABSG output is dropped. This assumption enables us
to correlate the timing of the ABSG input and that of the buffer output. Observing the buffer
output, we can recover the ABSG inputs. In this paper, focusing attention on the interval of the
timing that the ABSG output is dropped, we clarify that more ABSG inputs can be recovered.
Furthermore, we propose a technique to reduce the computational complexity to recover the
ABSG input sequence using the correlation among the related ABSG inputs.

1 Introduciton

A compression function is used by a pseudo-
random generator and a stream cipher in order
to guarantee these security. For this reason,
the recovery of the inputs of the compression
function from its outputs must be difficult.
Researchers have been analyzing the compres-
sion function to check the difficulty.

The Shrinking Generator (SG) is a compres-
sion function proposed by Coppersmith et al.
in 1993 [1], which uses two linear feedback

shift registers (LFSR). One LFSR controls the
outputs of the other one. The Self-Shrinking
Generator (SSG) was proposed by Meier et al.
in 1994 [2]. The structure of SSG is simpler
than SG because SSG requires only one LFSR.
Bit-Search Generator (BSG), which is faster
than SSG, was proposed by Gouget et al. in
2004 [3]. BSG requires only an 3n-bit on aver-
age for outputting an n-bit sequence. Gouget
et al. reported that there was a weakness in
BSG and proposed two compression functions
ABSG and MBSG [4]. ABSG is used in stream



cipher DECIM v2 and ensures the security of
this cipher [5].

Loe et al. proposed the timing attack which
reduces the candidates of the ABSG input se-
quence from the ABSG output one [6]. They
assumed that they can get the timing such
that the buffer becomes full before generat-
ing a keystream. It implies the Side Channel
Attack against ABSG. The timing informs us
to the number of inputs required to fill up the
buffer before generating the keystream. Be-
cause the size of the buffer is known, we can
get the number of candidates input sequence
by calculating the total number of a combina-
tion. On the estimation of an 128-bit input se-
quence, 2128 candidates of input sequence are
reduced to 280 when they estimate an 128-bit
input sequence.

In [7], we proposed a technique to recover
the exact value of bits input to ABSG by in-
troducing a new assumption. When ABSG
outputs one bit, a buffer stores the bit if it
is not full, otherwise, the bit is discarded. We
assumed that we can get this timing. This as-
sumption enables us to correlate the timing of
the ABSG input and that of the buffer output.
Observing a buffer output, we can recover the
exact value of an ABSG input. In this sit-
uation, we could recover about 8.33% of the
input sequence of ABSG.

In this paper, we further investigate the mu-
tual dependency among the related ABSG in-
puts under the new assumption. We focus on
the interval of the timing that the ABSG out-
put is dropped. When the interval is a specific
length, we can recover more ABSG inputs and
can reduce the computational complexity to
recover the ABSG input sequence. In our sim-
ulation, we could recover about 2.08% of the
input sequence by this technique. Combining
with [7], the recovery rate could be 10.41%.

2 ABSG and Buffer

ABSG is a bit generator that searches for a
pattern in the input bitstream and outputs a
shorter bitstream. ABSG receives the input
sequence Y = (y0, y1, ...) and generates the
output sequence Z = (z0, z1, ...). Buffer stores

ABSG
Y Z Z’Buffer

・・・

Approximately 1 bit for every 3 ABSG inputs.

Exactly 1 bit for every 4 ABSG inputs.

・・・

Fig. 1: The process of ABSG.

Input:(y0, y1,...)
Set: t ← 0; j ← 0;
Repeat the following steps:

1. e ← yt, zj ← yt+1

2. t ← t + 1;
3. while (yt = ē) t ← t + 1;
4. t ← t + 1;
5. output zj ;
6. j ← j + 1;

Fig. 2: The algorithm of ABSG.

Z and generates a keystream Z ′ = (z′0, z
′
1, ...).

But if the buffer is full, the ABSG output bit
is not added into the queue, i.e. it is dropped.
We call this timing “drop timing”. Figure 1
shows the process of ABSG.

2.1 ABSG

ABSG receives an 1-bit with each clock and
outputs approximately an 1-bit per 3 clocks.
The algorithm of ABSG is shown in Fig. 2.
From the mechanism of ABSG, we know two
important properties.

Property 1. The minimum interval of the ABSG
output is 2 clocks.
Referring to Fig. 2, at the step2 and step4
the cycle is incremented. If yt = e at
the step3, the incrementation is omitted.
Therefore, the minimum interval is de-
rived when yt = e at the step3, and then
the number of cycles is two.

Property 2. The input patterns for the cor-
responding output bit is summarized in
Table 1, where ”0α” stands for the string
of 0 with length α.



Table 1: How to compress the input sequence.

Input Pattern Output Bit
{00, 10α1} 0
{11, 01α0} 1

Table 1 shows that substrings of the form
00, 101, 1001, ... are compressed to 0,
while substrings of the form 11, 010, 0110,
... are compressed to 1. From this prop-
erty, if we know the values of output bits
and α, we can recover the ABSG inputs.

2.2 Buffer

Before generating a keystream, the buffer stores
the ABSG outputs until it is full. Then, the
internal state t in Fig. 2 is incremented by
the repetition of the algorithm of ABSG. For
convenience, we define the keystream gener-
ation phase starts at t = 1. Thus, the pro-
cess that the buffer stores the ABSG outputs
until it is full is performed at the duration
t ∈ {...,−1, 0}.

The buffer implemented in DECIM v2 con-
sists of an 32-bit internal state Bt̃ = (b0,t̃, b1,t̃,
..., b31,t̃), where bi,t̃ is an 1-bit variable at a
timing t̃. Buffer stores the ABSG outputs and
generates keystream z′

t̃
. The correlation be-

tween t and t̃ is given as follows;

t̃ =
⌊ t− 1

4

⌋
. (1)

Buffer outputs a bit which is stored in the
buffer b0,t̃ as a keystream at t = 4T (T =
1, 2, ...). At the time, b31,t̃ becomes empty and
the other stored buffer values are shifted as
follows;

bi,t̃+1 = bi+1,t̃ for 0 ≤ i ≤ 30. (2)

3 Conventional Analysis

We proposed the technique to recover the ex-
act value of ABSG inputs if we know the drop
timing and the timing that the buffer becomes
full before generating a keystream [7].

Table 2: The classification of the timing t
when the drop is occurred.

b31,t̃ ← zn zn+1 is dropped
4T + 1 4T + 3, 4T + 4
4T + 2 4T + 4
−3 −1, 0, 1, 2, 3, 4
−2 0, 1, 2, 3, 4
−1 1, 2, 3, 4
0 2, 3, 4

3.1 Drop Timing

After b31,t̃ becomes empty at t = 4T , we sup-
pose the case such that ABSG outputs during
the timing t ∈ {4T +1, 4T +2, 4T +3, 4T +4}.
When ABSG outputs at t = 4T + 1, we define
the bit zn which stands for the (n+1)-th out-
put value, ABSG may output further one bit
zn+1 at t ∈ {4T +3, 4T +4} from the Property
1. In such a case, the bit zn+1 is discarded as
zn has been already assigned to b31,t̃. Simi-
larly, when ABSG outputs zn at t = 4T + 2,
the buffer may output zn+1 at t = 4T + 4 and
it is discarded.

There are the other cases that the drop of
the ABSG output is occurred. Though the
buffer becomes full before generating a keystream
at t = 0, the buffer may have been already full
at timing t ∈ {−3,−2,−1} because the buffer
checks for every four clocks if it is full or not.
If the buffer becomes full at t = −3, an ABSG
output at t ∈ {−1, 0} is discarded. However,
ABSG does not generate a keystream at t = 0,
b31,t̃ does not become empty at that times.
Thus, if the buffer becomes full at t = −3,
the ABSG output at t ∈ {−1, 0, 1, 2, 3, 4} is
discarded. Similarly, the other cases can be
enumerated. Table 2 summarizes the cases of
timing t.

3.2 Recovering the ABSG input

If we get a drop timing, we can recover an
ABSG input. When zn+1 is dropped at t, the
value of yt+1 is certainly stored in b31,t̃. The
value stored in b31,t̃ is shifted as shown in Eqs.
(1) and (2), and some times later, the buffer



Table 3: The correlation between the drop
timig and the ABSG inputs.

drop timing recoverable yt

4T + 3 y4T+4

4T + 4 y4T+5

outputs the value as a keystream. Observing
the keystream, we can recover an ABSG input.

For example, we suppose zn+1 is discarded
at t = 4T + 3. At the time in ABSG internal
states, the value of y4T+3 is assigned to e, and
that of y4T+4 to zn+2. Until yt = e, ABSG
does not output zn+2, we define the timing
t = t́. By the way, the buffer outputs a bit as
a keystream and updates their internal states
at t = 4T + 4. Because Property 1 shows t́ ≥
4T + 5, zn+2 is stored in the buffer. Since the
value is output as z′T+32, the observation of
z′T+32 gives us the exact value of y4T+4. Table
3 summarizes the correlation between the drop
timing and the ABSG input which could be
recovered.

4 Proposed Analysis

We focus on the interval of the drop timing.
When the interval is a specific length, we can
recover more ABSG inputs and can reduce the
computational complexity to recover the ABSG
input sequence.

4.1 Recovering more ABSG inputs

Due to Property 1, when the ABSG output is
dropped at t = 4T + 3, the next two outputs
of ABSG may be occurred at t = 4T + 5 and
t = 4T + 7. In this case, the ABSG output
at t = 4T + 7 is dropped. Thus, we can see
that the minimum interval of the drop timing
is 4 clocks. At that time, we can recover more
ABSG inputs. There are two cases that the
interval of the drop timing becomes 4 clocks.

Case 1 ABSG outputs are discarded at t =
4T + 3 and t = 4T + 7.
In this case, the ABSG inputs y4T+4 and
y4T+8 can be recovered from Table 3,

and the two timings informs us that the
ABSG output at t = 4T + 1 and t =
4T + 5 are stored in the buffer from the
Property 1 and Table 2. Furthermore,
the following correlations among the re-
lated ABSG inputs are obtained from
the Property 2.

y4T+1 = y4T+2, (3)
y4T+3 = y4T+4, (4)
y4T+5 = y4T+6. (5)

Here, using Eq. (4) we can recover y4T+3

because we know the value of y4T+4.

Case 2 ABSG outputs are discarded at t =
4T + 4 and t = 4T + 8.
Similar to the case 1, the ABSG input
y4T+5 and y4T+9 can be recovered, and
the ABSG outputs at t = 4T +6 is stored
in the buffer. The following correlations
among the related ABSG inputs are ob-
tained.

y4T+4 = y4T+5, (6)
y4T+6 = y4T+7. (7)

Then, we can recover y4T+4.

4.2 Reducing the computational com-
plexity

From the drop timing and the interval of the
timing, we find the correlations among the re-
lated ABSG inputs. Using the correlations, we
can reduce the computational complexity to
recover the ABSG input sequence. There are
three cases that the correlation is occurred.

Case 1 ABSG output is discarded at t = 4T+
3.
In this case, we know that the ABSG
output at t = 4T + 1 is stored in the
buffer from the Property 1 and Table 2.
Here, we can find the correlation of Eq.
(3) from the Property 2.

Case 2 ABSG outputs are discarded at t =
4T + 4 and t = 4T + 8.
As discussed in Sect.4.1, we can find the
correlation of Eq. (7).



Case 3 ABSG outputs are discarded at t =
4T + 3 and t = 4T + 8.
In this case, the ABSG input y4T+4 and
y4T+9 can be recovered from Table 3, and
the ABSG output at t = 4T +1 is stored
in the buffer from the Property 1 and
Table 2. In addition, the ABSG output
at t = 4T +5 or t = 4T +6 is also stored
in the buffer.

• t = 4T + 5.
ABSG inputs have the correlations
of Eqs. (4) and (8) from the Prop-
erty 2.

y4T+5 = y4T+7 = y4T+6. (8)

From Eqs. (4) and (8), the following
equation can be derived.

{y4T+3, y4T+5, y4T+7}
= {y4T+4, y4T+6, y4T+6}. (9)

• t = 4T + 6.
ABSG inputs have the correlations
Eqs. (10) and (11) from the Prop-
erty 2.

y4T+3 = y4T+5 = y4T+4, (10)
y4T+6 = y4T+7. (11)

From Eqs. (10) and (11), the fol-
lowing equation can be derived.

{y4T+3, y4T+5, y4T+7}
= {y4T+4, y4T+4, y4T+6}. (12)

Comparing Eqs. (9) and (12), we know
that y4T+5 is equal to y4T+6 or y4T+4.
Here, remember that y4T+4 is known be-
cause we can recover y4T+4. Therefore,
when we guess y4T+6 = y4T+4, we can
uniquely determine y4T+5, hence, the re-
covery process of y4T+5 can be skipped.
If such a case is often occurred, the com-
putational complexity can be reduced ac-
cordingly.

4.3 Simulation Result

First, we checked how often the ABSG out-
puts are dropped. In this simulation, we used

Table 4: Proportion of each case.

Drop Timing Proportion
4T + 3 38.2%
4T + 4 61.8%

4T + 3 and 4T + 7 9.55%
4T + 4 and 4T + 8 15.5%
4T + 3 and 4T + 8 9.54%

0

2000

4000

6000

8000

10000

12000

14000

16000

1.96 1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

(Number of recoverable bits/ Number of all ABSG inputs)×100

N
um

be
r o

f o
bs

er
ve

d

Fig. 3: Recovering the ABSG inputs.

100,000 patterns of secret keys and generated
an 10,000-byte keystream. From the experi-
mental result, we found the average probabil-
ity that the ABSG outputs is dropped is about
25%. In addition, we investigated the propor-
tion of each case described in Sect. 4.1 and
Sect. 4.2 to all the number of dropped bits.
Table 4 shows the result.

Next, we evaluated the effectiveness of the
proposed recovery technique presented in Sect.
4.1. We counted the recoverable number of
ABSG inputs from all ABSG inputs, the result
are shown in Fig. 3. Figure 3 suggests that we
could recover 1.96–2.20% of the ABSG inputs,
in average 2.08%. Combining with the tech-
nique proposed in [7], the recovery rate could
be increased about 10.41%.

5 Conclusion

ABSG is a compression function used by a
stream cipher DECIM v2. The ABSG outputs



may be dropped because the speed of ABSG
outputting is faster than that of buffer out-
putting. We had showed that we could recover
the exact values of ABSG inputs by assuming
that we could get the timing that the ABSG
outputs were dropped as the Side Channel At-
tack.

In this paper, we focused on the interval of
the timing that the ABSG outputs are dropped.
First, we showed that we could recover more
ABSG inputs when the interval is a specific
length. Second, we reduced computational com-
plexity to recover the ABSG input sequence.
Finally, we showed simulation results to esti-
mate how often we can use the new technique
and how many bits could be recovered. The
result indicated that we could recover in aver-
age about 10.41% of the ABSG inputs.

Acknowledgements

We thank Dr. Minoru Kuribayashi for useful
discussions.

References

[1] D. Coppersmith, H. Krawczyk, and
Y. Mansour, “The Shrinking Generator,”
Proc. CRYPTO’93, Lecture Note in Com-
puter Science, vol. 773, pp.22–39, 1993.

[2] W. Meier and O. Staffelbach, “The
Self-Shrinking Generator,” Proc. EURO-
CRYPT’94, Lecture Note in Computer
Science, vol. 950, pp.205–214, 1994.

[3] A. Gouget and H. Sibert, “The Bit
Search Generator” In The State of the
Art of Stream Ciphers: Workshop Record,
Brugge, Belgium, pp.60–68, 2004.

[4] A. Gouget, H. Sibert, C. Berbain, N. Cour-
tois, B. Debraize, and C. Mitchell,
“Analysis of the Bit-Search Generator
and Sequence Compression Techniques,”
Proc. FSE2005, Lecture Note in Computer
Science, vol. 3557, pp.196–214, 2005.

[5] C. Berbain, O. Billet, A. Canteaut,
N. Courtois, B. Debraize, H. Gilbert,

L. Goubin, A. Gouget, L. Granboulan,
C. Lauradoux, M. Minier, T. Pornin,
and H. Sibert, “DECIM v2,” eStream,
available at
http://www.ecrypt.eu.org/stream/
p3ciphers/decim/decim p3.pdf

[6] C. W. Loe and K. Khoo, “Side Channel
Attacks on Irregularly Decimated Genera-
tors” Proc. ICISC 2007, Lecture Note in
Computer Science, vol. 4817, pp.116–130,
2007.

[7] R. Onga and M. Morii, “Analysis of
DECIM v2 using the timing ABSG out-
put is dropped” Proc. Joint Workshop on
Information Security 2009 (JWIS 2009),
2009.


