
圧縮関数ABSGを用いた高速乱数生成器の開発

仲神 秀彦 森井 昌克

神戸大学大学院工学研究科
657-8501 神戸市灘区六甲台町 1-1

nakagami@stu.kobe-u.ac.jp，mmorii@kobe-u.ac.jp

あらまし 圧縮関数は入力系列からその部分系列を出力することで擬似乱数系列を生成する関数で
あり，以前から安全性に関する様々な考察が行われている．圧縮関数ABSGは eSTREAM提案暗
号であるDECIMv2に実装されており，その安全性を保障している．しかし，圧縮関数ABSGは
その構造上，乱数生成速度に問題があると指摘されている．本稿では圧縮関数ABSGの内部構造
を利用した新たな高速乱数生成器の提案を行う．

Development of Fast Random Number Generator using Comp
ression Function ABSG

Hidehiko Nakagami Masakatu Morii

Graduate School of Engineering，Kobe University
1-1 Rokkodai-Cho Nada-Ku Kobe-Shi 657-8501 Japan

nakagami@stu.kobe-u.ac.jp，mmorii@kobe-u.ac.jp

Abstract A compression function generates random numbers outputting a part of an input
sequence, and the security has been studied by many researchers. A compression function ABSG
is implemented in DECIMv2 that submitted to the ECRYPT stream cipher project (eSTREAM)
and it guarantees the security. In the paper, we propose a fast random number generator using
the internal structure of the compression function ABSG.

1 Introduction

A compression function generates random num-
bers outputting a part of an input sequence.
In 1993, Shrinking Generator[1] which was de-
signed by D. Coppersmith et al. is composed
of two linear feedback shift registers (LFSR),
one decides the output values of the other. In
1994, a simplified Shrinking Generator called
Self-Shrinking Generator (SSG)[2] was designed
by W. Meier et al.

One of the problems in those compression
functions is the low speed of the generation
of random numbers. In order to improve the
speed, A. Gouget presented a new compres-
sion function called BSG in 2004[3], but it con-

tained a weakness. Soon after the weakness
was found, revised versions called ABSG and
MBSG were proposed which speed were equal
to BSG[4].

A compression function is used in a pseudo-
random number generator and a stream ci-
pher, and it increases the difficulty to recover
the input sequence from the output one. For
example, the compression function ABSG is
implemented in DECIMv2[5] that has submit-
ted to the ECRYPT stream cipher project
(eSTREAM)[6]. The introduction of ABSG in
a stream cipher increases the security, and it
attracts many reseachers to evaluate the struc-
ture. Regretfully, it was pointed out that the
generation of random numbers is slower than

x191 x190 x1 x0

f

…

…

…

ABSG Buffer

Plaintext

Ciphertext

Figure 1: Structure of DECIMv2.

that of the other stream ciphers submitted the
eSTREAM [7].

In this paper, we propose a fast random
number generator using the compression func-
tion ABSG implemented in the stream cipher
DECIMv2. We discuss about the speed of gen-
erating output sequence and the vulnerability
reported in [8] that an attacker can recover the
input sequence to compression function ABSG
from output sequence if he knows the intervals
of output bits in the input sequence. The com-
pression function ABSG has not been cracked
because it is difficult to decide the intervals of
output bits in input sequence. Our random
number generator consists of a LFSR and a
function that utilizes the internal structure of
ABSG.

2 Compression Function

A compression function is used in the pseudo-
random number generator and the stream ci-
pher, and it generates random numbers to out-
put a part of an input sequences. In 2005,
the compression function ABSG was designed
by A. Gouget et al. It can generate random
numbers with the same speed as BSG and it
overcomes the weakness of BSG[4]. ABSG is
implemented in the stream cipher DECIMv2,
Figure 1 shows the structure of DECIMv2[5].
Table 1 shows the algorithm of the ABSG.

As shown in Table 2, the ABSG algorithm
outputs a random sequence (z0, z1, . . .) using

Table 1: ABSG Algorithm.
Input: (y0, y1, . . .)
Output: (z0, z1, . . .)
Set: i ← 0; j ← 0;
Repeat the following steps:

1. e ← yi; zj ← yi+1;
2. i ← i + 1;
3. while(yi = e) i ← i + 1;
4. i ← i + 1;
5. j ← j + 1;

an input one (y0, y1, . . .) by changing the in-
ternal states denoted by e, i, and j. Now,
we focus on the behavior of a pointer e to
explain the process of ABSG algorithm. The
compression function ABSG selects a part of
input sequence by the pointer e to output a
random sequence, and the pointer e is incre-
mented by a specific input value yi pointed
by i. From the step 3 in Table 2, we can see
that the incrementation of i is also ruled by e.
The non-linear relation between e and i makes
it difficult to recover the input sequence from
the output one in ABSG. Referring to [4], it
is remarkable that the output rate per input
sequence is approximated to 1/3.

3 Analysis of Compression
Function ABSG

A compression function ABSG can generate
an output sequence faster than SSG, and more
secure than BSG. However, some problems is
reported. In this section, we consider some
problems in ABSG.

3.1 Speed of Generating Random
Number

When a pseudo-random number generated by
a compression function, the number of bits
produced per unit of time depends on the out-
put rate. The more the rate increases, the
more output sequence can be gained and gen-
erating speed of random number is advanced.

The compression function ABSG decimates
most part of the input sequence after the out-

put sequence has been generated because the
output rate per input sequence of ABSG is
approximated to 1/3. To generate a random
number rapidly, it is necessary to increase the
rate without degrading the difficulty to recover
the input sequence from the output one in
ABSG.

3.2 Recovery of Input Sequence

In this section, we show that an input sequence
can be recovered from the output sequence
of the compression function ABSG under the
condition that the intervals of the selected in-
put sequence as the output ones zt are given[8].

The interval between zt and zt+1 in the in-
put sequence is denoted by d(t, t + 1) (d(t, t +
1) ≥ 2 because the pointer e can not move to
the next bit). Suppose that an output bit zt

at a time t is selected from an input bit yt′ at
a time t′, namely

yt′ = zt, (1)

and the next output bit is

yt′+d(t,t+1) = zt+1. (2)

Considering the value of d(t, t+1), we can clas-
sify the correlations related to yt′ into the fol-
lowing two cases;

Case 1 d(t, t + 1) = 2.
The pointer e moves to yt′+1 from yt′−1

because the step 3 is skipped and i is
incremented by step 2 and step 4. So,
yt′−1 is equal to yt′ :

yt′−1 = yt′ . (3)

Case 2 d(t, t + 1) > 2.
The pointer e moves to yt′+d(t,t+1)−1 from
yt′−1 because the step 3 is repeated d(t, t+
1)−2 times. So, i is incremented d(t, t+
1) times by step2, step3, and step 4. There-
fore, we can obtain the relations among
yt′−1 to yt′+n as follows:

yt′−1 = yt′+d(t,t+1)−2 ̸= yt′ , (4)
yt′+n = yt′ , (5)

n = 1, 2, . . . , d(t, t + 1) − 3.

z0 z1 z2

1 00 1 11 1 10 …

e e e e

y =

0 01 …z =

Figure 2: Behavior of Pointer e.

It is possible to recover an input sequence
from an output sequence by using Eqs.(3)–(5)
if the interval between zt and zt+1 in the input
sequence is given. For example, as shown in
Fig. 2, if z0, z1, z2 and their intervals in input
sequence are given,

z0 = 0, z1 = 1, z2 = 0,

d(0, 1) = 4, d(1, 2) = 2, d(2, 3) = 3.

the input sequence y1, y5, and y7 are obtained,

y1 = 0, y5 = 1, y7 = 0. (6)

From Case 2, y0, y1, y2, and y3 are obtained
by y1 = 0, d(0, 1) = 4, and Eqs. (4)–(5).

{y0, y1, y2, y3} = {1, 0, 0, 1}. (7)

In a similar way, from Case 1, y4 and y5 are
obtained by y5 = 1, d(1, 2) = 2, and Eq. (3).
And y6, y7, and y8 are obtained by y7 = 0,
d(2, 3) = 3, and Eqs. (4)–(5) from Case 2.

{y4, y5} = {1, 1}, (8)
{y6, y7, y8} = {1, 0, 1}. (9)

In this way, input sequence y = 100111101 . . .
is recovered.

If the attacker can get the output sequence
and the intervals of output bits in input se-
quence by side-channel attack, he can recover
the input sequence. However, the compression
function ABSG has not been cracked because
it is difficult to decide the intervals of output
bits in input sequence.

x127 … x0

Decision of Invert
Timing using ABSG

Output

Sequence A

Sequence B

Figure 3: Random Number Generator.

4 Proposed Random Number
Generator

In this section, we propose a fast random num-
ber generator using the compression function
ABSG. As described in Sec. 3.2, the input se-
quence of ABSG can be recoverd from out-
put sequence if the intervals of output bits
in the input sequence is known. The inter-
val is however difficult to obtain from the out-
put sequence, and until now, no crack report
has been publishded. For the above reason,
the proposed random number generator ap-
plies the pointer e that decides the output tim-
ing in compression function ABSG.

Figure 3 shows the structure of the proposed
random number generator, which is composed
of a 128-bit LFSR and a decision function that
controls the output sequence using the pointer
e. Our generator produces two sequences :
a sequence A is related to the polynomial of
LFSR and a sequence B is extracted from the
registers using a specific polynomial determined
by a transition matrix T. The internal states of
LFSR are updated by XORing variables of tap
positions derived from an 128-degree primitive
polynomial.

The matrix T is designed such that the se-
quence B is the δ-bit shifted sequence A[9], and
the parameter δ can be freely determined. The
detail of the determination of δ is discussed in
Sec. 5. A transition matrix to generate a poly-
nomial f(x) = 1 + a1x + a2x

2 + . . . + aLxL is

given as follows:

T =


a1 a2 · · · aL

1 0 · · · 0
0 1 · · · 0
...

...
. . . 0 0

0 · · · 1 0

 . (10)

Tm, Tm，and Tm
1 (m = 1, 2, . . .) are defined

as follows:

Tm =


am

1,1 am
1,2 · · · am

1,L

am
2,1 am

2,2 · · · am
2,L

...
...

. . .
...

am
L,1 am

L,2 · · · am
L,L

 , (11)

Tm =


am

1,L am
1,L−1 · · · am

1,1

am
2,L am

2,L−1 · · · am
2,1

...
...

. . .
...

am
L,L am

L,L−1 · · · am
L,1

 (12)

=


Tm

1

Tm
2
...

Tm
L

 . (13)

Using the initial states of LFSR, x0 = (x0
0, x1

0,
. . . , xL

0), the internal states at time l, xl =
(x0

l , x1
l , . . . , xL

l) are represented as follows:

xl = Tlx0, l = 1, 2, (14)

From Eq. (14), the output bit x0
k at time k is

given as follows:

x0
k = Tk

1x0, k = 1, 2, (15)

Next, the sequence A and sequence B are
input to the decision function. Table 2 shows
the algorithm of the decision function. We de-
note the sequence A and sequence B by A =
(a0, a1, . . .) and B = (b0, b1, . . .), respectively.
Our pointer e decides the positions that a bit
is flipped, while that of ABSG determines the
output timing.

The pointer e indicates the invert timing of
the sequence B, and the invert timing is de-
termined by the sequence A in our algorithm.
Figure 4 shows the example of output.

Table 2: Algorithm of Decision Function.
Input : (a0, a1, . . .)

(b0, b1, . . .)
Output : (z0, z1, . . .)
Set : i ← 0;
Repeat the following steps:

1. e ← ai; zi ← bi;
2. i ← i + 1; zi ← bi;
3. while(ai = e) i ← i + 1; zi ← bi;
4. i ← i + 1;

Sequence A 1 1 1 0 0 1 0 1 0 0 0 0 1 1 ...

Sequence B 0 1 0 0 0 1 1 1 0 1 0 0 0 1 ...

Output 0 0 0 1 0 1 1 0 0 1 1 0 1 1 ...

e e e e e

Invert

Figure 4: Output Example.

5 Consideration

In this section, we consider the following cases
about δ which is the phase shifting between
the sequence A and sequence B.

Case 1 δ = 0.
The sequence B is the same as the se-
quence A. Even if only one invert timing
is leaked, the whole input sequence can
be recovered using the correlations with
the timing.

Case 2 δ > 0.
Assuming that a certain part of the se-
quence A is leaked in some way. Then, a
part of the sequence B can be recovered
from the output sequence and the part of
the sequence A by synchronizing with δ.
Similarly, the corresponding part of se-
quence A can be recovered because the
sequence B is equivalent to δ-bit shifted
sequence A.

From the above consideration, it is necessary
to make δ sufficiently large. In order to avoid
the synchronization attack, we need to update
the internal states before outputting δ bits.

6 Conclusion

In this paper, we proposed the new random
number generator using the compression func-
tion ABSG implemented in the stream cipher
DECIMv2. The interval is difficult to obtain
from the output sequence, and until now, no
crack report has been publishded. Then, tak-
ing the advantage of the compression function
ABSG, we design the decision function that
controls the output sequence. We considered
the phase shifting δ between two sequences
prodeced by LFSR, and designed our random
number generator to avoid the synchronization
attack.

The security analysis of our random num-
ber generator and the comparison with other
generators are left for our future work.

Acknowledgement

We thank Dr. Minoru Kuribayashi for useful
discussions.

References

[1] D. Coppersmith, H. Krawczyk, and
Y. Mansour, “The Shrinking Generator,”
CRYPTO 93, LNCS vol. 773, pp.22–39,
Springer 1993.

[2] W. Meier and O. Staffelbach, “The
Self-Shrinking Generator,” Eurocrypt 94,
LNCS vol. 950, pp.205–214, Springer 1994.

[3] A. Gouget and H. Sibert, “The Bit Search
Generator,” In The State of the Art
of Stream Cipher: Workshop Record,
Brugge, Belgium, pp.60–68, 2004.

[4] A. Gouget, H. Sibert, C. Berbain, N. Cour-
tois, B. Debraize, and C. Mitchell,
“Analysis of the Bit-Search Generator
and Sequence Compression Techniques,”

FSE2005, LNCS vol. 3557, pp.196–214,
Springer 2005.

[5] C. Berbain, O. Billet, A. Canteaut,
N. Courtois, B. Debraize, H. Gilbert,
L. Goubin, A. Gouget, L. Granboulan,
C. Lauradoux, M. Minier, T. Pornin, and
H. Sibert, “DECIM v2,” eSTREAM, avail-
able at
http://www.ecrypt.eu.org/stream/
p3ciphers/decim/decim p3.pdf

[6] eSTREAM, ECRYPT Stream Cipher
Project, IST-2002-507932, available at
http://www.ecrypt.eu.org/stream/

[7] T. Good and M. Benaissa, “Hardware
performance of eStream phase-� stream
cipher candidates,” SASC2008 Workshop
Record, pp.163–173, available at
http://www.ecrypt.eu.org/stvl/
sasc2008/SASCRecord.zip

[8] H. Nakagami, R. Teramura, and M. Morii,
“On the Security of the Compression Func-
tion ABSG on DECIM v2,” CSS2008,
pp.427–432, 2008.

[9] H. Saitoh, M. Mohri, Y. Fukuta, and
Y. Shiraishi, “Improvement of LFSR Ini-
tial State Reconstruction Algorithm in
Fast Correlation Attack Using Dynam-
ically Constructed Parity Check Equa-
tions,” Tech. Rep. of IEICE, ISEC2008-
142, pp.259–266, 2009.

