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new transformation algorithm based on Pettyjohn, et al.’s approach, which can

good introduce continuation more efficiently to programming languages that don’t
- support them (we use JavaScript as a specific example). To improve execution
efficiency after transformation, we separately generate the code run in ordinary
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without using continuations, the execution efficiency after transformation is al-
most equal to the one before transformation. Since we separately generate the
code for two cases, code size may increase after conversions. This code expan-
0 O O O f1 O 0 O 0 1 O O O O f1 sion is reduced by sharing code using labels called Resumption Point, which
marks the point to resume when continuations are invoked. We use two tech-
niques for stack traversal when capturing continuations: exception handling
000000000000 0000000000000000000000000Q and two return values method. We combine these two techniques to get bet-
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Efficient Implementation of Continuations with
Exception Handling and Two Return Values Method
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and YOSHINORI YAMAGUCHI'!

Continuation is an idea which deals with flow of control inprograms. Although
Scheme has continuation as a first-class feature, most other programming lan-
guages don’t support it explicitly. Various approaches have proposed to adopt
the continuation as a first-class feature in such languages, e.g., CPS conver-
sion and stack-traversal and rebuilding using exception. But these conversions
have significant impact on execution efficiency and slows down the execution 1 000000000000000000
of programs after conversion considerably. In this presentation, we propose a
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