000000000 0OoDoOoood Vol.4 No.3 97 (June 2011)

new transformation algorithm based on Pettyjohn, et al.’s approach, which can

good introduce continuation more efficiently to programming languages that don’t
- support them (we use JavaScript as a specific example). To improve execution
efficiency after transformation, we separately generate the code run in ordinary

D D D D D 2 D |:| D |:| D |:| D |:| D |:| D D D D D D D D execution and the code executed when continuation is invoked. When executed

without using continuations, the execution efficiency after transformation is al-
most equal to the one before transformation. Since we separately generate the
code for two cases, code size may increase after conversions. This code expan-
0 O O O f1 O 0 O 0 1 O O O O f1 sion is reduced by sharing code using labels called Resumption Point, which
marks the point to resume when continuations are invoked. We use two tech-
niques for stack traversal when capturing continuations: exception handling
000000000000 0000000000000000000000000Q and two return values method. We combine these two techniques to get bet-

O000OOO00000000000000000000ooo0oooooooon ter performance in continuation capturing, and believe our approach has the

000Scheme 00 00000000000000000000000000call/cc advantages over existing techniques.

gobooboboobobooboboobobooobobooobooboboo

goboooobooboooboboooboboooboboooboooobooboooo

000000000000 CPSOO00000D000000000000000000 ooo 23010210000

gooooooOo0oooOoOoU0ooOoOoO0OooOOoOoO0OoOOo0UOOOOOOOooOOOn

000000000 JavaScript 0O 0OPettyjohn 000000000000 O0O0OO

goooooobooobobDoobobooobOobDoobOOooDoOobOooDooooono

godbooooobOooboooobobooobOooDoobOoooOoboooboooo

JO0000000000000000000000000000000 Resumption

Point 0000000000000 0O0OO0OOOOOO0OO0ODODDOOOOOOOO

Jo0obobOOoooooooobOooooDooboOobOobD 20000000DO0O0O00O0O

gooooooOoOoU0oooO0o0ooOoOoU0oOoOoOoUOoOUOoDOoOoUOoOOoOOD

gooooboooboobooo

Efficient Implementation of Continuations with
Exception Handling and Two Return Values Method

YUKA SHIRAHATA,TT ATust MAEDAT!
and YOSHINORI YAMAGUCHI'!

Continuation is an idea which deals with flow of control inprograms. Although
Scheme has continuation as a first-class feature, most other programming lan-
guages don’t support it explicitly. Various approaches have proposed to adopt
the continuation as a first-class feature in such languages, e.g., CPS conver-
sion and stack-traversal and rebuilding using exception. But these conversions
have significant impact on execution efficiency and slows down the execution 1 000000000000000000
of programs after conversion considerably. In this presentation, we propose a

Graduate School of Information Engineering, University of Tsukuba

97 (© 2011 Information Processing Society of Japan

