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In this paper, we discuss variable and value symmetries in distributed con-
straint reasoning and efficient methods to represent and propagate them in
distributed environments. Unlike commonly used centralised methods which
detect symmetries according to their global definition, we suggest here to de-
fine them at the individual constraint level, then define operations on those
symmetries in order to propagate them through the depth-first search tree that
is generated in efficient distributed constraint reasoning algorithms. In our al-
gorithm, we represent constraints (or utility functions) by a list of costs: while
the usual representation lists one cost for one assignation, we drastically reduce
the size of that list by keeping only one cost for one class of equivalence of
assignations. In practice, for a constraint with n symmetric variables defined
on a domain of n symmetric values, this approach cuts down the size of the
list of costs from nn to p(n) (partition function of n), i.e., from 1010 to 42
when n = 10. We henceforth devised algorithms to process the sparse rep-
resentations of utility functions and to propagate them along with symmetry
information among distributed agents. We implemented this new representa-
tion of constraints and tested it with the DPOP algorithm on distributed graph
colouring problems, rich in symmetries. Our evaluation shows that in 19% of
execution instances we cut down 10 times the volume of communication spent,
while no significant overhead appears in non symmetrical executions. These
results open serious perspectives on a possible bounding of memory and com-
munication bandwidth consumption in some subclass of distributed constraint
reasoning problems.

1. Introduction

Distributed constraint optimisation is an efficient programming paradigm
which expresses relations between variables in forms of constraints. Those vari-
ables are owned by a set of distributed agents, and only the agents involved in one
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constraint are aware of its existence. Keeping the definition of constraints dis-
tributed is particularly relevant when computational and communication power
is limited, or when privacy concerns are raised by entities not willing to share
sensitive information.

Symmetry processing in constraint reasoning is a research field in itself: sym-
metric problems being redundant in their definition, the literature is rich in meth-
ods offering to break symmetries in order to avoid revisiting equivalent states in
search algorithms. Gent 1) in particular published a comprehensive overview of
centralised methods to deal with symmetric problems.

The distribution of data, however, is an obstacle to symmetry detection since
the knowledge of the full definition of a problem is necessary to acknowledge their
existence. We started in Refs. 2), 3) to consider the possibility of exploiting a
weaker type of “partial” symmetries and of propagating them. Partial symmetries
are applicable to a single constraint or to a subset of constraints of the whole
problem.

In this paper, we present a way to exploit the existence of partial symmetries
at the finest granularity level, i.e., inside individual constraints for an efficient
representation. Then, we present a way to propagate those symmetries in order
to preserve the efficiency and compactness of our simplified data structure.

Eventually, we challenge our new way to represent constraints in a distributed
version of the well-known graph colouring problem, and show we manage to cut
down the total volume of communication spent by the DPOP algorithm 4) and to
have significant improvement. We suggest that this result may have some serious
impact provided we can identify a subclass of distributed constraint reasoning
problems for which the exploitation of symmetries would bound the memory
consumed.

2. Distributed Constraint Reasoning

Definition 1 (DCSP). A distributed constraint satisfaction problem (DCSP) is
a constraint satisfaction problem (CSP) where variables are distributed over dif-
ferent agents. It consists of a finite set of variables x1, · · · , xn, a set of domains
d1, · · · , dn, a set of agents a1, · · · , ak, and a set of constraints c1, · · · , ct. Each
variable is owned by a unique agent.

1852 c© 2011 Information Processing Society of Japan



1853 Symmetry Propagation and Constraint Representation

We assume that if a constraint involves several variables, all agents owning any
of these variables have a consistent definition of the constraint.
Definition 2 (Neighbourhood). Each constraint has a scope of variables, thus a
scope of agents. Two variables are neighbours if they share at least a constraint.
Similarly, if two variables are neighbours, then the agents they belong to are
neighbours.

Constraints fall into two categories: local (private) and global (distributed)
constraints. Each agent owns a local subproblem, which is a partial view of the
global problem. This global problem is the union of all the local subproblems.

2.1 Constraint Representation
Definition 3 (Assignation). An assignation is a tuple {y1 = u1, . . . , ym = um}
where ui ∈ di is a possible value for variable yi.
Definition 4 (Constraint, extensive representation). A constraint is an evalua-
tion function (or utility function) defined on a scope of variables {y1, . . . , ym},
associating a value to each possible assignation on the scope.

There are two traditional ways to represent a constraint, an intensive and an
extensive one. An extensive representation of a constraint lists all the variables,
all their domains, and associates a constraint value (or utility value) to each
assignation. It is a very expensive albeit simple way to represent a constraint:
for k variables, each ranging on a domain of n values, the extensive representation
will list all the possible nk assignations.

On the other hand, an intensive representation is a very compact way to store
a constraint: for example

∑
xi = 1, or alldifferent(xi), which represents the

global constraint xj �= xk for all j �= k. However, it can be very expensive to
constantly evaluate its expression. Also, in constraint propagation algorithms,
it is not convenient to intensively represent the junction of two constraints or to
check their consistencies. As a consequence, the extensive representation is often
more appropriate to CSP and DCSP algorithms.

2.2 DFS Tree
Yokoo presented the first distributed Asynchronous Backtracking 5) to solve dis-

tributed constraint satisfaction problems. The main issue it raised together with
other pioneer algorithms was the fact it kept increasing the size of their variables’
neighbourhoods during the resolution process. ADOPT 6) and DPOP 4) family’s

Fig. 1 A constraint graph and its DFS tree.

algorithms started to group variables according to their initial neighbourhoods,
i.e., according to the constraints they share, using a DFS tree obtained from a
depth-first search (DFS) of the constraint graph of the problem with variables as
nodes and constraints as edges as shown in the left half of Fig. 1.
Definition 5 (DFS tree). A DFS tree is a rooted and directed spanning pseudo-
tree of the constraint graph such that any two neighbours in the original graph
are both in the same branch.

Note that Definition 5 assures that all neighbouring pairs of variables in a
constraint graph are involved in an ancestor/descendent relationship in the cor-
responding DFS tree (see (1, 2), (1, 3), (1, 4) and (2, 3) couples in Fig. 1.)

Also, as the edges of the DFS tree only represent some of the constraints, we
introduce the concept of back edge to the DFS tree in order to denote the existence
of a constraint between two variables which are not connected by a simple edge.
A variable connected to an ancestor via a back edge is called a pseudo-child and
the ancestor is called a pseudo-parent. In the figure, the dashed line is a back
edge, and 1 and 3 are resp. pseudo-parent and pseudo-child of each other.
Definition 6 (Separator). Each variable x has a separator sep(x), defined as
the set of its ancestors connected with an edge or a back edge to x or to any
descendent of x. More specifically,

sep(x) = ancestors(x)
⋂

⎛
⎝ ⋃

y∈{x}∪descendents(x)

pseudoparents(y)

⎞
⎠

In other words, the separator of a variable x is the set of ancestor variables of
x constrained with x or with any descendant of x. If the DFS tree is a real tree,
all the separators do not have more than one element.
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2.3 DPOP Algorithm
ADOPT 6) was the first distributed search algorithm using DFS tree structures.

Later came DPOP 4), which performs a distributed version of the bucket elim-
ination algorithm 7). After creating a DFS tree, i.e., labelling each variable as
parent/child and pseudo-parent/pseudo-child of its neighbours, it proceeds in two
phases: a UTIL propagation, aggregating constraints from the leaves to the root
of the tree, followed by a top-down VALUE propagation in order to find optimal
assignations.
Definition 7 (UTIL message). The UTIL message sent from a variable v to its
parent is a multidimensional matrix representing the global constraint linking the
variables in the separator of v. The matrix has n dimensions, one per variable
in the separator of v = {y1, · · · , yn}, and is filled with the costs f(u1, · · · , un) of
each assignation {y1 = u1, · · · , yn = un}.

The UTIL propagation phase starts from the leaves and goes up to the root.
Each node aggregates and optimises constraints, namely joins and projects UTIL
messages coming from its children and sends to its parent a representation of
relations with its ancestors via a new UTIL message.
Definition 8 (Junction). Let f1, · · · , fn be utility functions defined on scopes
S1, . . . , Sn. The junction

∑
fi is defined on the union of the scopes S =

⋃
Si =

{y1, · · · , yk}. For each possible assignation in S, we have (
∑

fi)(u1, . . . , uk) =∑
(f ′

i(u1, . . . , uk)), where f ′
i(S) = fi(Si) for all assignations in S.

The junction is an aggregation operation which a node applies on the resulting
constraints, or utility functions, coming from its different subtrees. If variable x,
linked with its ancestors by constraint f0, has k children y1, · · · , yk, it receives
from each of them a UTIL message with cost functions f1, · · · , fk of respectively
sep(y1), · · · , sep(yk). The node for variable x then sums up all these constraints
in (f0+f1+· · ·+fk) defined on parents(x)∪sep(y1)∪· · ·∪sep(yk) = sep(x)∪{x}.
Definition 9 (Projection). Let f be a function of a set of variables s = {x, y1, · · · ,
yn}. We define the projection of f on x as the function f |x of s− {x} such that
for every assignation {y1 = u1, · · · , yn = un} of s − {x}, f |x(u1, · · · , un) =
minx f(x, u1, · · · , un).

The projection is an optimisation operation where a node picks the optimal
assignation for the variable it holds for all possible assignations of the variables

in its separator. With the same notation as above, the node for x will project
the function (f0 + f1 + · · ·+ fk) and create f |x of sep(x) to be sent to its parent.
For a leaf node, x will be projected out of only f0.

For a root node holding variable r, f0 does not exist. The UTIL messages
received contain only functions of r: projecting it out of the junction determines
its optimum value r0. This optimum value is sent by the root to its children
through VALUE messages. When a node receives such a message, it chooses its
optimum according to the values received, creates new VALUE messages with its
optimum and send it to its children until the leaves.

Consider the constraint reasoning problem consisting of four variables x, y, z, t

each defined on {0, 1, 2} and constrained by alldifferent(x, y, z) and y + t ≥ 4.

Fig. 2 The DPOP algorithm.
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Figure 2 displays a possible DFS tree. The alldifferent constraint is a 3×3×3
table filled with +∞ except for the following assignations where the utility values
would be 0: (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1) and (2, 1, 0). Similarly, the
constraint linking y and t by y+t ≥ 4 is explained in Fig. 2. After the projections
of z and t, y receives both UTILz→y and UTILt→y, before joining them into

⊕
y.

Then y is projected out of
⊕

y and UTILy→x is sent to the root node x. x can
then choose an assignation, for example 1 (0 is also possible), and propagate it
down: y has to be equal to 2, then z should be 0 whilst t must be equal to 2.

DPOP’s advantage lies in the number of messages sent. Once the DFS tree is
generated, it sends no more than twice as many messages as the number of edges
in the DFS tree. However, its weakness lies in the size of those messages: the size
of the biggest message grows exponentially with the size of the biggest separator
of the tree, also called induced width. That is, if a separator has n variables over
domains d1, . . . , dn, the size of the corresponding UTIL message is proportional
to

∏ |di|. This paper proposes an innovative method to attack this bottleneck.

3. Symmetry in Constraint Reasoning

Exploitation and breaking of symmetry in constraint reasoning have been a
research field in itself. As symmetries are omnipresent in nature, using them in
various fields of physics or engineering can make problems easier and faster to
solve. In constraint programming, symmetry breaking 8),9) can avoid revisiting
equivalent states. The knowledge of symmetry itself can also let the software
induce new constraints 10) that would make the resolution process faster.

3.1 Definition
Gent presents in Ref. 1) various equivalent definitions of symmetry that are

often used in the constraint programming literature. We present here only two
definitions that are convenient for our demonstration.
Definition 10 (Symmetry). A symmetry over a CSP is a permutation on vari-
ables and values that leaves the whole set of constraints unchanged.

For example, if (x1, y1, x2, y2, z) are all defined on {0, 1} and constrained by
xi+2yi = z, σ = {(x1 ⇀↽ x2), (y1 ⇀↽ y2)} is a symmetry: indeed, as σ({x1+2y1 =
z}) = {x2 + 2y2 = z} and σ({x2 + 2y2 = z}) = {x1 + 2y1 = z}, σ leaves the set
of constraints globally unchanged. Therefore, we can reduce the search effort by

solving only x1 + 2y1 = z and applying the symmetry to the solution in order to
find the solution of the whole original problem.

We can also reformulate the definition in more mathematical terms.
Definition 11 (Symmetry). A symmetry σ over a CSP is an automorphism on
the set of assignations that leaves their utility values unchanged. In other words,
σ : d1 × · · · × dn −→ d1 × · · · × dn; then, for all α ∈ d1 × · · · × dn, the equality
c(α) = c(σ · α) stands (where c(α) is the global utility of assignation α, sum of
all the constraints of the whole problem.)

A prerequisite to both definitions is that we can define the variable permutation
xi ⇀↽ xj iff di = dj and the value permutation ui ⇀↽ uj iff for all k, ui ∈ dk ⇔
uj ∈ dk. The detection of symmetries over centralised CSPs has been studied in
Ref. 11) with the help of group theory. The definition of orbit, inherent to the
study of groups, will be of some help in upcoming sections.
Definition 12 (Orbit). The orbit of an element α is the set of elements which
are images of α through any symmetry σ in the group G, and is noted G · α =
{σ · α |σ ∈ G}.
Proposition 1. We can partition the set of assignations into orbits.

Proof. If the symmetry group is empty, then there are as many orbits as assigna-
tions. By taking assignations in order, we can merge the orbits of each assignation
α and of its image σ · α. �

Definition 13 (Generator). We name generator of an orbit G · α the element α̇

which is the first in lexicographical order among all elements in G · α. In other
words,

∀α ∈ G · α̇, we have α̇ 
 α

We name γ the function associating α̇ to α.
Computing the γ function for assignations with all interchangeable variables

and all interchangeable values, proceeds as follow. We illustrate our point with
example assignation (2, 0, 2) and domain {0, 1, 2}:
• first we count the occurrences of each values, and swap the most used value

with the first value in lexicographical order, then the second most used with
the second value, etc. (2, 0, 2) becomes (0, 1, 0) through a combination of
value permutations;
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• then we sort the result in lexicographical order: (0, 1, 0) becomes (0, 0, 1)
through a combination of variable permutations.

In conclusion, γ(2, 0, 2) = (0, 0, 1). For the general case, the reader can refer to
Ref. 12), which also shows an efficient algorithm to list all orbits from a symmetry
group. This orbit listing procedure coincides with the partition function on the
simplest case of fully symmetric values and variables.

3.2 Symmetries in Distributed Context
Numerous publications presented how to exploit detected symmetries, e.g., in

search algorithms by dominance detection. In a distributed context however, the
symmetry detection is compromised by the distribution of data: there is no easy
way to check that a permutation leaves the whole set of constraints unchanged,
since all agents have only a partial view over the problem. Henceforth, the
distribution of the definition requires a different approach.

We raised those problems in Ref. 2) and introduced the notion of partial sym-
metry, then stated as follows a condition for a partial symmetry to be also a
symmetry on the global definition of the problem.
Definition 14 (Partial representation). A partial representation of a problem p

is the restriction of p to a subset of variables V, the neighbours of the variables
in V, and the constraints involving any variable in V. Each agent naturally owns
a partial representation of the problem restricted to its variables.
Definition 15 (Partial symmetry). A partial symmetry over a CSP is a sym-
metry over a partial representation of the CSP. The symmetries detected by an
agent which has a partial view over the problem are partial symmetries.
Theorem 2. If σ is a partial symmetry for all agents owning a variable in σ and
for all their neighbouring agents, σ is a symmetry of the whole problem.

Theorem 2 (proved in Ref. 2)) implies that distributed agents can cooperate and
detect a global symmetry from their own local symmetries by finding a subset of
those local symmetries which they all agree on. However, this approach fails to
detect the global symmetries which are not local ones.

The SymDPOP algorithm 3) breaks through by analysing the DFS tree from
the leaves and propagating symmetries up to the root conjointly with constraints
expressed as UTIL messages. Indeed, if two UTIL messages have interchangeable
separators, only one of those messages can be sent. Its strength lies in the fact it

does not require that all the agents agree on a symmetry to propagate it: only
the source and destination agents have to. Although this approach significantly
cuts the number and volume of messages sent on both symmetrical and non
symmetrical problems, analyzing only the permutability of separators limits its
impact in so far as the only symmetries found are variable symmetries.

Subsequently, we reuse in this paper the idea of propagating symmetries to-
gether with constraints, but generalise it in order to deal with all kind of symme-
tries. We manage to have a more compact representation of constraints, hence
reduce the volume of data used.

3.3 Constraint Representation
The main problem of the extensive representation of constraints as stated in

Section 2.1 is the immense amount of data consumed, as it is exponential in the
number of variables in the constraint’s scope: in DPOP, a regular constraint is
stored in an Hypercube, containing the list of variables, the list of their domains,
and the list of utilities associated with every possible assignation. If we con-
sider the Definition 12 of orbits together with Proposition 1, we can significantly
simplify the representation of a constraint.

Indeed, once we know a group of symmetries valid for one specific constraint,
we can partition its set of assignations into orbits. All the elements of a single
orbit do have the same constraint valuation (or the same utility value) so we
can store only one utility per orbit. We name this structure SparseHypercube

because of the analogy with sparse matrices.
For example, the constraint alldifferent(x, y, z) with all variables defined

on {0, 1, 2} is subject to a set of variable symmetries – all variables are inter-
changeable – and of value symmetries – all values are interchangeable. As shown
on Fig. 3, we can cut the number of utility values stored from 33 = 27 to 3.
Here, the intrinsic meaning of each orbit is “all elements are the same” (orbit
of ˙(0, 0, 0)), “2 elements are identical, 1 is different” (orbit of ˙(0, 0, 1)) and “all
elements are different” (orbit of ˙(0, 1, 2)). Note that in that case, when the size
of domains n grows, the extensive representation of constraints will have n3 el-
ements whilst there will still be only 3 orbits. More generally, the number of
elements for k symmetric variables and n ≥ k symmetric values are nk in the
extensive representation but p(k) in our intensive one where p(k) is the partition
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Fig. 3 Extensive and orbits representation of an alldifferent constraint.

Fig. 4 Representation of constraint c with orbits.

function of k.
For another example, we can consider the constraint c on variables x and y,

both defined on {0, 1, 2}, and assigning utility value 0 if their sum is equal to
0, 1 if their sum is equal to 1 or 2 and +∞ otherwise. Variables x and y are
permutable so we can represent the constraint as in Fig. 4 with 6 utility values
instead of 9.

3.4 Symmetry Propagation
The idea of summarising all the assignations into orbits is beneficial in algo-

rithms provided we can propagate this concept. In DPOP for example, where
constraints, represented as UTIL messages are joined and propagated up the DFS
tree, we have to make sure that we can still group assignations into orbits after
operating DPOP basic operations, namely projection and junction.

3.4.1 Projection
During the projection operation, as one variable is taken out of the scope of

the constraint, it must also be taken out of G.
Definition 16 (Projection). Let G be a group of symmetries on the scope of
variables (x, y1, · · · , yn). We name G|x, the group of symmetries included in G

which do not involve any permutation with the variable x.

Fig. 5 alldifferent constraint and its projection along x.

Fig. 6 Definition of symmetry group junction.

Proposition 3. If G is a symmetry group for the function f defined on the scope
(x, yn, · · · , yn), then G|x is a symmetry group for the projection of f on x.

Proof. Let σx be a symmetry in G|x, we have

f |x (σx · (u1, · · · , un)) = min
x

f(x, σx · (u1, · · · , un))

= min
x

f(x, u1, · · · , un)

= f |x(u1, · · · , un)

�

Figure 5 shows the result of the projection of a variable out of an
alldifferent constraint. For the sake of clarity, we detail here how to com-
pute f |x(0, 1).

f |x(0, 1) = min {f(0, 0, 1), f(1, 0, 1), f(2, 0, 1)}
= min {f · γ(0, 0, 1), f · γ(1, 0, 1), f · γ(2, 0, 1)}
= min

{
f ˙(0, 0, 1), f ˙(0, 0, 1), f ˙(0, 1, 2)

}

= min {+∞,+∞, 0} = 0

3.4.2 Junction
Figure 6 helps understanding the following definition, describing sufficient

conditions for a symmetry on a constraint c1 to be also a symmetry on the
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junction of c1 with another constraint c2.
Definition 17 (Junction). Let G1 (resp. G2) be a group of symmetries on the
constraint c1 (resp. c2) defined on the scope of variables S1 (resp. S2), we define
the junction of those groups G1 ⊕ G2 by considering the elements of G1 (resp.
G2) in order:
• if σ1 ∈ G1 permutates variables in S1 ∩ S2, then σ1 ∈ G1 ⊕ G2,
• if σ2 ∈ G1 permutates x ∈ S1 ∩ S2 with y ∈ S1 ∩ S2, then σ2 /∈ G1 ⊕ G2,
• if σ3 ∈ G1 permutates variables y ∈ S1 ∩S2, then σ3 ∈ G1 ⊕G2 iff. σ3 ∈ G2.

Proposition 4. If Gi is a symmetry group for function fi, then
⊕

Gi is a
symmetry group for function

∑
fi.

Proof. (for 2 functions) Let σ be a symmetry in G1 ⊕G2 and α be an assignation
in the scope of (f1 + f2), we have

(f1 + f2) (σ · α) = f1 (σ · α) + f2 (σ · α)
= f1(α) + f2(α)
= (f1 + f2)(α)

as the equality fi(σ · α) = fi(α) is guaranteed by the definition of G1 ⊕ G2,
considering case 1 and case 3 for σ ∈ G1 and for σ ∈ G2. The proposition for the
cases of three or more functions can be easily proved by a simple induction. �

Proposition 4 gives us the means to build
∑

fi for all generators α̇ of orbits of⊕
Gi by summing up all fi(γi(α̇)) where γi is the generator function with respect

to Gi. For example, Fig. 7 shows the result of the junction of one alldifferent
constraint with one oneeven constraint (one of the variables in the scope of
oneeven must be equal to 0 or 2). After listing all possible orbits for G1⊕G2, we
compute (f1 + f2) (x) for all α ∈ γ(G1 ⊕ G2). For the sake of clarity, we detail
here how to compute (f1 + f2)(0, 1, 0, 1).

(f1 + f2)(0, 1, 0, 1) = f1(0, 1, 0) + f2(0, 1, 1)
= f1 · γ1(0, 1, 0) + f2 · γ2(0, 1, 1)

= f1
˙(0, 0, 1) + f2

˙(0, 0, 1) = +∞

4. Performance

In order to evaluate this different way of representing constraints, we chose to

Fig. 7 alldifferent (left) constraint and oneeven (right) constraint and their junction
(down).

compare the volume of data used by the DPOP algorithm on distributed graph
colouring problems.

4.1 Distributed Graph Colouring
The distributed graph colouring problem is a distributed version of the well-

known problem which consists of assigning colours to nodes of a graph, making
sure that any two neighbouring nodes get a different colour assigned.

Each node x0 has a constraint stating the impossibility of having identical
colours for this node and each of its neighbours (xi). We modelled that constraint
as a single constraint graphcolouring(x0, x1, . . . xk0) (k0 being the number of
neighbours of x0). The utility function assigns +∞ if there exists an i such as
x0 = xi, and 0 otherwise. We also have a group of value symmetries (all colours
are permutable) and of variable symmetries (all xi with i �= 0 are permutable).

The distributed graph colouring problem is particularly relevant in so far as it
is equivalent to many real life problems, such as the assignation of channels to
wireless routers.

4.2 Results
We generated several distributed graph colouring problems with 10 colours, 3

agents, each owning 10 variables. For each instance of the problem, we measured
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Fig. 8 Data volume used for each of 400 executions.

the total volume of data exchanged, which is the widely acknowledged bottleneck
for the DPOP algorithm.

On Fig. 8, we compared data volumes with regular extensive Hypercubes and
with condensed SparseHypercubes, which take symmetries into account; we drew
for each of those 400 executions a dot, whose coordinates are the total volume
of data exchanged with Hypercubes on the abscissa and with SparseHypercubes
on the ordinate. All the points on the right side of each of the diagonal lines are
executions for which the total volume of information sent with SparseHypercube

is n times smaller than with Hypercube, n being the number written on the top
right-hand side of this line. We find that in 68% of executions, by using symmetry
information in constraint representation and by propagating those information,
we cut the total volume of data by more than 2; then by more than 5 in 30% of
executions, and by more than 10 in 19% of executions. More interestingly, the
total amount volume of data seems to be bounded to about 10 kB when we use
SparseHypercube structures. Also, there seem to be clusters of data volumes
when we use Hypercube structures.

Depending on some characteristics of the problem (not only the number of

Fig. 9 Execution speed-up.

variables, the size of constraints, the density of the constraint graph), it appears
that using SparseHypercube cuts the scarce repartition of volume of data used
to the better case. Considering the way partial symmetries are propagated along
the whole problem could be a first step forward in order to find a subclass of dis-
tributed constraint programming problems for which exploitation of symmetries
would have a strong bounding effect on the volume of constraints used.

Figure 9 displays the execution time speed-up in function of the data volume
difference (V stands for “data volume”, t for “execution time”, H for Hypercube
and SH for SparseHypercube). The time has been measured on T2K supercom-
puter 13), running FRODO 14) software with mpj-express 15) based communication
structures on 4 Fujitsu HX600 nodes �1. We observe a significant speed-up of 30%
in average. The negative speed-up for instances with few symmetries is due to
few fine optimisations in regular DPOP that we had to discard. In reasonably
symmetrical instances, the time spent to compute the γ function 12) during pro-
jection and junction operations is largely compensated by the economy we make

�1 Each node consists of 4 quad-core Opteron 8356, 32 GB RAM, java-6-sun-1.6.
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in data volume in the communication process. We can also legitimately infer that
in a real-life distributed context with a lower bandwidth than MPI, the speedup
would get even more significant.

Note also that solving some instances of the same problem with 15 colours with
Hypercube is often impossible with 256 MB of memory because of exponential
explosion. On the other hand, SparseHypercube breaks colour symmetries and
solves the problem with an unlimited number of colours.

5. Related Works

Symmetry treatment is an important research topic in several areas of computer
science, including model-checking 16) and constraint programming. The question
has been addressed from several angles in centralised constraint programming:
static 9) or dynamic symmetry breaking, problem reformulation, symmetry defi-
nitions 8) and representations, detection of symmetries 11); Ref. 1) presents a com-
prehensive overview of various methods. We first tackled the paradox between
symmetry and distribution in Ref. 2) and the idea of propagating symmetry in-
formation appeared with our SymDPOP 3) algorithm.

On top of these pieces, including our own unique work in distributed context, we
made essential contributions to distributed constraint solving problems. While
SymDPOP takes care of a particular case of variable symmetries, we generalised
the idea of symmetry propagation and incorporated all variable/value symme-
tries in DPOP algorithms, expanding the range of application of SymDPOP. Not
only did we reduce the number of UTIL messages, we also reduced their sizes by
a representation based on classes of equivalences, or orbits. Eventually, we for-
mulated and implemented the fundamental functions of DPOP algorithm, resp.
junction and projection, to fit the orbit-based representation, hence reducing
both memory space and computation cost.

6. Conclusions

We presented in this paper a method which utilises the symmetry properties
of constraints in order to significantly cut the total communication volume spent
during the DPOP resolution process. This approach uses the symmetry groups
properties and represents classes of equivalences of assignations (orbits) instead

of assignations. Symmetries are input locally at the level of constraints and
propagated all along the DFS tree through junction and projection operations.
This method contrasts with symmetry detection methods commonly used in a
centralised context which consider symmetries on the global definition of prob-
lems. Rather, it takes advantage of partial symmetries which are valid only on
subparts of the problem, propagates this information to neighbours, and finally
cuts down 10 times the total volume of communication spent. This work opens
perspectives on characterising distributed constraint programming problems for
which the exploitation of symmetry could bound the exponential consumption of
memory.
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