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本論文では，パターン形成問題と呼ばれる，非同期的に動くロボット群を幾何的な
配置に並ばせる問題を考察する．ここでは，各ロボットは各自固有の座標系に従って，
他のロボットの配置と目的の配置を観測するできるものとする．n 点の座標からなる
集合の対 A, B の間のマッチングを求めるアルゴリズム “clockwise matching”を構
成し，“clockwise matching”によって任意のパターン形成問題を解くことができるこ
とを示す．

Pattern Formation Through Optimum Matching
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A geometric pattern formation problem by autonomous mobile robots is in-
vestigated in this paper. In the “embedded pattern formation problem” diss-
cussed in this paper, the target pattern is assumed to be visible from the robots
via their own (local) coordinate system. We show that our matching algorithm
“clockwise matching” which calculates the matching between a pair of pat-
terns A and B both comprising of n coordinates, solves any embedded pattern
formation problem.

1. Introduction

This paper considers a system of anonymous mobile robots on Euclidean plane. Each
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robot, given an algorithm, repeats a “Look–Compute–Move” cycle, to observe the other

robots’ positions (in Look phase), to compute the next position by using the algorithm

(in Compute phase), and to move toward the next position (in Move phase). The robots

are anonymous in the sense that they do not have identifiers (and are not identified just

by their looks neither), and are controlled by the same algorithms. A basic and crucial

assumption on the system is that they are not aware of the global coordinate system,

and all the actions by robots are via their local coordinate systems, which may be

inconsistent each other.

The problem of forming a given formation by a set of such robots is called the (geomet-

ric) pattern formation problem and has been studied extensively4)5)3). The difficulty of

solving formation problem lies on the asynchrony of the robots and at present three syn-

chronous models are considered according to degree of asynchrony; In fully synchronous

model (FSYNCH), all robots simultaneously execute the Look-Compute-Move cycles.

In asynchrounous model (ASYNCH), on the other hand, we makes no assumption about

synchronization. Finally, in semi-synchronous model (SSYNCH) execution of each cy-

cle is assumed to be instanteneous, hence Look and Move phase of two distinct robots

never overlap.

Although formable pattern is characterized by6) in FSYNCH and SSYNCH model,

in ASYNCH model, much is unknown due to difficulity of systematically descriving

formation step of every asynchrounous execution of algorithm. Thus in this paper we

tacle on the asynchronous robot model (with different visibility assumption).

In these literatures target formation is assumed to be invisible by robots and thus

pattern formation problem is formulated as a problem of forming the “shape” of given

pattern. In contrust to conventional assumption, in this paper, we assume target pat-

tern is visible like landmarks, via their own coordinate system, hence the target pattern

is specified as a set of points on a global coordinate system. We call a formation prob-

lem of this setting embedded pattern formation problem. Embedded pattern formation

problem can be solved by matching between robots and target points if that can be

uniquely calculated among robots in spite of their inconsistent local coordinate systems

and asynchronous execution of formation algorithm.

In this paper, we construct an algorithm, which we call “clockwise matching” and

情報処理学会研究報告 
IPSJ SIG Technical Report

1 ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-135 No.4
2011/5/16



show that it presents a desired canonical matching between robots and target points

during formation step.

Organization.

The rest of paper is organized as follows: In section 2.1, we introduce our model of

robots. In section 2.3 we define terminology that we use in this paper. In section 2.2 we

define our algorithm “clockwise matching” and present the main theorems. In section

3 we argure that “clockwise matching” is well defined. The proof of the theorems is

omitted in this paper.

2. Preliminary

2.1 Model

In this section, we introduce our model of robots. We consider a set of robots A and

a set of target points B of equal cardinality. Ap denotes the positions of the robots,

and Bp denotes the positions of the target points. (Formally, we call an injection

p : A∪B → R2, an embedding. Xp denotes the set {p(a) : a ∈ X} for a set X ⊆ A∪B

and an embedding p.) In the model, each robot asynchronously repeats the following

Look-Compute-Move cycle;

Look observes positions of other robots Ap and target points Bp via its own (local)

coordinate system T (i.e., T is some mapping consisting of rotation, translation

and uniform scaling),

Compute and from input (AT◦p, BT◦p), computes a perfect bipartite matchings

ψ(AT◦p, BT◦p) between A and B minimizing total Euclidean distance and decides

its own target point of Bp by an algorithm ψ,

Move and moves directly toward the point with ε (or larger) length if there is no

other robot(s) along the way.

Note that robots cannot communicate each other, and use distinct local coordinate sys-

tems where each robot only knows its own system, hence does not know others’ ones. In

this paper, each local coordinate system is consist of rotation, translation and uniform

scaling, this means that the robots do not have common knowledge about the north.

(directions of y-axis of local coordinate systems may not agree.) However, since we

do not allow mirror transformation, the robots have common handedness, i.e., bases

図 1 An example of CWM.

of their local coordinate system have same orientation. Thus, in order to solve the

formation task, they must compute the matching in a way that is independent of local

coordinate system as well as asynchrony of execution. However, if there uniquely exists

the minimum perfect matching M = {aibi ∈ A × B : i = 1, . . . , n} between A and B,

minimizing
∑

aibi∈M
|p(ai)−p(bi)| (where p(a) indicates the position of a and |x| is the

euclidean norm of x), a formation is easily done. In this paper, we are concerned with

symmetrical configurations of Ap and Bp, for which there are more than one minimum

perfect matchings between A and B. See e.g. Fig. 1.

2.2 Terminology

To describe our altorithm “clockwise matching” we define our terminology (c.f.,1),2)).

The frontier of a set X ⊆ R2 is the set Y of all points y ∈ R2 such that every neigh-

bourhood of y intersect with both X and R2 \ X. Let O ⊂ R2 be an open set. The

relation of two points being connected by some continuous map [0, 1] → O defines an

equivalence relation on O. The corresponding equivalence classes are the regions of O.

For any bounded set X ⊂ R2, R2 \X has unique unbounded region. We call the frontier

of the region, the periphery of X and denotes it by P (X).

Throughout this paper, we consider a pair of disjoint finite sets A and B of equal car-

dinality, and an embedding p (i.e., injection A ∪ B → R2), as well as graph G = (V, E)
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with a vertex set V ⊆ A ∪ B, a edge set E ⊆ A × B. We draw vertices of A with black

and vertices of B with white in Figures 1-7. The vertex set of a graph G is referred to

as V (G) and its edge set as E(G).

K2 denotes complete graph with 2 vertices. A graph G is elementary if the union of

all perfect matchings of G is a connected subgraph of G. For a bipartite graph G and

its perfect matchings M and M ′, the cycle C of G is an alternating cycle of M and M ′

if the edges of C appear alternately in M and M ′.

For e = ab ∈ E(G) and an embedding p, the direction −→e p of e under p is the vector

p(b)− p(a). the drawing ep of e under p, is the line segment {p(a) + t(p(b)− p(a)) : t ∈
[0, 1]}, and e̊p, the interior of e under p, is the set e \ {p(a), p(b)}. For a pair of vectors

x, y ∈ R2, we say x and y to be parallel and denotes x ‖ y, if there exists a > 0 such

that ax = y.

For a graph G and an embedding p, the drawing Gp of G under p, is the set
∪

e∈E(G)
ep,

and the periphery P (G, p) of G under p is the subgraph G′ of G with the edge set

E(G′) = {e ∈ E(G) : ep ⊆ P (Gp)} (V (G′) is all end vertices of the edges). For

Q ⊆ A×B, we define A(Q) to be a set {a : ab ∈ Q} and B(Q) to be a set {b : ab ∈ Q}.
Let U(A, B) denotes a set of all perfect matchings of A and B (bijection from A to

B). We define cost wp(M) of the matching M ∈ U(A, B) under p by

wp(M) =
∑

ab∈M

|p(b) − p(a)| . (1)

Let M(A, B, p) denotes a set of all matchings M ∈ U(A, B) which minimize wp(M)

and for all x, y ∈ M , xp * yp. Note that as an element of M(A, B, p), we do not allow

matching whose edge includes its another edge as in Fig. 2 (a), while allowing parallel

edges as in Fig. 2 (b). See that M(A, B, p) 6= ∅ (except A = B = ∅), but not necessarily

|M(A, B, p)| = 1. G(A, B, p) denotes a bipartite graph with the vertex set V = A ∪ B

and the edge set E =
∪

M∈M(A,B,p)
M . See Fig. ?? for an example of G(A, B, p).

A tour of a graph G is a sequence of vertices v0v1 . . . vk, such that vivi+1 ∈ E(G)

for all i = 0, 1, . . . , k − 1, and hamilton tour is a tour of G which visit all the vertices

of G exactly once. For a cycle C and an embedding p, a clockwise tour of C under p

is a hamilton tour v0v1 . . . vn−1, which minimize
∑n−1

i=0
ei × ei+1 mod n with (×) being

vector product operator, and ei = −−−→vivi+1p. For convinience, we define a clockwise tour

図 2

of a graph C = K2 to be its hamilton tour.

2.3 Definition of CWM

Given a pair of disjoint finite sets A and B of equal cardinality, and an embedding

p : A ∪ B → R2, let G1, G2, . . . , GN be connected components of G(A, B, p), and let

Ci = P (Gi, p), Ai = A(Gi \ Ci) and Bi = B(Gi \ Ci). CWM(A, B, p) is a matching of

G(A, B, p), defined by

CWM(A, B, p) =

∅ if A = B = ∅∪N

i=1

{
CWM′(Ci, p) ∪ CWM(Ai, Bi, p)

}
otherwise

. (2)

where CWM′(C, p) is a set {v0v1, v1v2, . . . , vm−1vm}, with v0v1 . . . vmv0 being any clock-

wise tour of C starting from v0 ∈ A. (See Fig. 1 for illustration of CWM.)

Let A and B be finite sets of equal cardinality, p be an embedding, and T be a

coordinate system. Then following theorems holds.

Theorem 1 (optimality). CWM(A, B, p) ∈ M(A, B, p).

Theorem 2 (coordinate system free). CWM(A, B, p) = CWM(A, B, T ◦ p).

Theorem 3 (asynchrony free). If an embedding q satisfies

( 1 ) ∀e ∈ CWM(A, B, p), eq ⊆ ep and −→e q ‖ −→e p.

( 2 ) ∀x, y ∈ CWM(A, B, p), xq * yq.

then CWM(A, B, p) = CWM(A, B, q).

Note that we expressed CWM(A, B, p) as a matching between A and B to state above

theorems, however, it also can be seen as matchng between Ap and Bp, since we do not

consider multiplicity, i.e., we only consider injective embeddings.
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図 3 Possible relation of two edges of G(A, B).

3. Clockwise Matching

In this section, we argue that the “clockwise-matching” CWM(A, B, p) of A, B and

its embedding p, is well defined. To begin with, we analyze a graph G = G(A, B, p).

3.1 Graph G(A, B, p)

Though we want to consider G to be a plane graph by replacing each edge e with a

line e ?1, G is not a plane graph in general unfortunately. First, we look at the relation

between two edges of G. The following holds even if G is not connected graph.

Lemma 4. There are four cases between two edges x = ab and y = a′b′ of G. See Fig.

3 for illustration.

• (separate) x ∩ y = ∅.
• (fold) x and y have exactly one common end vertex and −→x ‖ −−→y .

• (adjacent) x and y have exactly one common end vertex and not (fold).

• (parallel) −→x ‖ −→y and x * y.

Proof. We classify the other cases which do not satisfy the above relation as follow.

For each case, we derive contradiction. See Fig. 4. Let x = ab and y = a′b′ be two

edges that are not adjacent and let M, M ′ ∈ M(A, B) be matchings such that x ∈ M ,

y ∈ M ′. Since x and y are not adjacent, a 6= a′ and b 6= b′.

• Case 1. M = M ′.

– (cross) Two lines x and y cross at a point.

– (opposite-direction) −→x ‖ −−→y and x ∩ y 6= ∅.
– (include) −→x ‖ −→y and x ⊆ y.

• Case 2. M 6= M ′.

?1 We omit the reference embedding if it is clear.

図 4 Impossible relation of two edges of G(A, B).

– (cross) Two lines x̊ and ẙ cross at a point.

– (colinear-and-intersect) a, b, a′, b′ are colinear and y ∩ x 6= ∅.
Let x̃ = ab′, ỹ = a′b.

• Case 1. M = M ′. Let W = M \ {x, y} ∪ {x̃, ỹ}. Obviously, W ∈ U(A, B).

– (cross) Let s be the crossing point. By the triangle inequality, |a−b′|+|a′−b| <

|a − s| + |s − b| + |a′ − s| + |s − b′| = |a − b| + |a′ − b′|. Thus w(W ) =

w(M \{x, y}∪{x̃, ỹ}) = w(M)−
{
|a−b|+|a′−b′|

}
+

{
|a−b′|+|a′−b|

}
< w(M).

This contradict with M ∈ M(A, B).

– (opposite-direction) Same as the case (cross).

– (include) This contradict with M ∈ M(A, B).

• Case 2. M 6= M ′.

– (cross) Let C = (M ⊕ M ′) \ {x, y} ∪ {x̃, ỹ}. Then, each connected component

of C forms an alternating cycle and w(C) < w(M ⊕M ′) by the same argument

as the case (cross) of Case 1. Thus, there exists W, W ′ ∈ U(A, B) such that

w(W ⊕W ′) < w(M ⊕M ′) and M ∩M = W ∩W ′. This is because, as edges of

W and W ′, you can take edges of the alternating cycle alternately for each con-

nected component of C and for the rest of the W and W ′, you can take edges

both from M ∩ M ′. Thus, w(W ) + w(W ′) = w(W ⊕ W ′) + 2w(W ∩ W ′) <

w(M ⊕ M ′) + 2w(M ∩ M ′) = w(M) + w(M ′). Furthermore, since M and

M ′ are optimum matchings, w(M) = w(M ′). Therefore, w(W ) < w(M) or
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w(W ′) < d(M). This contradict with M ∈ M(A, B).

– (colinear-and-intersect) In this case, though each connected component of

M ⊕ M ′ must form alternating cycle, this is impossible because two edges

in the same matching cannot have relation (cross) or (opposite-direction) as

we proved in Case 1.

We consider the connected component of G. When G is connected, let’s see, what

kind of graph we can draw on the plane. To begin with edge e1, by Lemma 4, as the

next edge e2, we can draw edge which have either (adjacent) or (fold) relation with e1.

If we choose (fold), the next edge e3 must be the (parallel) relation with e1. Then, for

the next edge e4, you can choose (adjacent) or (fold). However in case you choose (fold)

you have to be careful not to draw the line too long and include e2, and so on, and of

course any of two edges could never cross each other.

With that observation, let us define the plane graph representation D(G) of G as

follow. We call an alternating path a1b1 . . . ambm of G which satisfy ai+1 ∈ aibi and

bi ∈ ai+1bi+1 for all i = 1 . . . m−1, a folded-path. Any edge is a folded-path with length

1. A maximal folded-path is a folded-path, which by extending the path with one more

vertex, no longer holds above condition. D(G) is a plane graph which is produced by

replacing each maximal folded-path aPb of G with a line ab. See that those two lines

never intersect with each other except for end points and for any perfect matching of

D(G), there is a corresponding perfect matching of G since each aPb is an alternating

path without branch from inner vertices. From the definition, Lemma 4 and the

図 5 An example of folded-path.

図 6 An example of G and D(G).

above arguments, we obtain the following Corollaries.

Corollary 5. G is bipartite elementary.

Corollary 6. D(G) is plane bipartite elementary.

We also remark the followings.

Theorem 7.2) Elementary bipartite graph is 2-connected.

Theorem 8.1) Any face of 2-connected plane graph with more than 4 vertices is bounded

by a cycle of the graph.

The geometrical property defined on plane graph D(G) is naturally lifted to the origi-

nal graph G. i.e., for the periphery x0x1 . . . xm−1x0 of D(G), as there is unique maximal

folded-path Pi of G that connect xi and xi+1 mod m and Pi = xixi+1, we can see that

the periphery of G is the cycle x0P0x1P1 . . . xm−1Pm−1x0 and is orientable. Thus the

periphery P (G) of G as well as clockwise tour of P (G) is well defined. By the above

theorems, we can say that the periphery of any connected component of G is either K2

or an alternating cycle.

4. Conclusion

In this paper, we considered formation problem by asynchronous autonomous mo-

bile robots and presented the algorithm “clockwise matching” which presents a kind of

canonical matching in our formation step.

Our robot model assumed that each robot can observe positions of other robots and

target points via its own local coordinate system whose direction of y axis may not

agree while orientation agree with other robots’ systems.

By “clockwise matching”, robots always calculate matching between the robots and

the target points which minimize the sum of distances. “clockwise matching” takes ad-
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vantage of their common knowledge about orientation and precedes “clockwise” match-

ing to “counter-clockwise” ones if there is more than one minimum weight matching.
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