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In this paper, we propose a new distributed hit-list worm detection method:
the Anomaly Connection Tree Method with Distributed Sliding Window
(ACTM-DSW). ACTM-DSW employs multiple distributed network Intrusion
Detection Systems (IDSs), each of which monitors a small portion of an enter-
prise network. In ACTM-DSW, worm propagation trees are detected by using
a sliding time window. More precisely, the distributed IDSs in ACTM-DSW co-
operatively detect tree structures composed of the worm’s infection connections
that have been made within a time window. Through computer-based simu-
lations, we demonstrate that ACTM-DSW outperforms an existing distributed
worm detection method, called d-ACTM/VT, for detecting worms whose in-
fection intervals are not constant, but rather have an exponential or uniform
distribution. In addition, we implement the distributed IDSs on Xen, a virtual
machine environment, and demonstrate the feasibility of the proposed method
experimentally.

1. Introduction

In recent years, computer worms have become a serious threat to computer
networks. Locating infection targets is an important step for worm propagation.
Most existing worms use address scans to locate infection targets, and many
techniques for detecting such address scanning have been proposed. Since ad-
dress scans are obviously anomalous, it is not difficult to detect the activity by
monitoring various statistics such as the number of failed connection attempts in
an interval of time. However, it is now considered that worms employing more
sophisticated target location techniques will emerge in the near future. Among
such worms, we have studied worms that acquire the IP address list of vulnerable
hosts and attempt to infect all the hosts included in the list 1). Such worms are
often refereed to as hit-list worms, and are capable of evading most existing worm
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detection methods based on address scanning. In particular, we focus primar-
ily on the hit-list worms that limit the number of attacks per instance and the
propagation speeds in order to evade detection Refs. 1)–2).

Up to now, few works have been done on detecting hit-list worms. Kawaguchi,
et al. proposed a method called d-ACTM/VT 2), for detecting hit-list worms that
attack internal hosts in an enterprise network by finding their propagation trees
in a distributed manner. A propagation tree represents a worm’s propagation
routes in a network. More specifically, the tree is a structure composed of in-
fected hosts as nodes and infection connections between the hosts as edges. An
infection connection is made when a worm infects another host. Since an infected
host usually makes more than one infection connection to other hosts repeatedly,
worm’s propagation forms a tree structures of infected hosts. d-ACTM/VT con-
catenates suspicious connections into trees, and judges that the network is being
attacked by a worm when the tree size reaches a certain threshold. d-ACTM/VT
detects propagation trees in a distributed manner by deploying several fully de-
centralized distributed Intrusion Detection Systems (IDSs) in a network. Each
IDS monitors a part of the network, and propagation trees are detected by ex-
changing information about suspicious connections with other IDSs. It has been
reported that worms can be detected by this method when a few percent of hosts
are infected in an enterprise network. Furthermore this approach is scalable.

There is a problem with the approach, however, because suspicious connections
are concatenated into trees. Two connections are concatenated if the source or
destination host of a connection made earlier is the source of the other, and the
difference between their start times is smaller than a certain threshold. This
approach is effective against worms with a constant infection interval �1, since
all infection connections can be concatenated if the threshold is longer than the
constant interval. On the other hand, worms with variable infection intervals con-
forming to particular distributions (e.g., an exponential distribution) can evade

�1 There are two types of infection intervals. One is the interval between the time when an
infected host makes an infection connection and the time when it makes the next infection
connection. The other is the interval between the time when a host is infected by another
host and when it makes the first infection connection. In this paper, the term infection
interval represents both types.
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detection by using d-ACTM/VT. This is because even if the average interval is
equal to or smaller than the threshold, a certain percentage of actual intervals
are longer than the threshold (e.g., if the interval follows a uniform distribution,
50% of the intervals are longer than the average). These relatively long intervals
can divide the propagation tree into a few subtrees, which prevents d-ACTM/VT
from detecting the worm at an early stage of propagation. Although most exist-
ing worms do not change their infection intervals dynamically, researchers have
noted the emergence of worms that have variable infection intervals for evading
detection 3).

To address this problem with d-ACTM/VT, in this paper we propose a new dis-
tributed hit-list worm detection method: the Anomaly Connection Tree Method
with Distributed Sliding Window (ACTM-DSW). This approach employs a slid-
ing time window to detect propagation trees. In ACTM-DSW, connections whose
start times are within the time window form trees, regardless of the difference
between the start times of directly concatenated edges.

More specifically, a new tree is identified each time a new suspicious connection
is detected, and then the tree will include some connections that are subsequently
made in the next time window. Since ACTM-DSW considers only the difference
between the start times of the first and the most recent connections to specify
a tree, the intervals between directly concatenated edges are irrelevant. Conse-
quently, this method is less influenced by fluctuations in the infection intervals
compared with d-ACTM/VT.

Through computer simulations, we show that ACTM-DSW outperforms d-
ACTM/VT in terms of speed for detecting worms whose infection intervals have
an exponential or a uniform distribution. In addition, we implement IDSs of
ACTM-DSW on the virtual machine environment Xen, and demonstrate the
feasibility of the proposed method experimentally.

This paper is organized as follows. In Section 2, d-ACTM/VT, which formes
the foundation of ACTM-DSW, is described in more detail. We propose ACTM-
DSW in Section 3. In Sections 4 and 5, we report the results of evaluation
experiments carried out by computer simulations and our implementation on
Xen, respectively. We discuss related works in Section 6. Finally, we present our
conclusion in Section 7.

2. d-ACTM/VT

2.1 Anomaly Connections and Anomaly Connection Tree
In this paper, a TCP connection or a bi-directional/unidirectional UDP flow

between internal hosts in an enterprise network is referred to as a connection. A
connection is identified by a tuple consisting of the source and destination hosts.
The source is the host that initiates a connection. Two connections with different
contents or port numbers are regarded as equal only if they have both the same
source and destination.

d-ACTM/VT detects worm propagation trees by leveraging the difference in
the frequency of occurrence between legitimate and infection connections. It is
well known that most internal hosts usually communicate with only a small frac-
tion of all internal hosts (e.g., servers) 4)–5). Typically, about 80% of connections
made by a host are destined to only about less than 20% of all internal hosts.
Thus, most legitimate connections made by a host are destined to those with
which it has frequently communicated. In contrast, each worm instance tends
to selects its infection targets from its hit list, without considering the hosts to
which its infected host has made connections. Thus, most infection connections
made by an infected host are destined to those with which it has infrequently
communicated under normal condition. Throughout this paper, we refer to these
infrequently made connections as Anomaly Connections (ACs), and to others as
Normal Connections (NCs). For the reasons above, most legitimate connections
are classified as NCs. On the other hand, when a worm propagates, most of the
infection connections are classified as ACs.

Thus, the idea behind d-ACTM/VT is that most parts of a worm’s propagation
tree can be mapped into tree structures whose edges are ACs. The trees are
referred to as Anomaly Connection Trees (AC trees). A newly made AC is
concatenated with an existing one if the gap between their start times is less
than a value Tgap, and the source of the new connection is either a source or
destination of the existing one. Figure 1 shows an example of an AC tree. If
t1 − t0 < Tgap and t2 − t1 < Tgap hold, an AC tree formed by hosts A, B, D and
E is detected. The tree size is 4. Furthermore, another tree formed by hosts C,
F and G is detected if t5 − t4 < Tgap holds.
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Fig. 1 AC tree. Fig. 2 Transmissions of
AC/NC/VAC Messages.

Each time an AC is observed, an IDS that monitors the source of the AC
distributes the information on the AC to other IDSs so that they can detect AC
trees in a distributed manner. When the size of the detected AC tree reaches a
threshold, an alarm is sent to the network administrator.

2.2 Connection Classification
To classify connections as either ACs or NCs, IDSs maintain a connection

history table for each monitored host. This table lists the number of outgoing
connections that the monitored host has made to each destination. Then, when
a new outgoing connection is detected, it is classified as an NC if the destination
is a host with which the source has frequently communicated, corresponding to
x% (e.g., 80%) of the total connections in the table; otherwise, the connection is
classified as an AC. The table is periodically updated in order to reflect changes
in the communication patterns of the monitored hosts over time.

2.3 Virtual Anomaly Connection Tree
Since infection connections are not always classified as ACs (e.g., when an

infected host makes infection connections to vulnerable popular servers), worm
propagation can generate a few AC trees separated by infection connections clas-
sified as NCs. d-ACTM/VT detects the separated propagation trees by clustering
these AC trees which are separated by a few NCs. A cluster of AC trees is called
as a Virtual AC tree (VAC tree). Then, if the size of a VAC tree, which is the
sum of the sizes of clustered trees, reaches a certain threshold, an alarm is raised.
In Fig. 1, a tree rooted at host A and a tree rooted at host C are clustered to

form a VAC tree if t4 − t3 < Tgap. The VAC tree is 7 in size.
2.4 Communication between IDSs
d-ACTM/VT employs fully decentralized distributed IDSs. Each IDS is re-

sponsible for inferring the size of AC/VAC trees that are rooted at its monitored
hosts. IDSs exchange information on monitored connections so that each can
accurately infer the size of the trees. While there are several types of messages
used in d-ACTM/VT, here we briefly describe one type used for inferring AC
tree size. More details on the messages are given in Ref. 2).

When an IDS detects that a monitored host X has made an AC, it sends the
information via messages to other IDSs monitoring hosts that have made ACs
to X within Tgap. IDSs that receive the message further propagate it to other
IDSs in a similar manner. Let IDSX denote an IDS that monitors a host X,
and let ACXY denote an AC made from hosts X to Y . Now assume that ACAB

and ACBD are made in Fig. 1, and 0 ≤ t1 − t0 ≤ Tgap holds. As a result, a
tree composed of hosts A, B and D is detected. Note that since IDSA does
not observe ACBD, it cannot directly infer the actual tree size (= 3). Then,
IDSB sends IDSA a message indicating that ACBD is made at t1. This message
enables IDSA to infer the actual size of the tree. Likewise, if host D later makes
an AC within Tgap after t1, IDSD sends a message to IDSB. In this case, IDSB

relays the message to IDSA, and IDSA updates the inferred size from 3 to 4.
Since each IDS does not require a central server for obtaining global knowledge
of the network and analyzing connection logs of all internal hosts, this approach
is scalable 2).

2.5 Problem with d-ACTM/VT
As stated in Section 1, there is a problem with the manner that d-ACTM/VT

connects ACs into AC trees. Although the approach is effective at finding prop-
agation trees of worms that make new infection connections periodically every
Tgap or less, if a worm’s infection interval is not a constant but rather a vari-
able conforming to a certain probability distribution with large variance (e.g., an
exponential distribution), a considerable number of infection connections cannot
be joined even if the average interval is less than Tgap. Therefore, it is difficult
for d-ACTM/VT to detect all parts of the propagation tree for such worms.

A straightforward solution is to set Tgap to a larger value. For example, if
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Tgap is set to several times of the average infection interval, most of the actual
infection intervals will be less than Tgap. As Tgap is increased, however, AC trees
tend to become larger, and the tree size threshold must be increased to prevent
an increase in the false positive rate. As a result, this may cause considerable
degradation in the detection speed.

3. ACTM-DSW

3.1 Concept
In this section, we propose a new distributed worm detection method, called

ACTM-DSW. ACTM-DSW employs fully-decentralized distributed IDSs so that
this is as scalable as d-ACTM/VT, and it uses a sliding time window of size
Tw for tree detection. In ACTM-DSW, connections that have been made within
the past Tw form AC and VAC trees at the current time. Two ACs within the
window are connected if a source or destination of the preceding AC is a source
of the other. Accordingly, a new AC can be added to an AC tree if the AC and
one of the tree’s edge satisfy the condition. Therefore, this approach can cope
with worms with variable infection intervals. In Fig. 1, if t2 − t0 < Tw holds,
hosts A, B, D and E form an AC tree. Furthermore, if t5 − t4 < Tw holds, hosts
C, F and G form an AC tree. Likewise, if t5 − t0 < Tw holds, an AC tree of {A,
B, D, E} and an AC tree of {C, F, G} form a VAC tree.

In d-ACTM-DSW, when a new AC is detected, a new tree with the AC as
the first edge is recognized. Then, the tree grows and is later removed as time
advances. Here, AT (E) denotes an AC tree whose first AC is E, and then
V AT (E) denotes a VAC tree whose first edge is E. In Fig. 1, ACBD is made
at t1. The AC forms a new tree AT (ACBD) and is also a part of AT (ACAB).
Then, at t0 + Tw, AT (ACAB) is removed. At t2, ACBE is added to AT (ACBD)
if t0 + Tw < t2 < t1 + Tw holds. Finally, AT (ACBD) is removed at t1 + Tw. The
maximum size of AT (ACBD) is 3. ACTM-DSW raises an alert when the size of
an AC tree reaches a certain threshold. These dynamics of tree topology hold
true for VAC trees.

The challenging issue with ACTM-DSW is how the distributed IDSs infer the
size of trees composed of connections started within the past Tw. ACTM-DSW
addresses this issue by propagating the information on a newly detected AC to

Fig. 3 Algorithm to transmit AC Messages.

IDSs monitoring hosts that have made connections within the past Tw. Then,
on the basis of this information, each IDS infers the size of the trees whose first
edges are formed by its monitored hosts. In the following sections, we explain
how the IDSs detect AC/VAC trees. For simplicity, we assume that each IDS
monitors only a single host.

3.2 Distributed AC Tree Detection
ACTM-DSW uses three types of messages for transmitting information on ACs:

AC Messages, NC Messages and V AC Messages. Here, we show how IDSs
infer AC tree size by exchanging AC Messages. Figure 2 shows an example of
message transmission triggered by ACGH made at t6. For simplicity, we assume
that t6 − t0 < Tw holds. In response to the occurrence of ACGH , IDSG sends
AC Messages on ACGH to the IDSs that monitor hosts E and F , which made
ACs with host G within Tw. Figure 3 shows in detail how the IDSs act.

Upon observing that a monitored host makes an outbound AC, the IDS calls
respondtoAC with the newly detected AC as the argument. This function adds
the new AC to AT (X) which appeared within the past Tw, and raises an alert if
the tree size reaches THAC . Here, X is included in outbound ac list, a list of
all outbound ACs the monitored host has ever made. The new AC is added to the
list. Then, the IDS transmits AC Messages. The receiver is an IDS monitoring
a host that has made a connection to the sender’s monitored host within Tw.
Here, how to locate the addresses of the receiver IDSs (IDSE and IDSF in
Fig. 2) is an issue. While various approaches can be considered, we introduce a
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Fig. 4 Algorithm to transmit NC/VAC Messages.

solution in Section 5.
Upon receiving an AC Message, the IDS calls receiveAC Message and up-

dates tree sizes accordingly. In Fig. 2, IDSE receives an AC Message from
IDSG, and AT (ACEG) is updated to 3. Then, the IDS further propagates the
AC Message to other IDSs recursively if its monitored host has received ACs
within Tw. If the average interval of legitimate connections is a for every host and
the ratio of ACs to all connections is b, E(AC Message), the expected number
of transmitted AC Messages each time a new AC is detected, can be expressed
as follows:

E(AC Message) = e
b×Tw

a − 1. (1)

This implies that E(AC Message) is exponentially proportional to Tw.
3.3 Distributed VAC Tree Detection
NC/VAC messages are used for transmitting information on an AC tree to

other AC trees that are separated by a few NCs in order for these trees to be
clustered into a VAC tree. In Fig. 2, AT (ACAC) and AT (ACEG) (including hosts
E, G and H) are separated by NCCE , and can be clustered into V AT (ACAC).
Figure 4 presents the details. In VAC tree detection, when an IDS detects that
its monitored host has made an outbound AC, respondtoAC+ is called after

respondtoAC/receiveAC Message is completed. In the function, the AC is
concatenated with existing VAC trees; if the size of a tree reaches THV AC , an
alert is raised.

Next, if the new detected AC is concatenated with an AC tree that is larger
than a threshold called THPROPAGATE , the IDS calls sendNC Message, and
then sends NC Messages on the AC to IDSs whose monitored hosts have made
an NC to the sender’s monitored host NCs (respondtoAC+(1)). In Fig. 2, if
THPROPAGATE = 2, since AT (ACEG) = 3, NC Messages on ACGH are sent
from IDSE to IDSC and IDSD.

On the other hand, if the size of an AC tree reaches THPROPAGATE upon
adding the AC, an NC Message on every AC in the tree is transmitted so that
one AC tree is concatenated to other AC trees beyond the intermediate NCs
(respondtoAC+(2)). In Fig. 2, if THPROPAGETE = 3, an NC Message on
ACEG, as well as a message on ACGH , is transmitted to IDSC and IDSD, which
then recognize AT (ACEG) for the first time.

Upon receiving an NC Message, the receiver calls receiveNC Message, and
then the message can be further propagated recursively. Note that in contrast
to AC Messages, the number of maximum hops of an NC Message is limited
to a value MAX HOP . When MAX HOP is set to 1, each NC Message can
takes 1 hop, and therefore AC trees separated by one NC can be clustered to a
VAC tree.

After transmitting NC Messages, the IDS calls processVAC. In process-
VAC, an AC on the received NC Message is added to existing VAC trees, and
the tree sizes are evaluated. Then, V AC Messages on the AC are propagated,
as in the case of AC Message transmission. In contrast with AC Messages,
ACs on V AC Messages are added to VAC trees, which results in the clustering
of AC trees. In Fig. 2, V AC Messages on ACGH are sent to IDSA and IDSB .

Upon receiving a V AC Message, the receiver calls processVAC. Then, VAC
trees sizes are updated and evaluated. In Fig. 2, V AT (ACAC), which is composed
of AT (ACAC) and AT (ACEG), is evaluated at IDSA. Finally the message is
further propagated recursively.
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4. Evaluation Experiment

We evaluate the detection performance of ACTM-DSW in computer simula-
tions and compare the proposed method with d-ACTM/VT.

4.1 Simulation Conditions
We simulate an enterprise network where all internal hosts are vulnerable.

Then, a hit-list worm intrudes into the network and attempts to infect all the
internal hosts by exploiting the vulnerability. Each distributed IDS monitors one
host. Thus, the number of IDSs is equal to the number of hosts. Details on the
simulation condition are as follows.

4.1.1 Network Model
We simulate a typical enterprise network where common server-client type net-

work services such as SSH, Windows RPC, Web and E-mail are operating.
Since the performance of ACTM-DSW is affected by a pattern of the desti-

nations and the intervals of the legitimate connections, we use the pattern as a
network model for evaluation. The simulated network has 500 internal hosts, a
typical size for an enterprise network 5). Among the hosts, 20% are server-hosts
which are frequently accessed by other hosts, and the remaining 80% are client-
hosts which are infrequently accessed by other hosts. In our communication
model, 80% of the legitimate connections that each host makes are destined to
server-hosts, and the remaining 20% are destined to client-hosts. References 4)–5)
report that most hosts in an enterprise network communicate frequently with a
small number of other hosts. Thus, destinations of legitimate connections in
our model are less biased than those of typical enterprise networks. Note that,
Ref. 2) reports that as less biased the destinations of legitimate connections are,
the more hosts that worms can infect before detection. Thus, for the purpose of
detection, the simulation condition is harder than typical enterprise networks.

Each host makes legitimate connections to other hosts periodically, and the
interval time of legitimate connections made is an exponential variable with a
mean of 10 TU (TU is a time unit). To evaluate the characteristic of ACTM/DSW
under a basic and primitive network model, we assume that all hosts have the
same the average interval. We will treat a case where each host has a different
average interval in future works.

The lengths of other time-related parameters are represented from the view-
point of how much larger they are compared to the average interval of legitimate
connections. Since the average interval that a host in enterprise networks makes
TCP connections is tens of seconds 5), 1 TU corresponds to a few seconds.

4.1.2 Worm Model
Our primary concern is a hit-list worm that limits the number of infection

trials and infection speeds in order to evade connection-rate based detections 6),
as stated in Ref. 1).

The worm has a hit-list that includes all addresses of the internal hosts. Each
worm instance selects target hosts from the hit-list in order. The hit-list worms
share a hit-list in a way such that no hosts are attacked more than once 13)–14).
The hit-list worm is modeled with the number of infection attempts and the
infection intervals. The number of infection attempts of each worm instance
is limited to 2, which is almost minimum and low enough for worms to evade
connection-rate detections Ref. 1).

The average infection interval is set to 10 TU, equal to the average interval of
legitimate connections. As most existing worms make hundreds of connections
in a second 14), the average interval is quite relatively long. In the simulation, the
infection interval is set to a constant, an exponential or a uniform variable. With
a constant distribution, the infection interval is always 10 TU. With uniform
distribution, the infection interval is in the range 0-20 TU.

In summary, when a host is infected, it starts to attack other hosts tens of
seconds (= 10 TU) after the infection on average. Then, it makes infection con-
nections twice, and the interval of the connections is ten of seconds on average.
Thus, the propagation speed of the worm is much slower than that of a Flash
worm 1). We also evaluate the performance of ACTM-DSW against worms that
spread fast like a Flash worm.

4.1.3 IDS Settings
In ACTM-DSW, IDSs classify 80% of the top legitimate connections as NCs.

The ratio is optimized to classify the types of connections specified by the model
in Section 4.1.2. Deriving the optimized ratio based on network conditions is one
of our future works.

The target value of the false alert interval is 10,000 TU on average. With this
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Fig. 5 Number of infected hosts for
three types of intervals.

Fig. 6 Number of transmitted
messages per AC.

Fig. 7 Effect of Tw on number of
infected hosts.

Fig. 8 Effects of infection interval on
number of infected hosts.

Fig. 9 Effect of communication de-
lays on the number of infected
hosts.

interval, there are a few false alerts a day, and the frequency is considered to be
small enough 9). THAC/THV AC are adjusted to values that satisfy the interval.

Tw is set to 50 TU, which is considered to be a reasonable value. In the evalua-
tion, we assess the effect of Tw on the detection performance. THAC is adjusted
to 30 to achieve the given false alert interval using the threshold-adjusting algo-
rithm 2). THPROPAGATE is set to 10, since it is reported that 35% of THAC is
best for THPROPAGATE in d-ACTM/VT 2). Likewise, MAX HOP is set to 1,
which will be best in d-ACTM/VT 2). In a similar manner to THAC , THV AC is
adjusted to 40. In this experiment, Tgap, which is a parameter of d-ACTM/VT,
is set to the optimal value such that the infected hosts are minimized.

Finally, by default, we consider the delay in transmitting a message between
IDSs is ignorable, and set the delay to 0 TU. This is because the delays are
quite small compared to the infection interval of the simulated worms. When
evaluating our results, we discuss the case where the delay cannot be ignored for
detecting fast-spreading worms.

4.2 Results
Figure 5 shows the number of infected hosts before an alert is raised for d-

ACTM/VT, ACTM-DSW and ACTM-DSW without VAC tree detection (only
AC tree detection is considered, and the parameters are set to raise an alert
every 10,000 TU). Against a worm with a constant infection intervals distribu-
tion, the number of infected hosts for ACTM-DSW is more than twice that
for d-ACTM/VT. On the other hand, against worms with infection intervals
with an exponential or uniform distribution, the number of infected hosts for

ACTM-DSW is up to 30% less than that for d-ACTM/VT. Furthermore, with-
out VAC tree detection, the number of infected hosts increased by up to 20%,
which demonstrates the effectiveness of VAC tree detection. For each detection
method, the number of infected hosts is less for infection intervals having an
exponential distribution compared with a uniform distribution. In the case of
an exponential distribution, about 60% of intervals are shorter than the average,
while 50% of intervals are shorter in the case of a uniform distribution. This
difference in the percentage of intervals that are shorter than the average helps
explain the observed results.

Figure 6 shows the average number of messages transmitted in the response
to a newly detected AC. ACTM-DSW requires more than 10 times as many
messages as d-ACTM/VT. The average number of AC Messages is 1.7, which
fits Expression (1).

Figures 7 and 8 show the effects of Tw and the worm’s average infection
interval on detection performance, respectively. It can be seen in Fig. 7 that too
small a value of Tw results in a higher number of infected hosts. In Fig. 8, as the
average infection interval increases, more hosts are infected.

Next, we evaluate ACTM-DSW against fast worms. As stated in Section 4.1.3,
against fast worms, the delay in transmitting a message between IDSes cannot
be ignored. Figure 9 shows the number of infected hosts as a function of the
communication delay between IDSes. We simulate three types of worms with
infection intervals of 0.05, 0.1 and 10 TU. The number of infection trials of each
copy is 2 for all worm types in order to evade connection-rate based detections 6).
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We call the worms with infection intervals of 0.05/0.1 TU as fast hit-list worms.
We designed hosts infected by these worms to make two infection connections at
almost the same time 0.05/0.1 TU after the infection, since most existing worms
make multiple connections concurrently. In Ref. 14), the interval between the
time when the Flash worm attacks a host and the time when the attacked host
begins infection activities is modeled as 2 seconds. Since 0.05/0.1 TU are shorter
than, or comparable to 2 seconds, the intervals of the fast-hit-list worms fit the
Flash worm model 14). To detect the worms that construct large AC trees in a
short time, we set Tw to 1 TU. Accordingly THAC and THV AC are adjusted to
about 4 and 5 respectively.

As for the worm with an infection interval of 10 TU, the number of infected
hosts is almost stable as the delay gets longer, which indicates that the effect
of the transmission delay is quite small. As for the fast-hit-list worm with an
infection interval of 0.05 TU, on the other hand, the number of infected hosts is
significantly increased, as the delay gets longer. When the delay is 0.05 TU, the
number of infected hosts is 32. The number is increased to 100 when the delay
is 0.1 TU. Likewise, for worms with infection intervals of 0.1 TU, the number of
infected hosts increases steeply as the delay exceeds 0.1 TU.

The results demonstrate that ACTM-DSW detects such fast-hit-list worms
faster than it detect worms with infection intervals of 10 TU, when the delay in
transmitting a message between IDSes is equal to, or shorter than the interval
between when a host is being attacked and when the host starts to infect others.

4.3 Discussion
The results show that ACTM-DSW and d-ACTM/VT compensate for each

other: against worms with constant infection intervals, d-ACTM/VT exhibits
higher performance, while against worms with infection intervals of high variance,
ACTM-DSW does. Thus, the combination of the two methods can be effective
against a wide range of worms.

A drawback of ACTM-DSW is that a large number of messages must be trans-
mitted for detection. In future work, we will attempt to address this problem by
employing a sampling algorithm to reduce the number of transmitted message
without degrading detection performance.

5. Implementation of Distributed IDS on Xen

In this section, we describe the implementation of distributed IDSs on Xen
and evaluate the performance. First, we introduce how an IDS locates the ad-
dresses of other IDSs. Then, the implementation details and evaluation results
are presented.

5.1 Locating the IP Addresses of Distributed IDSs
To send messages to an IDS that monitors an arbitrary host, the sender must

locate the address of the IDS. In addition, confidentiality and integrity must be
satisfied.

A simple method for locating IDSs is to deploy a server that maps the monitored
hosts and IDSs. The approach, however, is not scalable and makes the server a
single point of failure. Therefore, this is not a suitable approach for distributed
detection systems.

Instead, as shown in Fig. 10, we introduce a 3-way protocol for locating IDSs
and sending messages, taking advantages of the fact that each IDS captures all
the traffic to and from its monitored hosts. This protocol assumes that each
IDS has a private/public key pair and a certificate signed by a closed PKI that
authenticates IDSs implementing ACTM-DSW in the network.

Figure 10 shows message transmission from IDSA to IDSB. First, IDSA

sends a packet that includes a message ID and its certificate to hostB via a
UDP packet. Since IDSB monitors incoming traffic to host B, it can capture
the packet. IDSB checks that the message is sent to its monitored host and
conforms to the protocol message format. Then it sends back a packet that
includes the same message ID and its certificate to IDSA. Upon receiving the

Fig. 10 Message transmission protocol. Fig. 11 Implementation of distributed IDS
on Xen.
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response from IDSB, IDSA receives the public key of IDSB. Then, IDSA

sends IDSB a packet that includes the same message id, a message encrypted by
IDSB’s public key, a signature of the message ID and the message encrypted by
IDSA’s private key. Finally, IDSB verifies and processes the message.

5.2 Implementation on Xen
We implement a distributed IDS on the virtual environment Xen. Figure 11

shows the implementation of the IDS on a Xen virtual machine. This IDS is
written in JDK 1.6 and has about 3,000 lines of source code. For encryption and
signing, 1024-bit RSA with SHA-1 is used.

This IDS runs on domain-0, which is a privileged domain, and monitors the
network activity of virtual machine hosts running on Domain-U in the same
physical machine. Since Domain-0 has full control over virtual switches, the IDS
can capture all traffic to and from the virtual hosts through the switches.

5.3 Evaluation Experiment
5.3.1 Environment
To evaluate the performance of the IDSs on Xen, we conduct the following ex-

periment. We use a small network composed of two Xen machines. Each machine
has an Intel Core 2 Quad processor at 2.66 GHz, 3 GB of memory, CentOS 5.2
and Xen 3.2. Each machine contains an IDS and five virtual hosts, which can
communicate with hosts in both machines. Of the virtual hosts in each machine,
one is a server-host and the others are client-hosts. Each host routinely sends
1 MB of data at an average interval of 10 seconds, and 80% of the destinations
are server hosts. IDS parameters are set to values such that one false alert is
raised on average every 20 minutes.

For the worm propagation scenario, we created a program that mimics a hit-list
worm. This program makes an infection connection to a host listed in the hit list
every 1 s. We run this dummy worm to measure the number of infected hosts
when an IDS raises an alert.

5.3.2 Resuts
As for the detection speed, about 6-7 hosts are infected when an IDS raises

an alert. Although more than half of all hosts are infected before detection, we
are not discouraged by this result since ACTM-DSW is intended to be used on a
network with several hundreds of hosts. The computer simulation shows a similar

result. As for the computation cost, the CPU usage rate of each IDS is no more
than 3%. As for the communication cost, about 2 KB of data are required to
transmit each message between the IDSs. Thus, the IDS communication traffic
is less than 100 Kbps. These results demonstrate that this IDS is lightweight,
and can be deployed in various environments.

6. Related Work

Several researchers have proposed methods that detect worms by monitoring
propagation trees or chains composed of infection connections. Staniford-Chen,
et al. first introduced the notion of a network activity graph (tree) for detecting
worm propagation in organization networks. Their method, called GrIDS 7), de-
tects worms when a graph that meets a predefined rule is constructed. GrIDS
employs hierarchical IDSs. For detecting graphs spreading over wide areas, in-
formation monitored by lower-layer IDSs is passed to higher-layer IDSs. Ellis, et
al. proposed a connection tree detection method that uses a time window 8)–9).
Although these methods perform connection tree detection, neither takes advan-
tage of anomaly connections for graph (tree) detection. Toth, et al. proposed a
method that searches for a chain of anomaly connections and raises an alert if
the chain includes connections that contain similar payloads 10)–11). Patrick, et al.
also proposed a hit-list worm detection method in which connection graphs are
constructed from both the attacking hosts outside of the network and attacked
hosts within the network 12).

In contrast to these approaches above, ACTM-DSW detects two types of trees
composed of anomaly and normal connections through the cooperation of fully
decentralized distributed IDSs. It also need not inspect packet payloads.

7. Conclusion

In this paper, we have proposed ACTM-DSW, a new distributed worm detec-
tion method that is effective against hit-list worms with variable infection in-
tervals. ACTM-DSW employs fully decentralized IDSs that cooperatively detect
worm propagation trees in a distributed manner. Through computer simulations,
we have shown that ACTM-DSW outperforms d-ACTM/VT in detecting worms
with infection intervals having exponential and uniform distributions. We have
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also implemented the decentralized distributed IDS on Xen, and demonstrated
the feasibility of the proposed detection method.

As stated in the discussion, ACTM-DSW requires a large number of message
transmissions between IDSs, which is exponentially proportional to the time win-
dow size. Decreasing the number is planned for the future work.
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