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Differentially Aberrant Region Detection

in Array CGH Data based on Nearest Neighbor

Classification Performance

Yuta Ishikawa†1 and Ichiro Takeuchi†1

Array CGH is a useful technology for detecting copy number aberrations in
genome-wide scale. We study the problem of detecting differentially aberrant
genomic regions in two or more groups of CGH arrays and estimating the statis-
tical significance of those regions. An important property of array CGH data is
that there are spatial correlations among probes, and we need to take this fact
into consideration when we develop a computational algorithm for array CGH
data analysis. In this paper we first discuss three difficult issues underlying
this problem, and then introduce nearest-neighbor multivariate test in order to
alleviate these difficulties. Our proposed approach has three advantages. First,
it can incorporate the spatial correlation among probes. Second, genomic re-
gions with different sizes can be analyzed in a common ground. And finally, the
computational cost can be considerably reduced with the use of a simple trick.
We demonstrate the effectiveness of our approach through an application to
previously published array CGH data set on 75 malignant lymphoma patients.

1. Introduction

Array Comparative Genomic Hybridization (array CGH) is a useful technol-
ogy for measuring DNA copy numbers in genome-wide scale. In an array CGH
analysis of a tumor cell, the tumor DNA and a normal (reference) DNA are co-
hybridized to a microarray of thousands of genomic clones of BAC, cDNA, or
oligonucleotide probes1). For each of thousands of probes, an array CGH exper-
iment returns the log2-ratio of the number of DNA copies in the tumor cell to
that in the normal (reference) cell at the genomic region corresponding to the
probe. A log2-ratio greater (less) than zero indicates a possible gain or amplifi-
cation (loss or deletion) in DNA copies in the tumor cell at the genomic region.

†1 Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
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Fig. 1 Examples of array CGH data taken from three lymphoma patients: The numbers in
the horizontal axis denote the chromosome and the measurements in the vertical axis
indicate log2-ratio of each probe. See Section IV for the detail of these arrays.

Fig. 1 shows three examples of array CGH data obtained by array CGH anal-
yses of three tumor cells taken from three different lymphoma patients2). In the
figure, the numbers 1, · · · , 22 in the horizontal axis indicate chromosome 1, · · ·,
chromosome 22, respectively, and the measurements in the vertical axis represent
the log2-ratios at each of 2,035 BAC probes.

The first fundamental task in array CGH data analysis is finding aberrant
(amplified or deleted) genomic regions in a single array (e.g., for an individual
patient). Many computational algorithms have been developed for this task3)–5).
The next level of task is identifying common aberrant regions in a group of
arrays (e.g., for a group of patients in common clinical condition). Compared
to the first task, the smaller number of studies has been done for this task5).
However, such common aberrant regions are usually of great interest in many
biological studies. Currently, in these studies, common aberrant regions are
rather informally defined. The third level of task in array CGH data analysis
is detecting differentially aberrant regions in two or many groups of arrays, i.e.,
detecting the regions that are commonly amplified or deleted in one group of
arrays, but not in the other group(s) of arrays. As long as we know, there
is no formal treatment in this task in the literature, although such differentially
aberrant regions can often provide important implications in biological researches.
More rigorous and formal approaches are needed for the second and the third
tasks.

In developing computational algorithms for array CGH data analysis (all in the
above three tasks), it is important to take into account the spatial relationship
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of probes. Unlike gene expression microarray (which measures mRNA expression
level of each gene), a probe in CGH microarray represents a segment of genomic
DNA, and thus they are considered to be sequentially connected in each chro-
mosome. For example, we can observe many contiguously amplified or deleted
regions in Fig. 1. For this reason, most of the above mentioned algorithms for the
first task3)–5) were developed by translating the aberrant region detection prob-
lem into segmentation or breakpoint identification problem of a sequential data.
On the other hand, for the second and the third tasks, it is difficult to incorporate
spatial correlation among probes because we have to deal with multi-dimensional
sequential data.

In the third task of detecting differentially aberrant regions, it is informative
if we could certify the statistical significance of the “difference”. In expression
microarray data analysis, statistical significance analysis and related multiple
comparison issue have been intensively studied6),7). It is possible to apply those
methodologies also to array CGH analysis if we ignore the spatial relationship
among probes and we are just interested in the difference in genomic regions
represented by each single probe. However, if we consider the spatial factor and
interested in regions consisting of multiple consecutive probes, the problem of
assessing their statistical significance comes with several difficulties.

At first, for regions consisting of multiple probes, we need to introduce multi-
variate test rather than univariate test (such as t-test, U -test etc.) for computing
the statistical significance in the region. Secondly, if we consider all possible con-
secutive regions in each of 22 chromosomes, the number of candidate regions
would be quite large. For example, the BAC array in Fig. 1 consists of 2,035
probes, and the number of possible candidate regions would be 141,452. It means
that in multiple-testing adjustment we need to work with huge amount of mul-
tiplicity of highly correlated test statistics (correlated because we consider many
overlapped regions). Finally, we need to introduce a multivariate statistic that is
independent of the dimensions of the data because we have to compare, for ex-
ample, a region corresponding to a single probe and a region consisting of entire
chromosome on an equal footing.

In this paper we propose an approach for the third task of detecting differen-
tially aberrant regions using nearest neighbor (NN) multivariate test. NN multi-

variate test is a simple but powerful multi-sample multivariate test, in which some
measures of nearest neighbor coincidence is used as a test statistic8),9). Although
there are many ways to quantify nearest neighbor coincidence, we use leave-one-
out cross-validation (LOOCV) error of NN classifier as our test statistic. To
understand why LOOCV error of NN classifier can be used as a multivariate test
statistic, consider, for example, a binary classification problem for a multivariate
two samples. If these two samples are differentially distributed, LOOCV error
of NN classifier would be small, while if these two samples are identically dis-
tributed, LOOCV error of NN classifier would be large. It suggests that LOOCV
error of NN classifier can quantify, in some sense, the difference between two or
more multivariate samples.

In the remainder of the paper, we will show that the aforementioned three
difficulties can be addressed (at least alleviated) with the use of NN multivariate
test. To demonstrate the effectiveness of our approach, we analyze BAC array
CGH data for 75 malignant lymphoma patients2),10),11). The rest of the paper is
organized as follows. In the next section, we formulate the problem of detecting
differentially aberrant regions in two/multi-samples of CGH arrays, and discuss
the aforementioned three difficult issues in more detail. In section 3, we introduce
NN multivariate test and clarify how it can address these three difficult issues.
In section 4, we analyze previously published array CGH data of 75 malignant
lymphoma patients and identify statistically significant differentially aberrant
regions. In addition, we describe an attempt to use the detected regions for
tumor classification task, in which the goal is to classify two lymphoma subtypes
based on array CGH data. Finally, we conclude this paper in section 5.

2. Problem Formulation

In this section we first formulate the problem of detecting differentially aberrant
region in two groups of CGH arrays. In order to simplify the description, we
restrict our attention to two-sample problems, but it can be straightforwardly
extended to multi-sample problems. After the problem formulation we discuss
the three difficult issues underlying the problem.

2.1 Formulation
Suppose we have N CGH arrays and they are from two distinct groups (or
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classes in binary classification terminology) C1 and C2. Let N1 and N2 be the
number of arrays in C1 and C2, respectively (i.e., N1 + N2 = N). Furthermore,
the number of probes in c-th chromosome is denoted as ℓc for chromosomes
c = 1, · · · , 22, and each probe in chromosome c is indexed by 1, · · · , ℓc. The log2-
ratio at the probe j in chromosome c of array i is denoted as xicj , for i,= 1, · · · , N ,
c,= 1, · · · , 22, and j = 1, · · · , ℓc. The class label of array i is represented as yi: if
array i is in C1, yi = 1, while if it is in C2, yi = 2.

To simplify the discussion, let us consider for a moment that the task of de-
tecting aberrant regions in chromosome c of array i, for which we have ℓc log2-
ratio signals xic1, xic2, · · · , xicℓc . As noted in the previous section, probes in
CGH arrays have spatial relationship because each probe is corresponding to
physical genomic DNA region. In aberrant region detection task we need to
investigate all possible sub-sequence of xic1, xic2, · · · , xicℓc . The total number
of sub-sequences is

∑ℓc

h=1 h = 1
2ℓc(ℓc + 1) because we have one sequence with

length ℓc (corresponding to the entire chromosome), two sub-sequences with
length ℓc − 1, · · ·, and, ℓc sub-sequences with length 1 (corresponding to sin-
gle probe). Hereafter, we denote the number of all possible regions in the entire
genome as M ≡

∑22
c=1

∑ℓc

h=1 h = 1
2

∑22
c=1 ℓc(ℓc + 1), and each region is indexed

by m = 1, · · · ,M . In addition, the set of index pairs (c, j) in region m is denoted
as Rm, and the number of probes in region m is written as |Rm|. In the case of
BAC arrays in Fig. 1, M = 141, 452.

2.2 Multivariate Test
To ensure the statistical reliability (such as p-values) of detected aberrant re-

gions, we need statistical significance tests. For each region Rm, m = 1, · · · ,M ,
we want to compute the statistical significance of the difference in the aberra-
tion patterns between group C1 and group C2. This problem is reduced to an
|Rm|-dimensional multivariate test for two samples {xicj}i∈{1,···,N |yi=1},(c,j)∈Rm

and {xicj}i∈{1,···,N |yi=2},(c,j)∈Rm
with sizes N1 and N2, respectively. In this

multivariate test, the null hypothesis is that all the N |Rm|-dimensional
vectors {xicj}i∈{1,···,N},(c,j)∈Rm

are independently and identically distributed
from a common |Rm|-dimensional multivariate distribution, while the alter-
native hypothesis is that the two samples {xicj}i∈{1,···,N |yi=1},(c,j)∈Rm

and
{xicj}i∈{1,···,N |yi=2},(c,j)∈Rm

are independently drawn from two different |Rm|-

dimensional multivariate distributions.
In statistics literature, parametric and nonparametric multivariate tests have

been studied. If we assume multivariate Normal distributions and location shift
difference in alternative hypothesis, we can use Hotelling T 2 test12). Hotelling
T 2 test is a multivariate extension of t-test and it has the largest power when
underlying assumptions are completely satisfied. Many multivariate distributions
(probably including ours) do not exactly follow multivariate Normal distributions.
In such cases, we can use nonparametric multivariate test. Many nonparametric
multivariate test statistics are defined based on distances between pair of data
points. For example,13) extended a class of univariate nonparametric tests to
multivariate one by constructing minimal spanning tree based on pairwise dis-
tances. Nearest neighbor test8),9),14) is also constructed under a similar concept.
We call these types of multivariate test as multivariate approach.

These multivariate tests are not frequently used in practical applications, and
a simpler approach (what we call univariate approach in contrast to multivari-
ate approach) is often adopted. For quantifying the difference between |Rm|-
dimensional two samples, one can, for example, compute average of |Rm| uni-
variate two-sample statistics. If ordinal two-sample t-test is used in this situ-
ation, a simple multivariate statistic is defined as TRm

= 1
|Rm|

∑
(c,j)∈Rm

tcj ,
where tcj is the t-value of the two univariate samples {xicj}i∈{1,···,n|yi=1} and
{xicj}i∈{1,···,n|yi=2}. Many other forms of univariate approach are possible. For
example,15) suggested to use the maximum t-statistics instead of the average,
i.e., in the above problem setup, the statistic of the region Rm is given by
TRm = max(c,j)∈Rm

tcj .
The advantage of such univariate approach is its simplicity both in interpreta-

tion and computation. If we use univariate approach for our task, we can first
compute the t-statistic of each probe, and followed by computing the multivari-
ate statistic for Rm, m = 1, · · · ,M , simply by averaging the t-statistics in Rm.
On the other hand, if the multivariate data has correlation among variables, uni-
variate approach is less powerful than multivariate approach. The computational
cost of multivariate approach is usually much larger than univariate approach.
Since we have a huge number of candidate regions M and we need to repeatedly
compute the set of statistics in label permutation operation (see next subsec-
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tion), computational burden in multivariate approach is a major limitation for
our problem. On the other hand, multivariate approach would have larger power
than univariate approach if the multivariate data has correlation among variables.

2.3 Multiple Testing
In differentially aberrant region detection problem, we have to consider a multi-

ple testing problem since the large number of statistical tests is performed simul-
taneously. In multiple testing correction, we need to take correlation structure
among test statistics into consideration. If the test statistics are independent
and the multiplicity (the number of tests) is not so large, we can use several
multiple testing correction procedures such as Bonferroni correction16). On the
other hand, if the test statistics have complicated correlation structure or the
multiplicity is large these off-the-shelf correction procedures are known to be too
conservative (less powerful). In our differentially aberrant region detection prob-
lem the multiplicity is huge (i.e., we have M tests) and many regions are highly
correlated because they are largely overlapped.

A practical and useful correction approach for large-scale and highly correlated
multiple testing problem is to use label-permutation. Label permutation is a
general procedure for estimating null distributions. In our problem setup, we first
shuffle the labels {yi}ni=1 randomly, and compute the multivariate statistic, say,
TRm , for each candidate region Rm, for m = 1, · · · ,M . This process is repeated
many times (for instance, 1000 times) so that the null distribution is estimated
with sufficient accuracy. An important advantage of label permutation is that the
null distribution is estimated without collapsing the correlation structure among
regions. On the other hand, label permutation procedure is computationally
quite demanding. If we repeat B permutation procedure in our problem, we
need to repeat the computation of a statistic MB times.

Large-scale and highly correlated multiple testing problem has been intensively
studied in expression microarray data analysis6),7). Multiple comparison free
measures frequently used in microarray studies are family-wise error (FWE) rate
and false discovery rate (FDR). FWE is the probability of finding at least one
false positive (committing at least one type I error), while FDR is the proportion
of the false positives (falsely rejected hypotheses) among all the positives (rejected
hypotheses). Using label permutation, both of FWE and FDR can be computed

without collapsing the correlation structure among test statistics.
2.4 Comparing Aberrant Regions with Different Lengths
In differentially aberrant region detection problem, we perform statistical test

of genomic regions with various different lengths. For example, in extreme case,
we need to compare on an equal footing the statistical significances of a genomic
region corresponding to a single probe and that consisting of the entire chro-
mosome. Therefore, we need to use a multivariate statistic that is comparable
among different sizes of regions. In other words, we need to introduce a multivari-
ate statistic that does not depend on the dimensionality |Rm| . Note that many
multivariate statistics are dependent on the dimensionality. For example, the null
distribution of the average t-statistic TRm = 1

|Rm|
∑

(c,j)∈Rm
tcj would be differ-

ent for different dimension |Rm|, i.e., the variance of the null distribution would
be smaller for larger regions. Note that a normalization or a standardization of
the different scale of statistics from different dimensional data is possible only
when each variable is independently and identically distributed or the correlation
structure is completely known in advance.

3. Nearest-Neighbor Multivariate Test

In this section we introduce nearest-neighbor multivariate test for detecting
differentially aberrant regions. As we described in the previous section, the sta-
tistical test for this problem should satisfy the following requirements:
( 1 ) The test should be able to incorporate correlation among probes.
( 2 ) The test statistic should not depend on the dimensionality of the length of

genome regions |Rm|.
( 3 ) The computational cost for computing the statistic should be moderate in

label permutation.
In the next subsection we will show that these requirements are satisfied with
the use of nearest-neighbor multivariate test.

3.1 Nearest-Neighbor Multivariate Test
For each region Rm, m = 1, · · · ,M , we compute the leave-one-out cross-

validation (LOOCV) error of k-nearest neighbor (k-NN) classifier using log2-
ratios {xicj}i∈{1,···,n},(c,j)∈Rm

. Roughly speaking, small LOOCV error indicates
that the region Rm is differentially aberrant between C1 and C2, while large
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LOOCV error suggests that the aberrant pattern in Rm is NOT so different
between the two groups. If we just want the ranking of differentially aberrant
regions, we can simply rank the M regions in the increasing order of LOOCV
error. However, if we want the statistical significances (p-value, FWE, FDR, etc.)
as well, we need to compute the null distributions of those LOOCV errors. As
discussed in the previous section, we use label permutation for estimating the null
distributions. Since we need to compute the k-NN LOOCV error many times,
if we naively implement it, the computational cost of the entire process would
be overwhelmingly large. We use a simple trick to efficiently compute the label
permuted k-NN LOOCV error in the following algorithm:

Differentially aberrant region detection by k-NN
Input: log2-ratios {xicj}i=1,...,nc=1,...,22,j=1,...,lc , labels {yi}i=1,...,n, the num-

ber of label-permutations B, the number of neighbors k, a distance function
d, a threshold for FDR (or FWE) θ, and the maximum number of aberrant
regions γ.

1-1: For each chromosome c = 1, . . . , 22, enumerate all possible regions
Rm,m = 1, . . . , M . For each region Rm,m = 1, . . . , M , create n-by-k
nearest-neighbor table Tm, and record the indices of the k “nearest” cases in
the i-th row of the table Tm, where “nearest” is measured by the distance
function d.

1-2: Compute the k-NN LOOCV error s∗m for each region Rm,m = 1, . . . , M ,
based on the labels {yi}ni=1. Set b = 1.

2: Permute the labels {yi}ni=1 at random and let those labels be {y(b)
i }ni=1.

Compute the k-NN LOOCV error s
(b)
m for each region Rm, m = 1, . . . , M ,

based on the labels {y(b)
i }ni=1. If b < B then b← b + 1 and go back to 1-2.

3: For each region Rm,m = 1, . . . , M , compute

FDRm =
∑B

b=1

∑M
m=1 I{s∗m ≤ s

(b)
m }

B
∑M

m′=1 I{s∗m ≤ s∗m′}
,

FWEm =
∑B

b=1

∑M
m=1 I{s∗m ≤ s

(b)
m }

B
,

where I{·} is the indicator function.
4: Select the regions whose FDRs (or FWEs) are less than the threshold θ. If

two or more overlapped regions are selected, select only the smallest one. If
more than γ regions are selected, keep only the top γ regions.

Output: (at most γ) differentially aberrant regions with FDRs (or FWEs) less
than θ.

In k-NN classification, we need to select the number of neighbors k and it often
largely affects its classification performances. On the other hand, when we use
k-NN for statistical testing, we can use the average of k-NN LOOCV error for
several ks, such as k = 1, 3 and 5.

3.2 Advantages of the algorithm
Nearest-neighbor method is a simple classification algorithm, but it often works

well in real world applications. For example, in tumor classification problem
using expression microarray data, it is reported that nearest-neighbor classifier
showed the best performance among many classification algorithms including
decision tree, support vector machine etc.17). It suggests that k-NN LOOCV
error would be effective for measuring the classifiability of each candidate region,
and it further means that our nearest neighbor test has large power to detect
the differentially aberrant regions (i.e., small type II error). Therefore, we can
say that our approach satisfies the first requirement 1) described in the previous
section.

In addition, the above approach also satisfies the second requirement 2) because
k-NN LOOCV error does not depend on the length of the region |Rm|. On the
other hand, a disadvantage of the LOOCV error is that it takes only a limited
number of discrete values. It means that the LOOCV error is sometimes too
granular to finely discriminate subtle differences, and many regions tend to have
identical LOOCV error score. In this case, we need to employ some heuristics
such as put priority on smaller regions.

Finally we emphasize the advantage of our approach for the third requirement
3). In general, the computational costs of multivariate approaches are larger
than the costs of univariate approaches, and thus the multivariate approach is
not suitable for the problem which has many candidates and requires many re-
sampling iterations. However, our method can alleviate the computational cost
using a simple trick. The computational cost of step 1 is rather larger because
we need to compute the k nearest-neighbors of n arrays for all the M regions.
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Therefore, the entire cost would be huge if we naively repeat the step 1 for each
label permutation. To alleviate this problem, we divide the step 1 into two steps:
step 1-1 and 1-2. Note that, in the step 1-2, we can compute the k-NN LOOCV
error s∗m in the order O(kn) if we use the nearest-neighbor table {Tm}Mm=1 which
is already computed in the step 1-1. Although some readers might think that
we have to repeat the steps 1-1 and 1-2 for each permuted labels {y(b)

i }, we do
not have to repeat the step 1-1 in each label permutation because we do not
use label information when computing the nearest-neighbor table in the step 1-1.
In other words, the nearest-neighbor table is invariant under label permutation.
Exploiting this fact, in each permutation, we only perform the step 1-2, and
thus the order of computational cost for each region amounts only to O(kn). In
our algorithm we need integer-type Mnk memory-space instead. This could be
improved both in memory size and computation efficiency if we use bit operation
in our implementation.

4. Application to array CGH data analysis

In this section we apply the differentially aberrant region detection algorithm
to previously published array CGH data set. Then we use the detected regions
for tumor subtype classification task.

4.1 Data set and prepossessing
In this experiment we apply our algorithm to 75 BAC CGH arrays taken from

75 lymphoma patients. The patient sample were collected and investigated in
Aichi Cancer Center2),11),19). Among 75 cases, 46 cases were diagnosed (by a
pathologist) as diffuse large B-cell lymphoma (DLBCL) and 29 cases were diag-
nosed as mantle cell lymphoma (MCL). The gene expressions of the 46 DLBCL
cases were profiled and 18 cases were estimated as activated B-cell type (ABC)
DLBCL and 28 cases were estimated as germinal center B-cell type (GCB) DL-
BCL11). In our experiments we conducted two studies. In the first study, the
goal is to detect differentially aberrant regions between 46 DLBCL cases and 29
MCL cases. In the second study, we aim to identify differentially aberrant regions
between 28 ABC subtype cases and 18 GCB subtype cases. Each array has 2035
BAC probes.

The log2-ratio signals in each array were standardized such that the median

takes 0. This standardization yields a small bias, i.e., arrays having many am-
plifications are biased downward and arrays having many deletions are biased
upward. To identify gain and loss aberrant regions individually, we analyzed
gain log2-ratio sequence and loss log2-ratio sequence separately. To setup gain
log2-ratio sequences, log2-ratios less than 0.1 values are replaced by a random
value in [0.0, 0.1] and loss log2-ratio sequences are made by replacing log2-rations
greater than −0.1 by a random value in [−0.1, 0.0].

4.2 Differentially aberrant region detection
The FDR threshold θ was set to be 0.0005 for the first DLBCL vs. MCL study,

and 0.005 for the second ABC vs. GCB study.
The number of label permutations B was set to be 1000. First we generated

the nearest-neighbor tables {Tm}Mm=1 in Step 1-1, and then calculated the set of
test statistics {s∗m}Mm=1 and their null versions {s(b)

m }M,B
m=1,b=1 in Step 1-2 and Step

2, respectively.
Using the estimated null distributions we estimated the FDR (or FWE) for

each of M regions, and those having FDRs (or FWEs) less than the threshold θ

were detected as differentially aberrant regions. Fig. 2 shows the detected regions
for (a) DLBCL vs. MCL study and for (b) ABC vs. GCB study.

These results indicate that our proposed method could detect both of small
and large regions. Fig. 3 shows log2-ratios in a detected aberrant region. In the
detected aberrant region (surrounded by solid lines in the figure), we can see that
the DLBCL cases show more gains (white) than the MCL cases. These results
demonstrate that our approach is a potential to find important genomic regions
for differentiating tumors.

4.3 Tumor classification using the detected regions
In this subsection we use the detected regions for tumor classification task.

To evaluate the classification performance, we used LOOCV. First we leave one
array out and detect aberrant regions using the rest of the arrays. Then we
estimate the posterior probability of the left-out array using the voting by the
detected regions. Each detected region has one vote, and the vote is determined
by k-nearest neighbor classification with the distance computed using the log2-
ratios in that region. For example, if 10 regions are detected as differentially
aberrant, and three regions vote to DLBCL and seven regions vote to MCL, then
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(a)DLBCL vs. MCL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

Chromosome

F
a

ls
e

 D
is

co
v

e
ry

 R
a

te

(b)ABC vs. GCB

Fig. 2 Detected aberrant regions: The Horizontal axis indicates chromosome and the vertical
axis indicates the value of FDR. Red lines show gain aberrant regions, while blue lines
show loss aberrant regions. Note that, FDRs of loss aberrant regions are indicated in
negative values, that is, −FDR.

the DLBCL probability is said to be 0.3 and the MCL probability is said to be
0.7.

We compared the classification performance with ADM18) and CLAC3). These
methods were proposed to identify aberrant regions for one sample. Therefore,
we first compute t-value of each probe from the two samples and they are used
as the inputs to ADM and CLAC. Note that these modified ADM and CLAC
are instances of univariate approach (see Section II). In this tumor classification
task, we set the FDR threshold θ to be 0.00125 for DLBCL vs. MCL study and
0.0125 for ABC vs. GCB study. Since ADM does not provide FDR, a significant
level of ADM is defined as the p-value with Bonferroni correction.

We measure the classification accuracy by the ROC curve and the AUC. The
results are shown in Fig. 4 and Fig. 5. We evaluate with k = 1, 3, 5 in the
classification process described above.

In DLBCL vs. MCL study, all the methods (ours, ADM and CLAC) show
excellent performances. On the other hand, in ABC vs. GCB study, the perfor-
mances of all the methods get worse compared with the first DLBCL vs. MCL
study. This result is related to the fact that the distinction between ABC and
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Fig. 3 Example of detected aberrant region (Chromosome 8): The smallest FDR region of
DLBCL / MCL array CGH data is indicated by a solid-line rectangle. The vertical
axis denotes BAC probes, while the horizontal axis denotes cases. Cases in the upper
side of the horizontal dot line are DLBCL patients while in the lower side of the line
are MCL patients. Cells with the greater log2-ratio values are shown in white color
and ones with the smaller values are shown in black.

GCB subtypes is still vague in medical/biological literature11). Comparatively
speaking, our method shows rather better performance than ADM and CLAC,
and the difference of the performance is more remarkable in ABC vs. GCB study.
From these results, our nearest neighbor multivariate approach has a potential
to find regions that differentiate the two or more diseases or subtypes.

5. Conclusion

In this paper we study the problem of detecting differentially aberrant regions
from two or multiple samples using nearest neighbor multivariate test. Our al-
gorithm has several advantages. First, the algorithm can deal with various sizes
of aberrant regions (from a single probe region to the entire genome region) in
a unified framework. Second, we can compute the multiple comparison free sig-
nificance measure such as FDR and FWE in a relatively small computational
cost. Finally, our algorithm is multivariate approach (see section II), and thus it
has a potential to incorporate spatial correlation among probes when detecting
the differentially aberrant regions. An application to 75 lymphoma CGH arrays
demonstrated the effectiveness of our approach.
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Fig. 4 ROC curve for DLBCL / MCL classification (k = 1, 3, 5): nearest neighbor
multivariate (left), ADM (center) and CLAC (right)
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Fig. 5 ROC curve for ABC / GCB classification (k = 1, 3, 5): nearest neighbor multivariate
(left), ADM (center) and CLAC (right)
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