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Network coordinates (NCs) enable the efficient and accurate estimation of
network latency by mapping the geographical relationship among all nodes to
Euclidean space. Many researchers have proposed NC-based strategies to re-
duce the lookup latency of distributed hash tables (DHTs). However, these
strategies are limited in the improvement of the lookup latency; the nearest
node to which a query should be forwarded is not always included in the con-
sideration scope of a node. This is because conventional latency improvement
strategies assign node IDs independent of the underlying physical network and
still have the possibility of detour routing. In this paper, we propose an NC-
based method of constructing a topology-aware DHT by Proximity Identifier
Selection (PIS/NC). PIS/NC constructs a logical ID space of a DHT from the
Euclidean space constructed by NCs; a node ID corresponds to the network
coordinate of the node. By doing this, the consideration scope of a node always
contains the nearest node, thus, we can expect a great reduction in lookup la-
tency. Unlike the conventional PIS strategy that poses unavoidable issues due to
uneven ID distribution, PIS/NC tries to moderate these issues by a simple op-
timization, provided by a PIS/NC stabilizer. The PIS/NC stabilizer detects an
uneven distribution of node IDs locally, and then recalculates some IDs so that
the unevenness is moderated. As case studies, this paper presents Canary and
Harpsichord, which are PIS/NC-based CAN and Chord, respectively. Simula-
tion results show that PIS/NC-based DHTs improve lookup latency. Under the
environment using the Transit-Stub model, where SAT-Match and DHash++
are only able to reduce the median lookup latency by 19% of CAN and 9% of
Chord, respectively, Canary and Harpsichord reduce it by 40% and 35%, respec-
tively. We also verify that the PIS/NC stabilizer moderates the non-uniform
distribution of node IDs.

1. Introduction

Network coordinates (NCs) 1)–8) are an emerging technology that allow us to
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estimate network latency on the Internet without explicitly communicating with
target nodes. NCs map the geographical relationship among all nodes participat-
ing in the system on a single coordinate space by assigning virtual d-dimensional
coordinates to each node. The Euclidean distance between any pair of coordi-
nates approximates the network latency between the corresponding nodes. Thus,
each node estimates network latency to other nodes by calculating the coordinate
distance if the communicating node knows the coordinate of the target node. NCs
work well on the real Internet. In fact, Azureus BitTorrent client 9), whose net-
work runs a million nodes, implements NCs as a plug-in. The usefulness of NCs
is demonstrated in an experiment which uses 10,000 nodes of the real Azureus
network 10).

There is still a need for more research on how to apply NCs to peer-to-peer
(P2P) applications, such as distributed hash tables (DHTs) 11)–17). Although
some studies 18)–20) improve the lookup efficiency of DHTs using NCs, they do
not make maximum use of NCs. Both PNS and PRS are limited in the improve-
ment of the lookup latency as long as node IDs are assigned randomly. In these
studies, NCs are used for Proximity Neighbor Selection (PNS) or Proximity Route
Selection (PRS) 21). For example, DHash++ 18) (based on Chord 16)) uses NCs
for PNS, a strategy in which each node chooses closer ones among some candi-
dates when building its routing table. Rhea, et al. combine Bamboo 14) (based on
Pastry 15)) and NCs for PRS 20), a strategy in which each node considers network
distance when it chooses a forwarding node from the candidates. Even if there
is a node very close to the destination on the physical network, it may not be
included in the forwarding candidates of the source. (The details are described in
Section 2.) As a result, the query detours to the destination node on the physical
network.

In this paper, we explore the possibility of using NCs for Proximity Identifier
Selection (PIS) 21). PIS is a fundamentally different strategy from PNS and
PRS. The essence of PIS is that the nodes which are near on the underlay
network are close to each other on the overlay network, too. To turn traditional
DHTs into PIS-based ones, we take a novel approach called Proximity Identifier
Selection with NCs (PIS/NC) which embeds NCs directly into the heart of the
DHT structure. In other words, each node ID is calculated from each node’s
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NC so that the resulting logical ID space of DHT approximates that of NC. By
doing this, nearby nodes in the NC space also become close to each other in the
DHT space. On such an ID space, DHTs naturally forward queries based on the
topology of the physical network.

To apply PIS to popular DHTs, PIS/NS improves three drawbacks of con-
ventional PIS approaches. First, since conventional PIS does not reduce lookup
latency very much, PIS/NS improves it more than the conventional PIS. Sec-
ond, PIS/NS avoids key/value transfers caused by the adjustment of node IDs.
Finally, PIS/NS uses a stabilizer that mitigates non-uniform ID distribution in
conventional PIS.

To demonstrate the efficiency of PIS/NC, we designed two PIS/NC-based
DHTs, Canary and Harpsichord. Canary combines CAN 13) and Vivaldi 2) (one
of the popular NCs) and Harpsichord combines Chord 16) and Vivaldi. Obviously,
PIS/NC is applicable to the DHTs using the d-dimensional Euclidean space as
their ID space, like CAN, because NCs approximate the latency by the Euclidean
distance. On the other hand, it seems difficult to apply PIS/NC to the other type
of DHTs using non d-dimensional Euclidean space such as Chord. However, sim-
ple techniques enable us to apply PIS/NC to non-Euclidean-space-based DHTs.
To map the d-dimensional space of NCs to the ring-shaped ID space of Chord,
Harpsichord constructs a space-filling curve on the space of NCs. Then, the
PIS/NC stabilizer moderates the non-uniform distribution of node IDs assigned
by a space-filling curve. As a result, Harpsichord reduces the lookup latency as
well as Canary.

Simulation results demonstrate that Canary and Harpsichord improve the
lookup latency versus existing DHTs. In a synthetic environment, the lookup
latency of Canary and Harpsichord are the lowest among typical PNS- or PRS-
based DHTs. Compared to CAN with SAT-Match, which is one of the conven-
tional PIS strategies, and DHash++, which is a PNS-based Chord, the reduction
ratios of Canary and Harpsichord are larger by 21 and 26 points, respectively.
To evaluate Canary and Harpsichord in a more realistic environment, we used
the dataset derived from PlanetLab nodes 22). In this environment, Canary and
Harpsichord show the lowest latency as well. Compared to SAT-Match and
DHash++, the reduction ratios of Canary and Harpsichord are larger by 20 and

12 points. We also show that a problem that PIS strategies have, i.e., the non-
uniform distribution of node IDs, can be moderated by a PIS/NC stabilizer in
these experiments.

The rest of the paper is organized as follows. Section 2 clarifies the design
challenges and describes related work. We explain our approach, PIS/NC, and
discuss the issues of PIS/NC in Section 3. Section 4 describes the details of
Canary and Harpsichord. We show the simulation results in Section 5, and
Section 6 concludes the paper.

2. Design Challenges and Related Work

2.1 Design Challenges
Many researchers have studied strategies to improve the lookup latency of

DHTs. Gummadi, et al. analyzed the effect of the overlay geometries used in
various DHTs and classified the strategies for lookup latency improvement with
underlay information into three categories 21). According to them, most of the
strategies are categorized into two types, PNS or PRS.
• Proximity Neighbor Selection (PNS) chooses the nodes to be kept in a node’s

routing table according to the metrics based on the underlay information.
• Proximity Route Selection (PRS) considers the underlay metrics when a node

chooses a forwarding node from its routing table to send a query to a partic-
ular destination.

Although PNS and PRS improve lookup latency to a certain level, unfortu-
nately, they have inevitable limitations of the improvement of lookup latency.
In PNS- or PRS-based DHTs, the nearest node to which a query should be for-
warded is not always included in the consideration scope of a node. Figures 1
and 2 show an example of such a case. Figure 1 illustrates a physical network
topology which consists of five nodes. Note that node C is a newcomer node and
its ID is 7, which is assigned randomly. Figure 2 illustrates a ring-shaped DHT
overlay like Chord 16) constructed on the physical network topology in Fig. 1.
When node A looks up C’s key 7, the destination of the query is C. Due to A’s
routing table, node A has to forward the query to node Q, which is a high-latency
node from A. Although PNS eventually adjusts A’s routing table to forward a
query whose destination is in the key range [7, 8) to node C, completing the pro-
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Fig. 1 An example of the underlay network which consists of five nodes.

Fig. 2 An example of the cases with which PNS and PRS strategies cannot deal.

cess takes some time due to the delay for the advertising C’s arrival. Meanwhile,
PRS cannot improve the lookup latency due to the routing protocol of the DHT.

To clear up the improvement limitations of the lookup latency, we focus on
another strategy, PIS.
• Proximity Identifier Selection (PIS) chooses nodes’ identifiers so that they

reflect their positions on the underlay.
PIS constructs a DHT whose overlay topology is correlated to the underlay topol-
ogy. In PIS-based DHTs, if a node is close to the destination on the overlay, it
is also close to the destination on the underlay. Therefore, it can improve the
lookup latency more than PNS and PRS. Figure 3 shows an example of PIS-
based DHTs on the physical network in Fig. 1. The topological relationship on
a PIS-based DHT space is based on the physical network topology. Since the

Fig. 3 An example of PIS-based DHTs.

Table 1 Qualitative comparison of design alternatives for topology-aware DHT.

Topology-
awareness

Key/value

transfers
Load balance

Fault
resilience

ID distribution

Original DHT × no
√ √

uniform

PNS & PRS low no
√ √

uniform

Conventional PIS low large × × non-uniform

PIS/NC
√

negligible moderate moderate moderately-uniform

nodes in USA, i.e., A, B, and C, are located close to each other on the overlay
network, A’s query for C’s key 3 is forwarded within USA and the lookup latency
is reduced significantly compared to the case illustrated in Fig. 2.

As many researchers have stated, there are several challenges posed by con-
ventional PIS approaches. Table 1 compares the properties between PIS/NC
and conventional approaches. There are three important drawbacks of PIS/NC.
First, PIS/NC should improve lookup latency more than conventional PIS ap-
proaches. Although PIS has the possibility to reduce lookup latency as much
as possible, conventional PIS approaches have a limitation in improving latency.
This is because conventional PIS uses an ad-hoc way or simple clustering to
approximate the distance among nodes on the physical network.

Second, we need a solid strategy to generate a topology-aware identifier for
each node. Conventional PIS-based DHTs use an ad-hoc method to assign a
topology-aware ID to a node. For example, with SAT-Match 23), a node periodi-
cally recalculates its ID and repeats to leave from and join in the DHT until the
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latency to nearby nodes is lowered enough. Such an ad-hoc strategy causes many
key/value transfers between nodes.

Finally, we have to make the ID distribution of PIS-based DHTs uniform and
as close to that of the original DHTs as possible. Conventional PIS makes dense
regions of nodes on the DHT overlay because it naively assigns close IDs to nodes
if the nodes are close to each other on the physical network. This unbalanced
ID distribution makes DHTs less load-balanced and fault-resilient. Unbalanced
ID distribution issue becomes more critical in non-Euclidean-space-based DHTs,
e.g., ring-shaped ones. In such DHTs, there are few bypasses for forwarding a
query because the overlay is one dimensional space. Therefore, many queries on
such DHTs tend to pass through a node whose managing key region is larger than
others and then, the node will become a hot spot, or at worst, a single point of
failure.

In what follows in this section, we discuss the existing strategies by classify-
ing them into three categories: PNS and PRS, conventional PIS, and the other
strategies called multi-layered DHTs.

2.2 PNS and PRS
Pastry 15) is one of the traditional topology-aware DHTs. In Pastry, each node

conducts PNS when it initializes and maintains its routing table. When a new
node joins Pastry, it sends a “join” message with the key equal to the node’s ID
to the closest node on the physical network. Then, it initializes its routing table
by obtaining the i-th row of its routing table from the i-th node encountered
along the route from the first contact node to the destination one. Therefore, all
routing table entries refer to a node that is near the present node on the physical
network among all live nodes with a prefix appropriate for the entry. However,
the improvement of lookup latency is limited due to the flexibility of selecting a
candidate node for each row; a prefix of a candidate must be appropriate for the
entry. Thus, an entry of a routing table will not always refer to the closest node.

In addition, a node in Pastry will forward a query on a detour path of the
physical network. The entries in the i-th row of a routing table are close to the
i-th node encountered along the route of the “join” message. However, they are
not always close to the destination of a query. Thus, a node will forward a query
to the high-latency node from the destination node of the query.

DHash++ 18) is a representative DHT for improving the lookup latency with
NCs. DHash++, which is based on Chord 16), takes PNS with Vivaldi 2). In
Chord, the i-th finger table entry of the node with ID a refers to the first ap-
pearance node in the ID-space range from a+2i to a+2i+1. On the other hand,
in DHash++, it refers to the node with the lowest latency, estimated by Vivaldi
coordinates, of up to the first x nodes in the i-th range. Average lookup latency
per hop becomes lower than that of original Chord. However, the improvement
of lookup latency is limited due to the limit of the number of candidate nodes
selected for each finger table entry; an ID of a candidate for the i-th entry must
be within the ID-space range a + 2i to a + 2i+1. Thus, DHash++ will forward a
query on a detour path, especially when it forwards to the lower row’s entry of a
finger table.

Rhea, et al. take PRS with NCs to improve the lookup efficiency of Bamboo 14),
which is a customized Pastry to grow tolerance to churn 20). It is true that PRS
strategy reduces communicating latency per hop, but it may have to sacrifice the
progress per hop on the logical space. As a result, it may take some extra hops
for a query to reach the destination node. Moreover, in Bamboo with PRS, the
candidate nodes will lessen as a query comes close to the destination. In addition,
it still has the latency improvement limitations of Pastry described above.

Kaune, et al. take PNS and PRS to improve the lookup latency of Kademlia 12)

using the metrics to estimate the underlay topology; the cluster underlay metric
or NCs 19). They modify the maintenance algorithm of buckets, which is the
routing table of Kademlia, so that the nodes close to each other on the physical
network are kept in the buckets of others. In Kademlia, the i-th bucket consists
of k nodes whose XOR distance from the owner of the bucket is i. Thus, this
solution has the same latency improvement limitations of DHash++ or Bamboo;
while a PNS candidate of i-th bucket is limited to the nodes whose XOR distance
is i, a PRS candidate is limited to k nodes of each bucket.

2.3 Conventional PIS
Ratnasamy, et al. proposed an overlay network of CAN which considers the

underlying network with landmark binning scheme 24). With this approach, each
node is labeled according to the positional relationship between itself and several
landmarks on the underlying network, and the same-labeled nodes are assigned
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nearby zones to each other. Thus, the overlay network of CAN roughly approx-
imates the physical network topology. However, the approximation accuracy of
landmark binning is not so high because it is possible that far apart nodes are
labeled the same bin. Moreover, this approach depends on the location of land-
marks. For example, if landmarks are positioned densely in a narrow region,
most of the nodes can be labeled the same bin.

SAT-Match 23) is an ad-hoc strategy for matching overlay with underlying net-
works. SAT-Match brings the overlay network close to the physical network by
repeatedly measuring the latency between nearby nodes. In SAT-Match, each
participating node periodically communicates with nodes which are reachable
within small k hops (TTL-k neighborhoods) and measures the latency from itself
to them. If there is a node which is close enough to itself on the underlying net-
work, it “jumps” to that node’s domain. “Jump” means that a node leaves its
domain, and then joins another domain. By repeating this, the overlay network
of SAT-Match approximates the underlying network. However, since SAT-Match
only considers the physical network topology in a limited scope on the overlay
network, there is a limitation for the effect. SAT-Match also increases key/value
transfers during its operation.

eQuus 25) is a PIS-based, locality-aware and ring-shaped DHT. eQuus improves
the lookup latency by clustering nearby nodes in the same “clique” in which node
IDs are the same to each other. Since eQuus does not consider the clique locations
on the physical network, it cannot always decrease the lookup latency, especially
when a query is relayed on more than one cliques.

2.4 Multi-layered DHTs
Multi-layered DHTs reduce the lookup latency by decreasing the number of

forwarding hops of a query. They decrease the number of forwarding hops so
that the average latency of each forwarding hop does not increase. To achieve
this requirement, they build some lower density ID spaces by clustering nodes.
eCAN 26), which is based on CAN, builds hierarchical CAN spaces which the node
clustering granularity is different from other layers. The coarser the clustering
granularity is, the more queries reach the destination by a few of hops on the
overlay. However, multi-layered DHTs do not always produce a notable effect.
For example, they negligibly reduce the lookup latency of a query to a nearby

one.
Coral 27) builds a multi-layered Chord or Kademlia by clustering the nodes close

to each other on the physical network. The diameter of a cluster is the maximum
desired round-trip time between any two nodes it contains. By using low-latency-
level clusters as possible, Coral allows a query to reach the destination node with
lower latency. Since Coral is one of the multi-layered DHTs, it also has the
latency improvement limitations like eCAN.

3. Proximity Identifier Selection with NCs

3.1 Overview
To clear up the improvement limitations of the lookup latency, we propose Prox-

imity Identifier Selection with Network Coordinates (PIS/NC). PIS/NC evolves
the traditional DHTs into PIS-based ones by embedding NCs directly into their
structures. In PIS/NC, a logical ID space of DHT is constructed from network
coordinates so that nearby nodes on a physical network are assigned node IDs
close to each other in the DHT logical space. PIS/NC greatly reduces the lookup
latency compared with not only the non-topology-aware DHTs, but also the ex-
isting topology-aware ones.

PIS/NC is different from conventional PIS strategies such as SAT-Match; it
constructs a logical ID space of a DHT based on the Euclidean space of NCs.
PIS/NC determines a node ID on the basis of its network coordinate. By doing
this, a network coordinate space is directly embedded into the heart of a logical ID
space of a DHT. Then, the overlay network topology of a PIS/NC-based DHT
reflects the geographical relationship of the nodes; low-latency communicable
nodes are close to each other on the logical ID space of a DHT, while high-
latency communicable ones are distant from each other on the space. Thus, the
forwarding path of a query on a PIS/NC-based DHT is a good approximation of
the path on the underlying network, i.e., the number of the query detouring on
the physical network reduces significantly.

To apply PIS/NC to traditional DHTs, PIS/NC has a conversion method from
a d-dimensional NC to a node ID on a DHT space. If the dimensionality of a
DHT space equals that of a NC space, PIS/NC straightforwardly converts the
NCs to the node IDs. If we want to use PIS/NC for other types of DHTs such
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as ring-, tree- and XOR-based ones, NCs have to be approximated into low-
dimensional vectors or scalar values by a mapping function such as space-filling
curves. In Section 4, we demonstrate the case studies of applying PIS/NC to
an Euclidean-space-based DHT and a ring-based DHT by using CAN 13) and
Chord 16), respectively.

3.2 PIS/NC Advancements
PIS/NC improves three important drawbacks of conventional PIS discussed

in Section 2. First, PIS/NC clears the improvement limitation of the lookup
latency of conventional PIS. Conventional PIS often assigns distant IDs to nearby
nodes and similar IDs to distant nodes. Unlike them, PIS/NC provides a nearly-
optimal topology-aware DHT. This is because PIS/NC builds a logical ID space
dependent upon an NC space.

Second, PIS/NC significantly reduces key/value transfers compared to conven-
tional PIS. Since NCs are mapped on an absolute space shared by all the nodes,
a node ID introduced by its NC can be also mapped on an absolute space. There-
fore, PIS/NC can assign a topology-aware ID to a joining node without key/value
transfers. Although PIS/NC may cause key/value transfers when the NCs are
significantly changed, some low-pass based filters 28) can reduce the frequency of
the transfers because they moderate the frequency of the movements of NCs.

Third, PIS/NC moderates the load-balance and the fault-resilience problems by
“PIS/NC stabilizer”. PIS/NC stabilizer makes the ID distribution moderately-
uniform as close to the original DHT as possible. To moderate the unbalanced
ID distribution, PIS/NC stabilizer adjusts a node ID so that the logical distance
from the node ID to the nearby nodes’ IDs. PIS/NC stabilizer modifies node IDs
so that the relative distance on the logical space among nearby nodes becomes
uniform. By repeating this operation, PIS/NC stabilizer makes unbalanced node
ID distribution uniform as much as possible, keeping the positional relationship
among NCs. Although PIS/NC stabilizer slightly increases key/value transfers,
it makes PIS/NC-based DHTs more load-balanced and fault-resilient. To make
a PIS/NC-based DHT more fault-tolerant, we can take other techniques such as
Glacier 29) and Phoenix 30).

Note that the frequency of key/value transfers increases as PIS/NC stabilizer
becomes more sensitive. Thus, we should carefully set the sensitivity of PIS/NC

stabilizer so that the key/value transfers caused by PIS/NC stabilizer can be
negligible. It is future work to find out the appropriate frequency of running
PIS/NC stabilizer for each application of PIS/NC-based DHTs.

3.3 Discussion
Although PIS/NC clears the critical issues of conventional PIS, PIS/NC still

poses several unavoidable issues of PIS. However, we think that the remaining
issues are not really matters for practical use if we carefully consider the scope of
application of PIS/NC. In this section we discuss the remaining issues of PIS/NC
and the scope of application of PIS/NC.

3.3.1 Number of Forwarding Hops
Since PIS/NC assigns a node ID based on the underlay topology, the number

of forwarding hops of a query in a PIS/NC-based DHT will be slightly larger
than that in the original DHT. In most of the traditional DHTs, the number of
forwarding hops is theoretically calculated, e.g., O(log(N)) in Chord and O(N1/d)
in CAN, where N denotes the number of nodes and d denotes the dimensionality
of the CAN space. PIS/NC-based DHTs cannot ensure that a query reaches the
destination in the theoretical number of hops. This is because the density of
the node distribution in a PIS/NC-based DHT becomes non-uniform due to the
underlay topology. Although PIS/NC stabilizer moderates the non-uniform ID
distribution of a PIS/NC-based DHT, this issue still remains to be unavoidable.

We think that most of P2P applications can accept the demerit of the increased
number of forwarding hops to get the merit of the lookup latency improvement.
To significantly improve the scalability and the availability, DHTs are often used
in a system not to require a strict service level agreement. Such a system needs
a method to reduce the lookup latency even if the number of forwarding hops
of several queries are increased. As described in Section 5, PIS/NC reduces
the lookup latency more than PNS strategy, while it increases the number of
forwarding hops a bit. Thus, PIS/NC-based DHTs can be used in most of P2P
applications in practical use. Besides, if you can, clustering nearby nodes reduces
the number of forwarding hops.

3.3.2 Security Threats
PIS/NC-based DHTs should take care of network security threats such as the

Sybil attacks 31). Since PIS/NC-based DHTs assign a node ID based on node’s
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NC, an attacker may maliciously maintain a part of the logical DHT space with
illegally-generated NCs. However, we believe that it would be difficult because
an attacker hardly guesses the network coordinate corresponding to the ID which
the attacker wants to generate. In addition, PIS/NC-based DHTs can improve
its security level by the encryption and the authentication of the IDs and NCs.

3.3.3 The Scope of Application of PIS/NC
PIS/NC is applicable to DHT-based systems which require maximum im-

proving the lookup latency rather than load-balanced and fault-tolerant quality.
PIS/NC reduces the lookup latency of DHTs than PNS and PRS, but PIS/NC
may still break some theory-based features of DHTs even if it improves the weak-
ness of conventional PIS. In particular, the ID distribution of PIS/NC-based
DHTs cannot always be supposed to be uniform because the ID assignment is
depend on the location of a node. Thus, PIS/NC is useful for P2P-based systems
which are deployed on wide area and require good responsiveness. For exam-
ple, PIS/NC is applicable to P2P-based file sharing services like BitTorrent and
P2P-based streaming services. This is because the clients on such a P2P-based
system tend to be distributed all over the Internet and require quick responses
to their queries for their desired files, music or movies.

We also suggest that PIS/NC is not applicable to the critical modules of a
system because PIS/NC slightly degrades the load-balanced and fault-tolerant
quality of DHTs. If you need such a quality, you should take PNS or PRS
strategies rather than PIS/NC.

4. Implementation

4.1 Overview
To demonstrate the effectiveness of PIS/NC, we design two DHTs; Canary and

Harpsichord, which are PIS/NC-based CAN and Chord, respectively. They use
Vivaldi coordinates when they construct the overlay networks of CAN or Chord.

Vivaldi 2) is one of the popular NCs and enables nodes to estimate the network
latency among them from their coordinate distance. Each node updates its own
coordinate based on a spring model with piggy-backing its usual communications
between others �1. When node i communicates with another node j and obtains
Cj and Lij , where Cj is the coordinate of j, and Lij is the measured link latency

between them, it updates its coordinate Ci according to the following formula,
Ci = Ci + δ ∗ (Lij − ||Ci − Cj ||) ∗ u(Ci − Cj)

where δ is a weighting factor of the coordinate movement. Ledlie, et al. improved
the accuracy and the stability of Vivaldi by some schemes such as Moving Per-
centile (MP) filter 28). They also verified the accuracy of Vivaldi by experiments
using the real a million-node BitTorrent overlay on the Internet 10).

CAN 13) and Chord 16) are well-known DHTs. In these traditional DHTs, each
node is assigned its own ID and a subset of the key space to manage randomly.
This means that the overlay topologies of them are independent from the underlay
ones. Therefore, the queries often detour geographically. On the other hand, in
PIS/NC-based DHTs, i.e., Canary and Harpsichord, the IDs and the management
domains of nodes are assigned on the basis of their Vivaldi coordinates. This
associates the positional relationship on the overlay with that on the underlay,
and results in the reduction of the detour routing.

4.2 Canary
Canary is a PIS/NC-based CAN. As the key space, CAN uses d-dimensional

Euclidean coordinate space. The whole coordinate space is divided into N zones,
where N denotes the number of nodes in CAN, and a zone is assigned to a node.
Routing from a source node to the destination node boils down to routing from
one zone to another in the Euclidean space. To build a PIS/NC-based overlay,
Canary directly maps Vivaldi coordinates of nodes to the d-dimensional Euclidean
space of CAN. Since Canary assures that the coordinates of nodes are contained
in each zone, the nodes managing adjacent zones are also close on the underlay
network. It reduces latency per hop and results in the significant reduction of
the total lookup latency. Figure 4 illustrates an example of Canary �2. In
this example, a query is forwarded from A to B via F on the overlay. The
forwarding path is significantly efficient from a point of view of the underlay.
This is because Canary provides a logical space which approximates the physical
network topology.

Canary implements PIS/NC stabilizer as follows. To fix the non-uniform dis-

�1 Height vector is not used.
�2 Although we let the dimensionality be two here to simplify, as described in Section 5, we

set it to three or six in experiments.
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Fig. 4 A forwarding path of a query on Canary network and its physical network.

Fig. 5 The coordinate modification by Canary’s PIS/NC stabilizer.

tribution of node IDs, Canary’s PIS/NC stabilizer assigns each node a modified
coordinate as a node ID instead of straightforwardly assigning the NC as neces-
sary. When a node joins into Canary, the node first obtains the coordinates of
the nodes nearby its NC and calculates the distance to the nearby nodes. If the
ratio of the distance to the farthest node and that to the closest node is quite
large, PIS/NC stabilizer assigns the node the coordinate of the centroid among
the three coordinates, i.e., the closest coordinate, the farthest one and its NC.
Figure 5 shows an example of the adjustment by Canary’s PIS/NC stabilizer.
The left figure illustrates an example of Canary without PIS/NC stabilizer. In

this case, newcomer E is assigned its Vivaldi coordinate straightforwardly. Then,
it obtains its zone from A. As a result, the size of E’s zone is very small whereas
that of B’s zone is quite large. The right figure illustrates an example of Canary
with PIS/NC stabilizer. PIS/NC stabilizer assigns E a coordinate (57, 48), which
is the centroid of A = (60, 75), B = (40, 10) and E’s NC = (70, 60). Compared to
Canary without PIS/NC stabilizer, the non-uniform distribution of node’s coor-
dinates and the size of node’s zones are moderated. In the prototype of Canary,
PIS/NC stabilizer runs if the ratio of the distance to the farthest nearby node
and that to the closest one becomes larger than two.

To adapt to the persistent changes of the underlay topology, Canary dynami-
cally modifies its structure as necessary. On the Internet, the underlay topology
occasionally changes over time due to such as generating or eliminating physical
links between routers. They would decrease the topology correlation gradually.
To prevent this, Canary adjusts zones according to the Vivaldi coordinate move-
ment. When a coordinate of a node protrudes its zone, the node adjusts its
zone so that it contains the new coordinate. Thus, Canary keeps high approxi-
mate accuracy constantly. In Canary, the frequency of transferring stored values
between zones is slightly larger than that in CAN. To reduce undesirably trans-
ferring stored values, we can employ a technique, such as update filter 28), to
moderate the frequency of zone adjustments.

To decrease unnecessary key/value transfers, Canary allows a zone to be a
complex shape when a node adjusts its zone to keep high correlation between
the overlay and the physical network, while CAN allows a zone to be only a
simple hyper-cuboid. If Canary confines a zone to be a simple hyper-cuboid
like original CAN, an adjustment for keeping high correlation indicates many
key/value transfers between not only an intruding and an intruded nodes but
also other adjacent nodes. To implement this, we introduce an area and a block
to replace a zone. An area is the entire domain of management for each node.
A block is a simple hyper-cuboid which composes an area. In other words, an
area consists of one or more blocks. A pseudo-code for Canary is shown in
Appendix A.1.

4.3 Harpsichord
Harpsichord is a PIS/NC-based Chord. Chord uses ring-shaped 160-bits ID
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Fig. 6 The generation of node IDs based on Vivaldi coordinates by using Hilbert curve in
Harpsichord.

space as the key space and assigns unique IDs to nodes at random. Each node
maintains its own successor list and finger table as the routing table. On the other
hand, in Harpsichord, each node generates its node ID on the basis of its NC. To
map a d-dimensional NC to an ID on the ring-shaped space of Chord, Harpsichord
uses a Hilbert curve 32), which is one of the popular space-filling curves. According
to the m-th d-dimensional Hilbert curve (m is the approximation degree of Hilbert
curve), the whole d-dimensional coordinate space is divided into 2md regions.
Each region is assigned its region ID, which is md-bits binary. A node belonging
to a region is assigned a node ID whose prefix is the region ID. The lower bits of
the node ID is assigned randomly. Figure 6 shows an example of the conversion
from a 2-dimensional coordinates to a scalar ID by the 1st Hilbert curve. In
this example, the nodes indicated by a sphere are assigned IDs whose prefixes
are “00”. Similarly, the nodes indicated by a square, a triangle and a star are
assigned IDs whose prefixes are “01”, “10” and “11”, respectively. As a result,
Harpsichord nodes reflect their NCs into their IDs.

Harpsichord implements PIS/NC stabilizer as follows. If the ratio of node’s
logical distance to its predecessor and that to its successor becomes larger, the
node replaces its ID with the new one where the logical distance to the predeces-
sor equals to that to the successor. By repeating this operation for each node,
unbalanced ID distribution will be fixed. Figure 7 shows an example of the

Fig. 7 The moderation of the non-uniform ID distribution by Harpsichord’s PIS/NC
stabilizer.

ID modification. B replaces its own ID “00111” with the modified one “01010”,
which is the mean value of the ID of A (i.e., B’s predecessor) “00110” and the
ID of C (i.e., B’s successor) “01110”. In the prototype of Harpsichord, PIS/NC
stabilizer runs if the ratio of the distance to the predecessor and that to the
successor becomes larger than two.

Harpsichord takes a simple method to deal with permanent changes of the
underlay topology. If the coordinate of a node intrudes into another region of
an NC space, the node leaves from and rejoins in Harpsichord. Unlike Canary,
Harpsichord does not need a complex method for the movements of NCs because
the effect of node ID movements is intrinsically restricted to logically adjacent
four or more nodes in ring-based DHTs.

5. Experiments

We conducted two experiments to demonstrate that PIS/NC reduces the lookup
latency and imposes the weak points of conventional PIS. We compared the
improvement degree of lookup latency and the weak points between PIS/NC and
other strategies, i.e., PNS (DHash++ 18)) and conventional PIS (SAT-Match 23))
from two perspectives, i.e., the absolute value and the relative error. In addition,
we compared how PIS/NC-based DHTs change the features of each base DHT
from two perspectives, i.e., the number of forwarding hops and the management
domain size. We also evaluated PIS/NC without the PIS/NC stabilizer in order
to verify its effect.
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5.1 Evaluation Methodology
To evaluate PIS/NC, we built Canary and Harpsichord on Overlay Weaver 33),

a toolkit that enables a structured overlay network to be easily constructed and
its behavior to be emulated. We tested six DHTs, i.e., Canary, Harpsichord,
CAN with SAT-Match, original CAN, DHash++, and original Chord, in two
different environments, synthetic and real. In each environment, we used the
Transit-Stub (TS) model 34) and PlanetLab nodes 22), respectively. Under these
environments, each node sends lookup queries to random targets. We measured
five key metrics.
• Lookup latency, which shows the delay time for a query to reach the destina-

tion node. The lower the lookup latency is, the better it is.
• Relative error, which is relative error between the actual lookup latency and

the ideal lookup latency. It shows the efficiency of forwarding queries on
overlay networks. Relative error is calculated by (Lactual − Lideal)/Lideal,
where Lactual is the latency it takes for a query to reach the destination node,
and Lideal is the minimum latency from the source node to the destination
node on the underlay. The more the relative error approaches zero, the better
the forwarding efficiency is.

• Number of hops, which is the number of forwarding hops for a query to reach
the destination node. Its distribution shows one of the features of DHTs. If
the distribution of an enhanced DHT is different from that of its base DHT,
the enhanced DHT breaks the complexity order of forwarding hops of the
base DHT. Basically, the lower the number of hops, the better it is.

• Key domain size of each node, which is the size of a key space subset man-
aged by each node. It indicates the degree of load-balance. The smaller the
variation of the size, the more balanced the load for lookups among nodes is.

• Total transfered key range, which is the sum of the transfered key range
when participant nodes reconstruct thier management domains. This metric
is aimed at Canary (with or without the PIS/NC stabilizer) and SAT-Match
because its purpose is to show that the frequency of key range adjustments
of PIS/NC is more moderate than that of a heuristic strategy such as SAT-
Match.

In these experiments, the initial Vivaldi coordinates of nodes are calculated on

Fig. 8 The results of lookup latency with TS model.

the basis of GNP 4). The parameters of the MP filter (history window size h and
percentile p) are configured h = 4, p = 25. The approximation degree m of the
Hilbert curve in Harpsichord is configured m = 1.

5.2 Transit-stub Model
To evaluate and compare PIS/NC-based DHTs and other ones, we prepared

TS model nodes, which represents a network as a two-level hierarchy of routing
domains, i.e., transit domains interconnecting lower-level stub domains. To gen-
erate a TS topology, we assigned the parameters as follows: 228 transit domains,
5 transit nodes per transit domain, 4 stub domains attached to each transit node,
and 2 nodes in each stub domain. We selected about 900 nodes from about 9,000
nodes. With this model, we tested each DHT operating 70,000 lookups. Although
the network latency between nodes does not change during this experiment, the
coordinate of each node moves in accordance with the Vivaldi algorithm. We set
the dimensionality of the Euclidean coordinate space to three.

Figure 8 shows the lookup latency in the form of a box-and-whisker diagram.
The crossbar in each box indicates the median. This figure shows that PIS/NC-
based DHTs reduce lookup latency compared with not only their original DHTs
but also a conventional PIS (SAT-Match) and PNS-based DHT (DHash++).
The median latency of Canary and Harpsichord are reduced by 40% and 35%
from their base DHTs; CAN and Chord, respectively. These reduction ratios
are higher than those of SAT-Match (19%) and DHash++ (9%), respectively.
Without the PIS/NC stabilizer, the reduction ratios become better because the
PIS/NC stabilizer slightly degrades the approximation accuracy of the underlay.

Figure 9 shows the cumulative distribution function (CDF) of the relative
error. The x-axis is log scale. These graphs compare the lookup latency from
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Fig. 9 The results of relative error of lookup latency with TS model.

Fig. 10 The results of # hops with TS model.

another perspective, i.e., forwarding efficiency. They show that the relative error
of PIS/NC-based DHTs is less than that of other DHTs. This means that Canary
and Harpsichord forward queries with a higher degree of efficiency than others.
Compared between the median, they are 3.03 and 2.28 in Canary and Harpsi-
chord, respectively, while they are 5.61 and 3.95 in SAT-Match and DHash++,
respectively.

Figure 10 shows the CDF of the number of forwarding hops. From these
graphs, we can see that the distribution of forwarding hops of SAT-Match,
DHash++, and Harpsichord are scarcely different from each base DHT, i.e.,
CAN or Chord. In contrast, the distribution of Canary is different from that of
CAN. In CAN, most of the hops are in the range from 5 to 15. On the other

Fig. 11 The results of the distribution of key domain sizes with TS model.

hand, in Canary, almost all the hops are within 10. This result means that Ca-
nary breaks the complexity order of forwarding hops of CAN. This is because
CAN and Canary use different ways to divide the management domains. While
CAN divides a zone into halves, Canary divides an area at the center of the
coordinates. Therefore, in Canary, the number of neighbors tends to be larger
than that in CAN. As a result, a node in Canary can access other nodes within
less hops than CAN.

Figure 10 also shows that the number of forwarding hops are very widely dis-
tributed in Canary without the PIS/NC stabilizer, even though a node has many
neighbors. While 30% of lookups are completed within 5 hops, 20% of them take
more than 15 hops. This is because the coordinates are not distributed uniformly
when the PIS/NC stabilizer does not run. Thus, there are some spots on which
many nodes lie densely. In such spots, many tiny zones would be produced.
Therefore, if a query passes through such a spot, it tends to take more hops than
in CAN. Since the non-uniform distribution of the coordinates is moderated,
such an increase in forwarding hops does not occur in Canary with the PIS/NC
stabilizer enabled.

Figure 11 shows the distribution of the key domain size in the form of a
box-and-whisker diagram. The values in the diagram are normalized, setting
the value of the median in CAN and Chord as 100, and the horizontal axis is
a log scale. These graphs show that the PIS/NC stabilizer moderates the load-
balancing issue. When the PIS/NC stabilizer runs, both Canary and Harpsichord
diminish the non-uniform distribution of key domain size of nodes. On the other
hand, Canary without the PIS/NC stabilizer generates many tiny zones and a
few vast ones. As a result, several nodes which manage such vast zones have to
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Table 2 The sum of the transfered key range during the experiment with TS model
(normalized).

Canary Canary w/o stb. SAT-Match

43.3 46.2 100.0

Fig. 12 The results of lookup latency with PlanetLab.

deal with a large number of queries.
Table 2 shows the sum of the transfered key range on the Euclidean space

between nodes of Canary (with or without the PIS/NC stabilizer) and SAT-
Match during the experiment. The values are normalized, setting the value in
SAT-Match as 100. The total transfered key range of Canary, even if the PIS/NC
stabilizer does not run, is less than half of that of SAT-Match.

5.3 PlanetLab Data Set
To evaluate PIS/NC-based DHTs and other ones in a real network environment,

we used the latency measurements from 105 PlanetLab nodes between September
4th and 22nd, 2008 as our simulator’s delay matrix. With this data set, we tested
each DHT operating 190,000 lookups. In this experiment, the network latency
between nodes changes over time based on the measurement data of PlanetLab
nodes. We set the dimensionality of the Euclidean space to six.

Figure 12 shows the lookup latency in the form of a box-and-whisker diagram.
This figure shows that Canary and Harpsichord forward the queries with lower
latency than not only their base DHTs but also the existing enhanced ones on the
Internet as well. Compared with the reduction ratios of the median from each
base DHT, those of Canary and SAT-Match are 43% and 23%, respectively. And
those of Harpsichord and DHash++ are 20% and 8%, respectively. Intriguingly,
Harpsichord without the PIS/NC stabilizer increases the median lookup latency.

Fig. 13 The results of relative error of lookup latency with PlanetLab.

Fig. 14 The results of # hops with PlanetLab.

This is because some high latency nodes are forced to manage the large key ranges
due to the non-uniform distribution of the NCs.

Figure 13 shows the relative error of the DHTs in CDF. PIS/NC-based
DHTs forward queries more efficiently than the existing DHTs. Canary with
the PIS/NC stabilizer shows better results than not only original CAN but also
SAT-Match; about one-quarter of all the queries are forwarded on almost the ideal
path. When the PIS/NC stabilizer does not run, Canary shows more remarkable
results; 35% of all the queries are forwarded on almost the ideal path. Due to
the unbalanced ID distribution and the low number of nodes, many queries reach
their targets within a few hops in Canary without the PIS/NC stabilizer.

Figure 14 shows the number of hops in CDF. Unlike the experiment using
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Fig. 15 The results of the distribution of key domain sizes with PlanetLab.

Table 3 The sum of the transfered key range during the experiment with PlanetLab
(normalized).

Canary Canary w/o stb. SAT-Match

17.9 22.4 100.0

the TS model, Canary with and without the PIS/NC stabilizer are superior to
other DHTs in terms of the number of hops. This would be because there are few
spots which are densely-packed with nodes. Thus, the increase of hops is curbed
in this experiment.

Figure 15 shows that the distribution of the key domain size in the form of a
box-and-whisker diagram. In a real environment, Canary and Harpsichord with
the PIS/NC stabilizer diminish the non-uniform distribution greatly. On the
other hand, the non-uniform distribution is remarkable in Harpsichord without
PIS/NC stabilizer. Compared with Chord, the median is one-tenth of that and
the maximum is more than six times larger. These results suggest that most
of the nodes manage small key ranges and a few nodes are forced to manage
extremely large ones and will become hotspots.

Table 3 shows the sum of the transfered key range between nodes of Canary
(with or without PIS/NC stabilizer) and SAT-Match. As well as the experiment
with TS model, the values are normalized, setting the value in SAT-Match as
100. The total transfered key range of Canary is around one fifth of that of
SAT-Match.

6. Conclusion

We propose a novel approach, called PIS/NC, to improve lookup latency in

DHTs. PIS/NC embeds NCs into the heart of traditional DHTs. By using
PIS/NC, we can improve the performance of traditional DHTs. PIS/NC also
clears three critical issues of conventional PIS by using NCs and simple optimiza-
tions. For our first attempt, we designed Canary and Harpsichord to demonstrate
the possibility of reducing the lookup latency of DHTs. By embedding Vivaldi
coordinates in the mapping spaces of CAN and Chord, we integrated the physical
link latency into the overlay networks. Simulation results demonstrate that the
lookup latency of Canary and Harpsichord are the lowest among all prepared
DHTs. Compared to original CAN and Chord, Canary and Harpsichord reduce
the median lookup latency by 40% and 35%, respectively. The results also show
that the degree of improvement is larger than those of SAT-Match or DHash++.
For future work, we plan to apply PIS/NC to actual applications.
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32) Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück, Mathe-
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Appendix

The pseudo-code of Canary and Harpsichord is shown below.

A.1 Query Message Handler of Canary
// At server i1

if i receives a query message from node j then2

Get Lij , Cj , and Ej from the query3

// Lij is the latency between i and j4

// Cj is the Vivladi coordinate of j5

// Ej is the Vivaldi error of j6

Update its own Vivaldi coordinate based on the Vivladi algorithm using7

Lij ,Ci,Cj , Ei, Ej8

// Begin of PIS/NC stabilizer9

l1 = ||Ci − n’s ID ||10

l2 = ||Ci − f ’s ID ||11

// Note, Ci is the updated coordinate12

// n and f denote the nodes whose coordinate distance from i are nearest13

or farthest in the neighbors of i, respectively14

if l1/l2 > T1 then15

// T1 is a threshold to determine whether a node ID should be modified16

Change i’s ID to the centroid of n’s ID, f ’s ID, and Ci17

else18

Set i’s ID to Ci19
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end if20

// End of PIS/NC stabilizer21

if i’s ID is out of i’s area then22

for all neighbor k do23

if k’s area contains i’s ID then24

Send a request message of dividing are to k25

Receive the divided are from k26

if the divided one is adjacent to i’s area then27

Marge both areas28

else29

for all block b do30

Assign b with a neighbor node whose area is adjacent to b31

end for32

Set the divided area to i’s area33

end if34

end if35

end for36

end if37

Choose a next node based on the CAN protocol38

Forward the query to the netx node39

end if40

A.2 Query Message Handler of Harpsichord
// At server i1

if if i receives a query message from node j then2

Get Lij , Cj , and Ej from the query3

// Lij is the latency between i and j4

// Cj is the Vivladi coordinate of j5

// Ej is the Vivaldi error of j6

Update its own Vivaldi coordinate based on the Vivladi algorithm using7

Lij,Ci,Cj , Ei, Ej8

if ||Ci − Cp|| > T2 and ||Ci − Cs|| > T2 then9

// Note, Ci is the updated coordinate10

// p and s denote i’s predecessor and successor, respectively11

// T2 is a threshold to determine whether a node should leave and rejoin12

to the Harpsichord network to change its node ID to be appropriate to13

the topology of the underlay network14

Choose a next node based on the Chord protocol15

Forward the query to the next node16

Once leave, and rejoin to the Harpsichord network17

return18

end if19

// Begin of PIS/NC stabilizer20

l1 = ||i’s ID −p’s ID||21

l2 = ||i’s ID −s’s ID||22

if max(l1/l2, l2/l1) > T3 then23

// T3 is a threshold to determine whether a node ID should be modified24

Change i’s ID to the mean of p’s ID and s’s ID25

end if26

// End of PIS/NC stabilizer27

Forward the query to the next node28

end if29
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