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1.  Introduction 

Search is an essential function of mobile robot(s). A general 

aim is to maximize the chance of finding targets under certain 

criteria, such as total time elapsed or traveled distance. If the 

probability distribution of the targets is known, it is possible to 

calculate and employ certain optimal strategies [1][2]. However, 

if it is unknown, the problem can be seen as how to adapt and 

choose the best random search strategy based on recent findings, 

as different strategies may provide different chances to find the 

targets.  

In realizing simple yet adaptive behavior, biological creatures 

are often considered as inspirational resources. In fact, in nature, 

ranging predators do random search as they have to make 

foraging, search for foods, decisions with little, if any, 

knowledge of present resource distribution and availability [3]. 

Amazingly, in studies of animal foraging, various kinds of 

creatures seem to show effective random search with proper 

statistical properties. In relation with this, in [4], a general 

question of what is the best statistical strategy to optimize a 

random search is addressed. It is shown that for sparse targets, 

the number of targets found versus the traveled distance, is 

maximized when the flight lengths, the moving length between 

subsequent change of direction, follow power law distribution 

with a heavy tail, a characteristic of Levy distribution. This 

specialized random walk with power law trajectory, called the 

Levy flight or to be more exact Levy walk, receives many 

attention in the literatures [3][4][5][6].  

However, Brownian walk, another common random walk 

model where the distribution is not heavy tailed, is not a null 

model which should be improved. Instead, in [5] it is shown that 

while Levy walk is beneficial for a search with scarce, smaller 

and slower targets, Brownian walk can be more useful for certain 

opposite conditions. Furthermore, even Levy walk already 

alternates between extensive and intensive search, a simple 

switching rule from Levy to Brownian walk to exploit the current 

area once a target is find, is shown to be beneficial for one 

dimensional, patchy-like distribution [6].  

Researches about random search do exist in mobile robot 

literatures [7][8]. However, none seems to really concentrate on 

how to realize a simple searching behavior, based on simple 

design, yet can properly adapt the statistical properties of the 

search to effectively cope with unknown, possibly complex, 

target distribution. 

 

 

 

 

The aim of the research is to realize such adaptive random 

searching behavior, taking inspiration from the nature. We are 

particularly interested in random power law trajectory found in 

bacteria, as the simplest creature. Our approach is to implement 

the phenomena based on “Yuragi”, or biological fluctuation. We 

will show that based on this simple framework, the robot will be 

able to perform bacterial based power law random search, a Levy 

walk statistic. Furthermore, it will also be able to switch to 

Brownian walk based exploitation once a target is found. This 

adaptive switching between extensive search and exploitation is 

being conducted in a patchy target distribution setting.  

The organization of the paper is as follow. First, we will 

explain about power law trajectory found in biological creatures. 

After that, we will explain “Yuragi” or biological fluctuation and 

how an adaptive power law searching behavior can be realized 

based on it. Simulation experiments are performed to confirm the 

effectiveness of our approach. Therefore, we will explain about 

the experiment setup and condition, before showing the result. At 

the end, we will discuss the conclusion and mention some future 

works. 

2.  Power Law Trajectory in Biological Creatures 

2.1 Levy Walk: A Power Law Trajectory 

The term Levy flight is used to describe a specialized random 

walk in which the move steps are drawn from a probability 

distribution with a power-law tail [3][4]: 

 

with 1<µ<3, and l  is the flight length. In other word, the random 

walk will have a random power law trajectory. Sums of those 

flight lengths converge to a Levy stable distribution. For µ≥3, the 

sums converges to a Gaussian distribution due to the Central 

Limit Theorem, thus we recover Brownian walk. The case of µ≤1 

does not correspond to distributions that can be normalized.  

The trajectory of a Levy flight comprises of walk clusters’ of 

short flight lengths with longer reorientation jumps between them. 

This pattern is repeated across all scales, with the resultant scale-

invariant clusters creating trajectories with fractal patterns. 

However, to be more exact, a more technically correct term is 

actually Levy walk: essentially means Levy flight with time cost 

that depends on the flight lengths [9].  

In [9][10][11], it is shown that trajectory of ranging animals 

from marine predators, fruit flies and spider monkeys fits this 

Levy walk trajectory. More amazingly, creatures as simple as 

zooplankton switch from Brownian to Levy walk as the resource 

availability changes [12]. However, the simplest creature that 

ever shows a power law statistic in its moving forward 

movement is bacteria [13][14].  
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The underlying mechanism on how such trajectory is 

generated in biological creatures is also considered as interesting 

topic. For example, as will be explained more, in bacteria, a 

Gaussian, internal protein fluctuation is a possible cause [14]. In 

higher level animals such as spider monkey, memory about the 

target locations is a more relevant explanation [11]. 

Mathematically speaking, in order to create a trajectory with 

statistical property explained by (1), one can of course sample a 

Levy stable distribution. However, it is not the only way. For 

example, in [15], it is explained that fractional Brownian motion, 

a generalized form of Brownian motion, can also be used to 

create such trajectory. In [5], a transformation method is used to 

create the flight length random variables from uniform 

distribution.   

In this paper, we simply use the term “Levy walk” to describe 

such observed heavy tailed power law trajectory, regardless of 

the underlying process that generates it. 

2.2 Levy Walk in Bacteria 

In bacteria, such as Escherichia coli, the motion can be 

characterized as a sequence of smooth-swimming runs, 

punctuated by intermittent tumbles that effectively randomize the 

direction of the next run [16]. These two motions can be called 

the “swimming” and the “tumbling” mode, as shown in Fig. 1 

(top left). The probability that a smooth swimming E. coli cell 

will stop its run and tumble is dictated by measurement of 

attractant chemical gradient in the environment.  

E. coli are only a few microns long so they are unable to 

measure the gradient by comparing head-to-tail concentration 

differences, but use a kind of memory to compare current and 

past concentration. When the bacterium perceives conditions to 

be worsening, the tendency to tumble is enhanced. Conversely, 

when it detects that the condition, i.e. the attractant chemical 

concentration, is improving, tumbling is suppressed and it keeps 

running. As a result, when the bacterium runs up a gradient of 

attractant, it will do chemotaxis, a biased random walk toward 

the source of the attractant. In the absence of this gradient 

attractant, the bacterium will simply do random walk. This 

behavior is shown in top right figure of Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently,   unlike   the    conventional    expectation    that   the 

swimming mode duration of  E. coli  follows  Poisson-like  

distribution in absence of attractant, power law distribution is 

found [13]. Furthermore, in [14] a possible cause is explained. As 

illustrated in bottom center figure of Fig.1 (bottom center), it can 

be modeled that the switching probability between swimming 

and tumbling mode is affected by certain energy “barrier” whose 

level keeps changing due to fluctuation of certain protein inside 

the bacteria. If this protein fluctuates with long correlation time, 

such random power law trajectory in absence of attractant, a 

Levy walk, can be generated. 

3.  Yuragi-based Searching Behavior  

3.1 The Principle  

“Yuragi” is a Japanese word for biological fluctuation. It is 

used by Kashiwagi et al [17] to explain bacteria adaptation to 

environmental changes by altering their gene expression. This 

gene expression is controlled by a dynamical system with some 

attractors, and the model can be represented by Langevin 

equation as: 

 

 

 

 

 

 

where x and f(x) are the state and the dynamics of the attractor 

selection model, with f(x) can be designed to have some 

attractors in U(x). ε is the noise term. A is a variable called 

“activity” which indicates the fitness of the state to the 

environment. From the equation, f(x)×A becomes dominant when 

the activity is large, and the state transition approaches 

deterministic. When the activity is small, ε becomes dominant, 

and the state transition becomes more stochastic. The activity is 

therefore designed to be large when the state is suited to the 

environment and vice versa.  

This framework introduces many design possibilities, but here 

we concentrate on realizing the following searching behavior. 

3.2 The Realized Searching Behavior 

In order to implement the “Yuragi” equation in (2) for 

realizing bacterial based Levy walk, the first step is to properly 

choose the state of the attractor selection model. To explain the 

bacterial movement, one can draw a probabilistic state machine 

shown in Fig. 2 (left). Here, “P” is the probability to keep on 

swimming. In other word, the probability to switch from 

swimming to tumbling mode is 1-P. For simplification, the 

probability to switch from tumbling to swimming mode is simply 

set as 1. This means that after tumbling, the robot always switch 

to swimming mode at the next time step. The swimming mode 

defined as moving one unit forward, while tumbling means 

changing direction randomly.        

Levy walk trajectory supposes to arise when the probability of 

switching between the two states fluctuates with long correlation 

time [14]. Therefore, a natural choice for the state of attractor 

selection model is P or 1-P. Here, we choose P as the state.  

 

 

 

 
Fig.1 Description of bacterial movement.                                                                        

Top left: swimming and tumbling mode;                                                   
Top right: when there is attractant, bacteria will do “chemotaxis” 

toward the source, when there is none, it will simple do random walk;                         

Bottom center: the probability to switch between the two modes 

depends on energy “barrier”, whose level fluctuated by certain protein  
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To design the dynamic of P based on (2), we employ a 

unimodal potential function and define the dynamic of P as: 

 

 

 

 

The first term represents slow adaptation toward a preferred 

value of a, which corresponds to the attractor. The noise term, 

ε, is zero mean Gaussian white noise, representing the stochastic 

driving force. τx is the time constant, and a gain k decides the 

time scale. A small value of k means a long time scale, or long 

correlation time, and vice-versa. The (top/bottom) figure of Fig.2 

shows how the potential U(P) should look like with a 

(small/large) value of k.  

Based on this design, it is assumed that two kinds of searching 

behavior can be realized:  （1）Non-adaptive search type. In this design, the activity is 

simply kept constant, not a function of sensory input. The 

shape of the potential and therefore the time scale does not 

change. With a long time scale, supposedly Levy walk 

trajectory with certain power law exponent, “µ”, will arise. （2）Adaptive search type. In this design, the activity is a 

function of sensory input. When a target is not found, the 

shape of the potential should resemble Fig. 2 (top right). 

However, once a target is found, the activity should be high, 

the shape of the potential resembles Fig. 2 (bottom right), 

supposedly reduces the correlation between consecutive 

swimming modes. When this happens, the Levy walk 

supposes to switch to a usual, less correlated, random walk. 

Here, the activity function can be summarized in equation 

(4) and (5), with a minimum value of the activity is 1, and   

0<C<1. Anytime a target is found, F will be triggered to a 

large value. By employing such function, the correlation 

time will be reduced once a target is found and gradually 

increases to the original value, if no more targets are found. 

 

 

 

 

 

 

4. Simulation Experiments  

4.1 Experiment Setup and Conditions  

In order to verify the effectiveness of the method, a simulation 

experiment was conducted. Fig.3 shows the examples of the 

resulting trajectory. The size of the area is 640x480 units. The 

starting position is from the center of the screen. Once the robot 

reaches the area boundary, it will do the tumbling mode. If a 

target is within a field of view of the robot, defined as two units, 

the robot will change orientation accordingly and move forward 

to obtain the target. Otherwise, it will have a probability of 

“swimming” or “tumbling” according to P. The turning angle is 

simply set to be uniformly distributed from 0 to 360 [deg].  

The equation (3) is discretized with time sampling 0.5 [s]. The 

size of noise ε, defined by the standard deviation, is chosen as 0.1. 

In order to let P fluctuates with long correlation time, a small 

value of k=0.001 is chosen. For the non-adaptive search type, the 

activity is simple kept equals to 1. For the adaptive search type, 

the activity follows (4) and (5) with C simply chosen as 0.9, 

while a large value of F=100 is chosen to radically change the 

shape of the potential, and therefore the time scale, once a target 

is found. 

First, we want to confirm that the robot will certainly do Levy 

walk. After that, we want to confirm whether it will certainly 

switch from Levy-based extensive search to Brownian walk 

based exploitation, and whether such behavior is useful. 

Therefore the experiment conditions are chosen as: （1）With the value of k=0.001, we observe the logarithmic plot 

of the generated flight lengths to estimate value of µ. We 

also compare the searching efficiency in simple uniform 

distribution of a thousand targets with a “hardcoded” Levy 

walk, in which the flight lengths are generated by random 

number generator [18] with similar resulting value of  µ.  （2）We let the robot to do a non-adaptive searching and 

adaptive searching type in patchy target distributions and 

compare the efficiency. We deploy ten circular shape 

patches, each contains five hundreds targets uniformly 

distributed. The radius of the patch is fifty units.  

The search efficiency is defined as the number of targets found 

divided by total distance traveled, multiplied by a thousand. For 

both the conditions, we employ two scenarios for the target’s 

condition after being found. The first case is the targets simply 

disappear, while for the second one, it will reappear in the 

original location after it is outside the field of view of the robot. 

We simply call these scenarios as “destructive” and “non-

destructive” scenario, which has similarities with scenarios in 

several Levy walk literatures [3][4]. For all experiments, we 

performed ten trials and observe the average data.  
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Fig.2 Description of the state used in the attractor selection model 

Left: a probabilistic state machine between S=swimming                             

and T=tumbling mode to explain bacterial movement;                                                   

Right: conceptual potential design to fluctuate “P” with                              

(long/short) correlation time (top/bottom figure) around an attractor at “X” 

 



 

 

 

 

4.2 Experiment Results  

Fig. 4 shows an example of log-log histogram of the flight’s 

frequency N(l) versus the lengths l obtained when the value of 

k=0.001. The frequency is normalized, while the lengths are put 

into bins with logarithmic binning. The negative value of the 

fitted line’s gradient therefore indicates µ. From ten trials, the 

average value of µ  is 2.22. As 1<µ<3, it shows that Levy walk 

emerges when k is small, as P has long term correlation.  Fig. 5 

shows the comparison of the trajectory and efficiency, between 

our approach and a “hardcoded” Levy walk, for a destructive 

search scenario. The bar shows the average, the line shows the 

standard deviation. They are shown to be similar.  

Before we compare the search efficiency between the non-

adaptive and adaptive search, we observe the estimated value of 

µ when a target has just been found, which means that 

A(t)=F=100. With the same procedure, it can be obtained that in 

10 trials, µ averagely equals to 3.35. As µ≥3, it means the robot 

performs a Brownian random walk. If the robot does not find 

more targets, it will gradually switch back to Levy walk, as the 

exponent µ gradually switches back to the “default” value range. 

Fig. 6 shows the efficiency comparison of the non-adaptive 

and adaptive searching type for the two scenarios of target 

condition.  The numbers  below   show   the  average  of   (targets   

 found   /  traveled distance ).  It  can  be  seen  that  switching  to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exploitation in possibly rich area, performed by the adaptive 

search type, has a clear effect in increasing the efficiency when 

the scenario is non-destructive, in other word, can be revisited.  

5. Conclusion and Future Works   

In this paper, we propose a simple design that can realize an 

adaptive switching between search and exploitation by changing 

the statistical property of the search between Levy and Brownian 

random walk type. The design is based on biological fluctuation 

and bacterial movement. It has been shown that such behavior is 

useful. In principle, we show that based on this simple design, 

the robot can adapt to relatively complex environment. 

Our future work is to try this simple design in a more complex 

environment. For example, the patches can have difference sizes, 

while the average distance among the targets within a patch can 

be different. We will see whether simple modification of the 

current design, such as moving the position of the attractor, or 

having more than one attractor could be useful for such situation.   
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Fig.4 An example of log-log histogram of flight’s frequency versus 

the lengths when P has long term correlation, with µ= 2.17  

Fig.5 Comparison of the proposed approach and a “hardcoded” Levy walk.               

Left: the trajectory (top: the approach, bottom: “hardcoded” Levy walk). 

Right: the efficiency (left bar: the approach, right:”hardcoded” Levy walk ) 

Fig.6 Comparison of the search efficiency between the non-adaptive 

search (left bar) and adaptive search type (right bar).                                      

Left: destructive scenario. Right: non-destructive 

log l 
 

 

 

 

  


