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Gaussian Mixture Models (GMM) are ubiquitously used in state-of-the-art
speaker recognition systems. The popular GMM-SVM paradigm uses Maxi-
mum A Posteriori (MAP) speaker-adapted GMM models by stacking the mean
vectors into a supervector that is fed into a Support Vector Machine classi-
fier. In this paper, we modify the standard relevance MAP algorithm to better
fit the speaker recognition task. We propose to emphasize the adaptation of
the Gaussian mixtures according to the inter-speaker variability exhibited on
a training set, thus accounting for both the occupation count and the speaker
discrimination ability during adaptation. We evaluate our proposal on a rel-
evance MAP based GMM-SVM system using a large telephone speech corpus
such as the one provided in the 2006 NIST Speaker Recognition Evaluation.
We show that despite its simplicity this technique is effective.

1. Introduction

Currently, adaptation of Gaussian Mixture Models (GMM) to speech data from
a speaker is probably the most popular framework used for modeling speech in
text-independent speaker recognition. Many of the adaptation techniques in
the literature are founded on the Maximum a Posteriori (MAP) criterion which
optimally combines prior knowledge with new data under the Bayesian frame-
work. Relevance MAP4) was first introduced in speaker recognition in9), where a
Universal Background Model (UBM) representing the acoustic space for a large
number of speakers was used as prior knowledge for the adaptation process. Some
techniques constrain adaptation onto a feature subspace, thus reducing the num-
ber of estimated parameters while adapting observed and non-observed Gaussian
components. In the last years, several new techniques based on this framework
have been proposed to disentangle different sources of variation in acoustic mod-
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eling. In this line, Joint Factor Analysis (JFA)5) is a notable technique that
allows to adapt speaker and session components separately, leading to significant
improvements of speaker model robustness against inter-session variation.

Relevance MAP does not implement any session compensation scheme but it
performs direct adaptation to the data. In this paper, we aim at improving the
robustness against session variation of relevance MAP by weighting the relevance
factor used for adaptation. For each Gaussian, we use a measure of inter-speaker
variability to derive the weights that speed up the adaptation of the Gaussians
with large inter-session variability and slow down adaptation of the Gaussians
with small inter-session variability. A similar idea has been successfully used in7)

for VAD-based hypothesis decoding in speech recognition.
This paper is structured as follows: Section 2 describes relevance MAP adapta-

tion. Section 3 presents the proposed relevance factor weighting technique used
to improve robustness against inter-session variation. In Section 4, we detail the
GMM-SVM speaker verification system used in the experiments, whose experi-
mental protocol is described in Section 5. The experiments and the results are
shown and discussed in Section 6. Conclusions are given in Section 7.

2. MAP adaptation

Relevance Maximum A Posteriori (MAP)4) is a technique used to adapt the pa-
rameters of an Gaussian Mixture Model (GMM) to some speech data. It aims at
finding direct parameter estimates that optimize the posteriori probability after
adaptation, given a model representing prior knowledge. It exhibits the desirable
property of asymptotically converging to Maximum Likelihood training estimates
as more adaptation data is provided. Prior knowledge is captured by the prior
distributions. i.e. the Gaussian mixture of the non-adapted model.

Given some adaptation data with observation vectors xt, with 1 ≤ t ≤ T and
a GMM with M Gaussians with 1 ≤ m ≤ M , the expected vector µ̃m given the
data only is computed as

µ̃m =
∑T

t=1 γmtxmt∑T
t=1 γmt

, (1)

where γmt is the occupation probability for Gaussian m and time t, that is,
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γmt =
λmN (xt|µm;Σm)∑M
j=1 λjN (xt|µj ;Σj)

(2)

The new mean vector MAP estimates for each Gaussian m are then obtained
as a linear interpolation of the prior and new estimates, as

µ̂m =
Nmµ̃m + τµm

Nm + τ
, (3)

where Nm =
∑T

t=1 γmt, i.e. the average number of frames assigned to Gaussian
m and τ is the MAP relevance factor that balances the priors and new estimates.

From (3) we can see how the updated mean vectors µ̂m result from a linear
interpolation between old, µm, and new, µ̃m, estimates.

3. Relevance factor weighting

In this paper, we propose a technique to improve the robustness of the fea-
tures to session mismatch between training and testing. In MAP adaptation, the
sensitivity depends only on the occupation count, which is necessary to capture
acoustic information but does not involve any speaker-related information. We
believe adaptation can be improved by including a correction factor in the inter-
polation formula (3) used during adaptation. The proposed modification corrects
the relevance factor τ according to a measure of inter-speaker distance, namely
the between-speaker to within-speaker variance ratio of the occupation counts,
i.e. σBS

γm
/σWS

γm
. Therefore, for Gaussian m the new relevance factor τm becomes

τm =
τ

βm
with βm =

σBS
γm

σWS
γm

(4)

where

σWS
γm

=
1
S

S∑
s=1

1
Ns

Ns∑
n=1

(γn,s
m − γs

m)2 (5)

and

σBS
γm

=
1
S

S∑
s=1

(γs
m − γm)2 (6)

with γn,s
m being the occupation count for session n of speaker s in the training

database, γs
m the average count for speaker s and γm the average count for all

speakers and sessions.
We further process βm before applying the correction. A gain factor C is

included to tune the amount of correction around the average of βm as

β′m = C(βm − β) + β (7)

where β is the average of βm over all models in the training data. Finally, we
apply the normalization β′′m = β′m/β so that a correction factor of 1 is obtained
when β′m = β .

Compensating the relevance factor results in a slight correction of the adapted
model only. Note, for instance, that the actual statistics used for adaptation are
still relevance MAP Baum-Welch statistics which, in principle, do not take any
advantage of multiple sessions. More sophisticated techniques such as JFA can
give explicit estimates for the speaker and session contributions of the adapted
model.

4. GMM-SVM system description

In this paper, we experiment with a GMM-SVM speaker verification system using
relevance MAP parameter estimates. A Universal Background Model (UBM)
is trained off-line using data from many speakers, thus modeling the speaker-
independent acoustic space. The UBM is adapted to the speech segments of
interest and the mean-adapted vector parameters are stacked into supervector
that are classified with Support Vector Machines (SVM).

We use Nuisance Attribute Projection (NAP) for inter-session variability com-
pensation, which has shown to be effective for GMM-SVM systems3). NAP is a
data-driven technique that projects out the supervector subspace with maximum
inter-session variability. In the training phase, we perform a Principal Compo-
nent Analysis (PCA) of the inter-session scatter matrix estimated on a database
of GMM supervectors with multiple sessions per speaker. Its k eigenvectors with
largest eigenvalues, E = (e1, . . . , ek), representing the subspace with maximum
inter-session variability, are retained. In the test phase, the projection matrix
(I− EET) is applied on a non-compensated GMM supervector to remove those
components with maximum session variability. We apply the projection matrix
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after adaptation and before classification.
We use the GMM supervector linear kernel2) to compute the similarity be-

tween two supervectors in the SVM classifier. This kernel is an upper bound of
the Kullback-Leibler divergence. For two speech segments sa and sb with the
corresponding adapted models, it can be written by

k(sa, sb) =
M∑

m=1

(√
λmΣ− 1

2
m µa

m

)T (√
λmΣ− 1

2
m µb

m

)
(8)

which can be computed as a linear kernel if we let GMM supervectors be nor-
malized as m = (

√
λ1Σ

− 1
2

1 µT
1 , . . . ,

√
λMΣ− 1

2
M µT

M )T.

4.1 System setup
The front-end extracts 15 Perceptual Linear Prediciton (PLP) features with

normalized energy, plus their ∆ and ∆∆ coefficients, every 10ms using a window
of 30ms. Feature warping8) using a 3s window is later applied. The start and
end timestamps in the provided transcriptions are used for speech/non-speech
segmentation.

The UBM has 512 Gaussians and it is trained using 2900 segments taken from
the 2004 NIST SRE training data. We use a Gaussian splitting strategy with 5
iterations of maximum likelihood estimation per step as well as one iteration of
relevance MAP adaptation with a typical relevance factor of 10.

The NAP transform was trained using the same 2900 segments used for UBM
training. 50 dimensions were removed from the GMM supervector space.

We use a soft-margin SVM (LIBSVM package) with linear kernel as the clas-
sifier. We use the same 2900 segments used for UBM training as the impostor
speaker data. No score normalization is used.

5. Experimental protocol

The performance of the systems under study is assessed using the conversational
telephone speech data of the 2006 NIST Speaker Recognition Evaluation (SRE)
?1, involving a large number of speakers as well as strong acoustic channel mis-
match. The speaker verification system is asked to decide whether speech from a
given target speaker is present in another speech segment. Evaluation was carried

?1 The NIST 2006 SRE evaluation plan, http://www.nist.gov/speech/tests/spk/

out on the English trials of the core condition, consisting of speech segments of
5 minutes with an average of 2 minutes of effective speech per conversation side.
816 and 3735 segments are available for training and test respectively for a total
of 22316 scored trials. Trials involve same gender segments with an overall ratio
of impostor to true trials of 10.

The primary performance measure for the NIST speaker detection task is the
Detection Cost Function (DCF) defined as a cost function weighting the false
alarm and miss error probabilities DCFNorm = PMiss + 9.9 × PFalseAlarm accord-
ing to the defined decision costs. We report the Minimal DCF (MDC) obtained
a posteriori for the best possible detection threshold. Since this operating point
favors false alarms, we also provide the Equal Error Rate (EER) as an alterna-
tive performance measure. The Detection Error Tradeoff (DET) curves6) assess
system behavior at all operating points.

6. Experiments and results

To assess the impact of the proposed technique we ran experiments for the MAP
GMM-SVM systems using different values of the scaling factor C of equation (7).
The scaled-and-normalized between-speaker to within-speaker variance ratio of
the occupation counts, i.e. β′′m, exhibited maximum values of 1.6, 2.3, 3.0 and 3.6
for C = 1, 2, 3 and 4 respectively. Therefore, these maximum correction factors
reduce the relevance factor by a factor of 3.6 at the most. Minimum values were
as low as 0.02, resulting in a 50 times larger τm for C = 4.

We used NAP compensation in these experiments since the GMM-SVM perfor-
mance is much better than without using it. However, note that NAP transforms
the GMM supervectors according to a inter-session based criterion. According
to the speaker labeling in our database, inter-session variability is equivalent to
within-speaker variability, which is also being exploited in the proposed weight-
ing technique. Therefore, some non-negligible interaction between both technique
might be present, although not accounted for or evaluated in this study.

Table 1 shows results for systems using relevance MAP adaptation
with/without relevance factor weighting. Absolute performance of the baseline
MAP system is high, at the state-of-the-art compared to similar systems in1).
Our proposed technique improves performance for almost all values of C, obtain-
ing a maximum relative gain of 7% EER for C = 3. The relative gains in MDC
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Table 1 MDC and EER for GMM-SVM systems using MAP adaptation and inter-speaker
weighting on the 2006 NIST SRE evaluation data. The minimum and maximum
value for the corrected τm are shown in the second column. The lowest MDC and
EER are shown in boldface.

System τm (min-max) MDC EER (%)

MAP 1 0.0168 3.13
MAP C = 1 0.5-1.6 0.0166 3.04
MAP C = 2 0.3-2.3 0.0166 2.99
MAP C = 3 0.2-3.0 0.0166 2.90
MAP C = 4 0.02-3.6 0.0169 2.99
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Fig. 1 DET curve for GMM-SVM systems using MAP adaptation with no relevance factor
compensation and relevance factor compensation with C = 3. MDC operating points
are shown by circles.

are smaller and more stable across different values of C. The DET curves of
Figure 1 reveal that the improvement of the weighting technique concentrate in
very low false alarm rate, very high false alarm and near EER areas. Therefore,
although an improvement is obtained, it is still dependent on the application
operating point.

7. Conclusions

We proposed a simple technique for improving the robustness of MAP adapta-
tion of Gaussian Mixture Models to inter-session variability. Based on a state-of-
the-art performing GMM-SVM system, a relative improvement of up to 7% EER
was obtained on the 2006 NIST SRE data. Nonetheless, the improvement was
dependent on the application operation point. Although this is a rather adhoc
technique that is not derived directly from the Bayesian framework, the results
show that it can still be effective for some applications.
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