均衡型 $\left(C_{5}, C_{12}\right)$－Foil デザインと関連デザイン

潮 和 彦

Abstract

グラフ理論において，グラフの分解問題は主要な研究テーマである。 C_{5} を 5 点を通る サイクル，C_{12} を 12 点を通るサイクルとする。 1 点を共有する辺素な t 個の C_{5} と t 個の C_{12} からなるグラフを $\left(C_{5}, C_{12}\right)$－ $2 t$－foil という。本研究では，完全グラフ K_{n} を均衡的に $\left(C_{5}, C_{12}\right)$－ $2 t$－foil 部分グラフに分解する均衡型 $\left(C_{5}, C_{12}\right)$－ $2 t$－foil デザイ ンについて述べる。さらに，均衡型 C_{17}－t－foil デザイン，均衡型 $\left(C_{10}, C_{24}\right)$－ $2 t$－foil デザイン，均衡型 $C_{34}-t$－foil デザインについて述べる。

Balanced $\left(C_{5}, C_{12}\right)$－Foil Designs and Related Designs

Kazuhiko Ushio

In graph theory，the decomposition problem of graphs is a very important topic． Various type of decompositions of many graphs can be seen in the literature of graph theory．This paper gives balanced（ C_{5}, C_{12} ）－2t－foil designs，balanced C_{17}－t－foil designs，balanced $\left(C_{10}, C_{24}\right)$－2t－foil designs，and balanced C_{34}－t－foil designs．

1．Balanced（ C_{5}, C_{12} ）－2t－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{5} and C_{12} be the 5 －cycle and the 12 －cycle，respectively．The $\left(C_{5}, C_{12}\right)$－ $2 t$－foil is a graph of t edge－disjoint C_{5}＇s and t edge－ disjoint C_{12}＇s with a common vertex and the common vertex is called the center of the $\left(C_{5}, C_{12}\right)$－2t－foil．When K_{n} is decomposed into edge－disjoint sum of（ C_{5}, C_{12} ）－2t－foils， we say that K_{n} has a $\left(C_{5}, C_{12}\right)$－2t－foil decomposition．Moreover，when every vertex of

[^0]K_{n} appears in the same number of $\left(C_{5}, C_{12}\right)$－ $2 t$－foils，we say that K_{n} has a balanced $\left(C_{5}, C_{12}\right)$－2t－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced $\left(C_{5}, C_{12}\right)$－ $2 t$－foil design．

Theorem 1．K_{n} has a balanced $\left(C_{5}, C_{12}\right)$－2t－foil decomposition if and only if $n \equiv 1$ $(\bmod 34 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced $\left(C_{5}, C_{12}\right)$－ $2 t$－foil decomposi－ tion．Let b be the number of $\left(C_{5}, C_{12}\right)$－2t－foils and r be the replication number．Then $b=n(n-1) / 34 t$ and $r=(15 t+1)(n-1) / 34 t$ ．Among $r\left(C_{5}, C_{12}\right)$－2t－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $\left(C_{5}, C_{12}\right)$－ $2 t$－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 34 t$ and $r_{2}=15(n-1) / 34$ ．Therefore，$n \equiv 1(\bmod 34 t)$ is necessary．
（Sufficiency）Put $n=34 s t+1$ and $T=s t$ ．Then $n=34 T+1$ ．
Construct a（ C_{5}, C_{12} ）－2T－foil as follows：
$\{(34 T+1,1,14 T+2,30 T+2,14 T),(34 T+1,4 T+1,6 T+2,16 T+2,23 T+3,11 T+$ $2,17 T+3,29 T+3,20 T+3,19 T+2,8 T+2,3 T+1)\} \cup$
$\{(34 T+1,2,14 T+4,30 T+3,14 T-1),(34 T+1,4 T+2,6 T+4,16 T+3,23 T+5,11 T+$
$3,17 T+5,29 T+4,20 T+5,19 T+3,8 T+4,3 T+2)\} \cup$
$\{(34 T+1,3,14 T+6,30 T+4,14 T-2),(34 T+1,4 T+3,6 T+6,16 T+4,23 T+7,11 T+$
$4,17 T+7,29 T+5,20 T+7,19 T+4,8 T+6,3 T+3)\} \cup$
$\ldots \cup$
$\{(34 T+1, T-1,16 T-2,31 T, 13 T+2),(34 T+1,5 T-1,8 T-2,17 T, 25 T-1,12 T, 19 T-$ $1,30 T+1,22 T-1,20 T, 10 T-2,4 T-1)\} \cup$
$\{(34 T+1, T, 16 T, 31 T+1,13 T+1),(34 T+1,5 T, 8 T, 17 T+1,25 T+1,12 T+1,19 T+$ $1,11 T, 22 T+1,20 T+1,10 T, 4 T)\}$ ．
（17T edges， $17 T$ all lengths）
Decompose the $\left(C_{5}, C_{12}\right)$－2T－foil into $s\left(C_{5}, C_{12}\right)$－ $2 t$－foils．Then these starters comprise a balanced $\left(C_{5}, C_{12}\right)$－2t－foil decomposition of K_{n} ．

情報処理学会研究報告
IPSJ SIG Technical Report
Example 1．1．Balanced（ C_{5}, C_{12} ）－2－foil decomposition of K_{35} ． $\{(35,1,16,32,14),(35,5,8,18,26,13,20,11,23,21,10,4)\}$ ．
（17 edges， 17 all lengths）
This starter comprises a balanced（ C_{5}, C_{12} ）－2－foil decomposition of K_{35} ．

Example 1．2．Balanced（ C_{5}, C_{12} ）－4－foil decomposition of K_{69} ．

$\{(69,1,30,62,28),(69,9,14,34,49,24,37,61,43,40,18,7)\} \cup$
$\{(69,2,32,63,27),(69,10,16,35,51,25,39,22,45,41,20,8)\}$ ．
（34 edges， 34 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{12}\right)$－4－foil decomposition of K_{69} ．

Example 1．3．Balanced（ C_{5}, C_{12} ）－6－foil decomposition of K_{103} ．
$\{(103,1,44,92,42),(103,13,20,50,72,35,54,90,63,59,26,10)\} \cup$ $\{(103,2,46,93,41),(103,14,22,51,74,36,56,91,65,60,28,11)\} \cup$ $\{(103,3,48,94,40),(103,15,24,52,76,37,58,33,67,61,30,12)\}$ ．
（51 edges， 51 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{12}\right)$－6－foil decomposition of K_{103} ．

Example 1．4．Balanced $\left(C_{5}, C_{12}\right)$－8－foil decomposition of K_{137} ． $\{(137,1,58,122,56),(137,17,26,66,95,46,71,119,83,78,34,13)\} \cup$ $\{(137,2,60,123,55),(137,18,28,67,97,47,73,120,85,79,36,14)\} \cup$
$\{(137,3,62,124,54),(137,19,30,68,99,48,75,121,87,80,38,15)\} \cup$ $\{(137,4,64,125,53),(137,20,32,69,101,49,77,44,89,81,40,16)\}$ ．
（68 edges， 68 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{12}\right)$－8－foil decomposition of K_{137} ．

Example 1．5．Balanced（ C_{5}, C_{12} ）－10－foil decomposition of K_{171} ． $\{(171,1,72,152,70),(171,21,32,82,118,57,88,148,103,97,42,16)\} \cup$ $\{(171,2,74,153,69),(171,22,34,83,120,58,90,149,105,98,44,17)\} \cup$ $\{(171,3,76,154,68),(171,23,36,84,122,59,92,150,107,99,46,18)\} \cup$ $\{(171,4,78,155,67),(171,24,38,85,124,60,94,151,109,100,48,19)\} \cup$
$\{(171,5,80,156,66),(171,25,40,86,126,61,96,55,111,101,50,20)\}$. （85 edges， 85 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{12}\right)$－10－foil decomposition of K_{171} ．

Example 1．6．Balanced（ C_{5}, C_{12} ）－12－foil decomposition of K_{205} ． $\{(205,1,86,182,84),(205,25,38,98,141,68,105,177,123,116,50,19)\} \cup$ $\{(205,2,88,183,83),(205,26,40,99,143,69,107,178,125,117,52,20)\} \cup$ $\{(205,3,90,184,82),(205,27,42,100,145,70,109,179,127,118,54,21)\} \cup$ $\{(205,4,92,185,81),(205,28,44,101,147,71,111,180,129,119,56,22)\} \cup$ $\{(205,5,94,186,80),(205,29,46,102,149,72,113,181,131,120,58,23)\} \cup$ $\{(205,6,96,187,79),(205,30,48,103,151,73,115,66,133,121,60,24)\}$ ．
（102 edges， 102 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{12}\right)$－12－foil decomposition of K_{205} ．

2．Balanced C_{17}－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{17} be the 17 －cycle．The $C_{17}-t$－foil is a graph of t edge－disjoint C_{17}＇s with a common vertex and the common vertex is called the center of the $C_{17}-t$－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{17}-t$－foils，it is called that K_{n} has a C_{17}－t－foil decomposition．Moreover，when every vertex of K_{n} appears in the same number of $C_{17}-t$－foils，it is called that K_{n} has a bal－ anced $C_{17}-t$－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced C_{17}－t－foil design．

Theorem 2．K_{n} has a balanced $C_{17}-t$－foil decomposition if and only if $n \equiv 1(\bmod$ $34 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced $C_{17}-t$－foil decomposition．Let b be the number of $C_{17}-t$－foils and r be the replication number．Then $b=n(n-1) / 34 t$ and $r=(16 t+1)(n-1) / 34 t$ ．Among $r C_{17}-t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $C_{17}-t$－foils in which v is the center and v is not the center，respectively．

Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 34 t$ and $r_{2}=16(n-1) / 34$ ．Therefore，$n \equiv 1(\bmod$ $34 t$ ）is necessary．
（Sufficiency）Put $n=34 s t+1, T=s t$ ．Then $n=34 T+1$ ．Construct a $C_{17}-T$－foil as follows：
$\{(34 T+1, T, 16 T, 31 T+1,13 T+1,17 T+2,4 T+1,6 T+2,16 T+2,23 T+3,11 T+$ $2,17 T+3,29 T+3,20 T+3,19 T+2,8 T+2,3 T+1)$,
$(34 T+1, T-1,16 T-2,31 T, 13 T+2,17 T+4,4 T+2,6 T+4,16 T+3,23 T+5,11 T+$ $3,17 T+5,29 T+4,20 T+5,19 T+3,8 T+4,3 T+2)$,
$(34 T+1, T-2,16 T-4,31 T-1,13 T+3,17 T+6,4 T+3,6 T+6,16 T+4,23 T+7,11 T+$ $4,17 T+7,29 T+5,20 T+7,19 T+4,8 T+6,3 T+3)$,
．．．，
$(34 T+1,2,14 T+4,30 T+3,14 T-1,19 T-2,5 T-1,8 T-2,17 T, 25 T-1,12 T, 19 T-$ $1,30 T+1,22 T-1,20 T, 10 T-2,4 T-1)$,
$(34 T+1,1,14 T+2,30 T+2,14 T, 19 T, 5 T, 8 T, 17 T+1,25 T+1,12 T+1,19 T+1,11 T, 22 T+$ $1,20 T+1,10 T, 4 T)\}$ ．
（17T edges， $17 T$ all lengths）
Decompose this $C_{17}-T$－foil into $s C_{17}$－t－foils．Then these starters comprise a balanced C_{17}－t－foil decomposition of K_{n} ．

Example 2．1．Balanced C_{17}－decomposition of K_{35} ．

$\{(35,1,16,32,14,19,5,8,18,26,13,20,11,23,21,10,4)\}$ ．
（17 edges， 17 all lengths）
This stater comprises a balanced C_{17}－decomposition of K_{35} ．

Example 2．2．Balanced C_{17}－2－foil decomposition of K_{69} ．

$\{(69,2,32,63,27,36,9,14,34,49,24,37,61,43,40,18,7)$ ，
$(69,1,30,62,28,38,10,16,35,51,25,39,22,45,41,20,8)\}$ ．
（34 edges， 34 all lengths）
This stater comprises a balanced C_{17}－2－foil decomposition of K_{69} ．

Example 2．3．Balanced C_{17}－3－foil decomposition of K_{103} ． $\{(103,3,48,94,40,53,13,20,50,72,35,54,90,63,59,26,10)$ ， （103，2，46，93，41，55，14，22，51，74，36，56，91，65，60，28，11）， $(103,1,44,92,42,57,15,24,52,76,37,58,33,67,61,30,12)\}$ ． （51 edges， 51 all lengths）
This stater comprises a balanced C_{17}－3－foil decomposition of K_{103} ．

Example 2．4．Balanced C_{17}－4－foil decomposition of K_{137} ．

 $\{(137,4,64,125,53,70,17,26,66,95,46,71,119,83,78,34,13)$ ， $(137,3,62,124,54,72,18,28,67,97,47,73,120,85,79,36,14)$ ， （137，2，60，123，55，74，19，30，68，99，48，75，121，87，80，38，15）， （137，1，58，122，56，76，20，32，69，101，49，77，44，89，81，40，16）\}. （68 edges， 68 all lengths）This stater comprises a balanced C_{17}－4－foil decomposition of K_{137} ．

Example 2．5．Balanced C_{17}－5－foil decomposition of K_{171} ．

$\{(171,5,80,156,66,87,21,32,82,118,57,88,148,103,97,42,16)$ ， $(171,4,78,155,67,89,22,34,83,120,58,90,149,105,98,44,17)$ ， $(171,3,76,154,68,91,23,36,84,122,59,92,150,107,99,46,18)$ ， （171，2，74，153，69，93，24，38，85，124，60，94，151，109，100，48，19）， $(171,1,72,152,70,95,25,40,86,126,61,96,55,111,101,50,20)\}$ ． （85 edges， 85 all lengths）
This stater comprises a balanced $C_{17}-5$－foil decomposition of K_{171} ．

Example 2．6．Balanced C_{17}－6－foil decomposition of K_{205} ．

 $\{(205,6,96,187,79,104,25,38,98,141,68,105,177,123,116,50,19)$ ， （ $205,5,94,186,80,106,26,40,99,143,69,107,178,125,117,52,20)$ ， （205，4，92，185，81，108，27，42，100，145，70，109，179，127，118，54，21）， $(205,3,90,184,82,110,28,44,101,147,71,111,180,129,119,56,22)$ ， $(205,2,88,183,83,112,29,46,102,149,72,113,181,131,120,58,23)$ ， $(205,1,86,182,84,114,30,48,103,151,73,115,66,133,121,60,24)\}$ ．情報処理学会研究報告
IPSJ SIG Technical Report
（102 edges， 102 all lengths）
This stater comprises a balanced C_{17}－6－foil decomposition of K_{205} ．

3．Balanced $\left(C_{10}, C_{24}\right)$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{10} and C_{24} be the 10－cycle and the 24 －cycle，respectively．The $\left(C_{10}, C_{24}\right)$－ $2 t$－foil is a graph of t edge－disjoint C_{10}＇s and t edge－disjoint C_{24}＇s with a common vertex and the common vertex is called the center of the $\left(C_{10}, C_{24}\right)$－2t－foil．When K_{n} is decomposed into edge－disjoint sum of（ C_{10}, C_{24} ）－ $2 t$－foils，we say that K_{n} has a $\left(C_{10}, C_{24}\right)$－ $2 t$－foil decomposition．Moreover，when every vertex of K_{n} appears in the same number of（ C_{10}, C_{24} ）－2t－foils，we say that K_{n} has a balanced（ C_{10}, C_{24} ）－2t－foil decomposition and this number is called the replication num－ ber．This decomposition is to be known as a balanced（ C_{10}, C_{24} ）－2t－foil design．

Theorem 3．K_{n} has a balanced $\left(C_{10}, C_{24}\right)$－2t－foil decomposition if and only if $n \equiv 1$ $(\bmod 68 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced（ C_{10}, C_{24} ）－2t－foil decomposi－ tion．Let b be the number of $\left(C_{10}, C_{24}\right)$－ $2 t$－foils and r be the replication number．Then $b=n(n-1) / 68 t$ and $r=(32 t+1)(n-1) / 68 t$ ．Among $r\left(C_{10}, C_{24}\right)$－ $2 t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of（ C_{10}, C_{24} ）－2t－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 68 t$ and $r_{2}=32(n-1) / 68$ ．Therefore，$n \equiv 1(\bmod 68 t)$ is necessary．
（Sufficiency）Put $n=68 s t+1$ and $T=s t$ ．Then $n=68 T+1$ ．
Construct a（ C_{10}, C_{24} ）－2T－foil as follows：
$\{(68 T+1,1,28 T+2,60 T+2,28 T, 56 T-1,28 T-1,60 T+3,28 T+4,2),(68 T+1,8 T+$
$1,12 T+2,32 T+2,46 T+3,22 T+2,34 T+3,58 T+3,40 T+3,38 T+2,16 T+2,6 T+$
$1,12 T+3,6 T+2,16 T+4,38 T+3,40 T+5,58 T+4,34 T+5,22 T+3,46 T+5,32 T+$ $3,12 T+4,8 T+2)\} \cup$
$\{(68 T+1,3,28 T+6,60 T+4,28 T-2,56 T-5,28 T-3,60 T+5,28 T+8,4),(68 T+$
$1,8 T+3,12 T+6,32 T+4,46 T+7,22 T+4,34 T+7,58 T+5,40 T+7,38 T+4,16 T+$ $6,6 T+3,12 T+7,6 T+4,16 T+8,38 T+5,40 T+9,58 T+6,34 T+9,22 T+5,46 T+$ $9,32 T+5,12 T+8,8 T+4)\} \cup$
$\{(68 T+1,5,28 T+10,60 T+6,28 T-4,56 T-9,28 T-5,60 T+7,28 T+12,6),(68 T+$ $1,8 T+5,12 T+10,32 T+6,46 T+11,22 T+6,34 T+11,58 T+7,40 T+11,38 T+6,16 T+$ $10,6 T+5,12 T+11,6 T+6,16 T+12,38 T+7,40 T+13,58 T+8,34 T+13,22 T+7,46 T+$ $13,32 T+7,12 T+12,8 T+6)\} \cup$
．．．\cup
$\{(68 T+1,2 T-1,32 T-2,62 T, 26 T+2,52 T+3,26 T+1,62 T+1,32 T, 2 T),(68 T+$ $1,10 T-1,16 T-2,34 T, 50 T-1,24 T, 38 T-1,60 T+1,44 T-1,40 T, 20 T-2,8 T-$ $1,16 T-1,8 T, 20 T, 40 T+1,44 T+1,22 T, 38 T+1,24 T+1,50 T+1,34 T+1,16 T, 10 T)\}$ ． （34T edges， $34 T$ all lengths）
Decompose the（ C_{10}, C_{24} ）－ $2 T$－foil into $s\left(C_{10}, C_{24}\right)$－ $2 t$－foils．Then these starters com－ prise a balanced（ C_{10}, C_{24} ）－2t－foil decomposition of K_{n} ．

Example 3．1．Balanced（ C_{10}, C_{24} ）－2－foil decomposition of K_{69} ．

$\{(69,1,30,62,28,55,27,63,32,2)$ ，
$(69,9,14,34,49,24,37,61,43,40,18,7,15,8,20,41,45,22,39,25,51,35,16,10)\}$ ．
（34 edges， 34 all lengths）
This starter comprises a balanced（ C_{10}, C_{24} ）－2－foil decomposition of K_{69} ．

Example 3．2．Balanced（ C_{10}, C_{24} ）－4－foil decomposition of K_{137} ．
$\{(137,1,58,122,56,111,55,123,60,2)$ ，
$(137,3,62,124,54,107,53,125,64,4)\} \cup$
$\{(137,17,26,66,95,46,71,119,83,78,34,13,27,14,36,79,85,120,73,47,97,67,28,18)$ ， $(137,19,30,68,99,48,75,121,87,80,38,15,31,16,40,81,89,44,77,49,101,69,32,20)\}$ ． （68 edges， 68 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{24}\right)$－4－foil decomposition of K_{137} ．

Example 3．3．Balanced（ C_{10}, C_{24} ）－6－foil decomposition of K_{205} ．
$\{(205,1,86,182,84,167,83,183,88,2)$ ，
$(205,3,90,184,82,163,81,185,92,4)$ ，
$(205,5,94,186,80,159,79,187,96,6)\} \quad \cup$
$\{(205,25,38,98,141,68,105,177,123,116,50,19,39,20,52,117,125,178,107,69,143,99,40,26)$, $(205,27,42,100,145,70,109,179,127,118,54,21,43,22,56,119,129,180,111,71,147,101,44,28)$ ， $(205,29,46,102,149,72,113,181,131,120,58,23,47,24,60,121,133,66,115,73,151,103,48,30)\}$. （102 edges， 102 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{24}\right)$－6－foil decomposition of K_{205} ．

Example 3．4．Balanced $\left(C_{10}, C_{24}\right)$－8－foil decomposition of K_{273} ．
$\{(273,1,114,242,112,223,111,243,116,2)$ ，
$(273,3,118,244,110,219,109,245,120,4)$ ，
$(273,5,122,246,108,215,107,247,124,6)$ ，
$(273,7,126,248,106,211,105,249,128,8)\} \quad \cup$
$\{(273,33,50,130,187,90,139,235,163,154,66,25,51,26,68,155,165,236,141,91,189,131,52,34)$ ， $(273,35,54,132,191,92,143,237,167,156,70,27,55,28,72,157,169,238,145,93,193,133,56,36)$, $(273,37,58,134,195,94,147,239,171,158,74,29,59,30,76,159,173,240,149,95,197,135,60,38)$ ， $(273,39,62,136,199,96,151,241,175,160,78,31,63,32,80,161,177,88,153,97,201,137,64,40)\}$ ． （136 edges， 136 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{24}\right)$－8－foil decomposition of K_{273} ．

4．Balanced C_{34}－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{34} be the 34 －cycle．The $C_{34}-t$－foil is a graph of t edge－disjoint C_{34}＇s with a common vertex and the common vertex is called the center of the $C_{34}-t$－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{34}-t$－foils，it is called that K_{n} has a $C_{34}-t$－foil decomposition．Moreover，when every vertex of K_{n} appears in the same number of C_{34}－t－foils，it is called that K_{n} has a bal－ anced $C_{34}-t$－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced C_{34}－t－foil design．

Theorem 4．K_{n} has a balanced $C_{34}-t$－foil decomposition if and only if $n \equiv 1(\bmod$
$68 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced $C_{34}-t$－foil decomposition．Let b be the number of $C_{34}-t$－foils and r be the replication number．Then $b=n(n-1) / 68 t$ and $r=(33 t+1)(n-1) / 68 t$ ．Among $r C_{34}-t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $C_{34}-t$－foils in which v is the center and v is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 68 t$ and $r_{2}=33(n-1) / 68$ ．Therefore，$n \equiv 1(\bmod$ $68 t)$ is necessary．
（Sufficiency）Put $n=68 s t+1, T=s t$ ．Then $n=68 T+1$ ．Construct a $C_{34}-T$－foil as follows：
$\{(68 T+1,2 T, 32 T, 62 T+1,26 T+1,34 T+2,8 T+1,12 T+2,32 T+2,46 T+3,22 T+2,34 T+$ $3,58 T+3,40 T+3,38 T+2,16 T+2,6 T+1,12 T+3,6 T+2,16 T+4,38 T+3,40 T+5,58 T+$ $4,34 T+5,22 T+3,46 T+5,32 T+3,12 T+4,8 T+2,34 T+4,26 T+2,62 T, 32 T-2,2 T-1)$ ， $(68 T+1,2 T-2,32 T-4,62 T-1,26 T+3,34 T+6,8 T+3,12 T+6,32 T+4,46 T+$ $7,22 T+4,34 T+7,58 T+5,40 T+7,38 T+4,16 T+6,6 T+3,12 T+7,6 T+4,16 T+$ $8,38 T+5,40 T+9,58 T+6,34 T+9,22 T+5,46 T+9,32 T+5,12 T+8,8 T+4,34 T+$ $8,26 T+4,62 T-2,32 T-6,2 T-3)$ ，
$(68 T+1,2 T-4,32 T-8,62 T-3,26 T+5,34 T+10,8 T+5,12 T+10,32 T+6,46 T+$ $11,22 T+6,34 T+11,58 T+7,40 T+11,38 T+6,16 T+10,6 T+5,12 T+11,6 T+6,16 T+$ $12,38 T+7,40 T+13,58 T+8,34 T+13,22 T+7,46 T+13,32 T+7,12 T+12,8 T+6,34 T+$ $12,26 T+6,62 T-4,32 T-10,2 T-5)$ ，
$(68 T+1,2,28 T+4,60 T+3,28 T-1,38 T-2,10 T-1,16 T-2,34 T, 50 T-1,24 T, 38 T-$ $1,60 T+1,44 T-1,40 T, 20 T-2,8 T-1,16 T-1,8 T, 20 T, 40 T+1,44 T+1,22 T, 38 T+$ $1,24 T+1,50 T+1,34 T+1,16 T, 10 T, 38 T, 28 T, 60 T+2,28 T+2,1)\}$.
（34T edges， $34 T$ all lengths）
Decompose this $C_{34}-T$－foil into $s C_{34}-t$－foils．Then these starters comprise a balanced $C_{34}-t$－foil decomposition of K_{n} ．

Example 4．1．Balanced C_{34}－decomposition of K_{69} ．

情報処理学会研究報告
IPSJ SIG Technical Report
$\{(69,2,32,63,27,36,9,14,34,49,24,37,61,43,40,18,7,15,8,20,41,45,22,39,25,51,35$ ， $16,10,38,28,62,30,1)\}$ ．
（34 edges， 34 all lengths）
This stater comprises a balanced C_{34}－decomposition of K_{69} ．

Example 4．2．Balanced C_{34}－2－foil decomposition of K_{137} ．

$\{(137,4,64,125,53,70,17,26,66,95,46,71,119,83,78,34,13,27,14,36,79,85,120,73$ ， $47,97,67,28,18,72,54,124,62,3)$ ，
$(137,2,60,123,55,74,19,30,68,99,48,75,121,87,80,38,15,31,16,40,81,89,44,77,49$ ， $101,69,32,20,76,56,122,58,1)\}$ ．
（68 edges， 68 all lengths）
This stater comprises a balanced C_{34}－2－foil decomposition of K_{137} ．

Example 4．3．Balanced C_{34}－3－foil decomposition of K_{205} ．

$\{(205,6,96,187,79,104,25,38,98,141,68,105,177,123,116,50,19,39,20,52,117,125$ ， $178,107,69,143,99,40,26,106,80,186,94,5)$ ，
（205，4，92，185，81，108，27，42，100，145，70，109，179，127，118，54，21，43，22，56，119，129， $180,111,71,147,101,44,28,110,82,184,90,3)$ ，
$(205,2,88,183,83,112,29,46,102,149,72,113,181,131,120,58,23,47,24,60,121,133$ ， $66,115,73,151,103,48,30,114,84,182,86,1)\}$ ．
（102 edges， 102 all lengths）
This stater comprises a balanced C_{34}－3－foil decomposition of K_{205} ．

Example 4．4．Balanced C_{34}－4－foil decomposition of K_{273} ．

$\{(273,8,128,249,105,138,33,50,130,187,90,139,235,163,154,66,25,51,26,68,155$ ， $165,236,141,91,189,131,52,34,140,106,248,126,7)$ ，
（ $273,6,124,247,107,142,35,54,132,191,92,143,237,167,156,70,27,55,28,72,157$ ， $169,238,145,93,193,133,56,36,144,108,246,122,5)$ ，
（273，4，120，245，109，146，37，58，134，195，94，147，239，171，158，74，29，59，30，76，159， $173,240,149,95,197,135,60,38,148,110,244,118,3)$ ，
$(273,2,116,243,111,150,39,62,136,199,96,151,241,175,160,78,31,63,32,80,161$ ，
$177,88,153,97,201,137,64,40,152,112,242,114,1)\}$.
（136 edges， 136 all lengths）
This stater comprises a balanced $C_{34}-4$－foil decomposition of K_{273} ．

参 考 文 献

1）Ushio，K．and Fujimoto，H．：Balanced bowtie and trefoil decomposition of com－ plete tripartite multigraphs，IEICE Trans．Fundamentals，Vol．E84－A，No．3，pp． 839－844（2001）．
2）Ushio，K．and Fujimoto，H．：Balanced foil decomposition of complete graphs，IE－ ICE Trans．Fundamentals，Vol．E84－A，No．12，pp．3132－3137（2001）．
3）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E86－A，No．9，pp．2360－2365（2003）．
4）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of symmetric com－ plete multi－digraphs，IEICE Trans．Fundamentals，Vol．E87－A，No．10，pp．2769－2773 （2004）．
5）Ushio，K．and Fujimoto，H．：Balanced quatrefoil decomposition of complete multi－ graphs，IEICE Trans．Information and Systems，Vol．E88－D，No．1，pp．19－22（2005）．
6）Ushio，K．and Fujimoto，H．：Balanced C_{4}－bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E88－A，No．5，pp．1148－1154（2005）．
7）Ushio，K．and Fujimoto，H．：Balanced C_{4}－trefoil decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E89－A，No．5，pp．1173－1180（2006）．

[^0]: $\dagger 1$ 近畿大学理工学部情報学科
 Department of Informatics，Faculty of Science and Technology，Kinki University

