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Adaptive networks are a particular class of dynamical networks whose topologies and 
states coevolve over similar time scales. Many real-world complex networks are adaptive 
networks, including social networks, transportation networks, neural networks and 
biological networks. This presentation provides a brief overview of the recent rise of 
research on mathematical/computational modeling and analysis of such networks and 
discusses current and future research directions. 
 

The rapidly growing research on complex networks has presented a novel approach to 
complex systems modeling [1-3] that was not fully foreseen even in a decade ago. It addresses 
the self-organization of complex network structure and its implications for system behavior, 
which holds significant cross-disciplinary relevance to many fields of natural and social 
sciences, particularly in today’s highly networked social/political/economical circumstances. 
 Interestingly, complex network research has so far addressed either “dynamics on 
networks” or “dynamics of networks” almost separately, without considering both at the same 
time. In the former, “dynamics on networks” approach, the focus is on the state transition of 
nodes on a network with a fixed topology and the trajectories of the system states in a phase 
space with time-invariant dimensions [4-9]. This is a natural extension of traditional 
dynamical systems research to a high-dimensional phase space with non-trivial interaction 
between state variables. On the other hand, in the latter, “dynamics of networks” approach, the 
focus is on the topological transformation of a network and their effects on statistical 
properties of the entire network [10-15], where a number of key concepts and techniques 
utilized are borrowed from statistical physics. While there are overlaps between these two 
areas of study, there are still unfilled gaps remaining between them, in both conceptual and 
technical aspects. 
 When looking into real-world complex biological and social networks, however, one 
can find many instances of networks whose states and topologies “coevolve”, i.e., they 
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interact with each other and keep changing over the same time scales due to the system’s own 
dynamics (Table 1). In these “complex adaptive networks”, state transition of each component 
and topological transformation of networks are deeply coupled with each other, potentially 
producing emergent behavior that would not be seen in other forms of networks. Modeling 
and predicting state-topology coevolution is now becoming well recognized as one of the 
most significant challenges in complex network research [12,16,17]. 
 

Table 1: Real-world examples of complex adaptive networks whose states and topologies 
interact with each other and change over the same time scales 

Network Nodes Links Examples of 
node states 

Examples of 
node 

addition or 
removal 

Examples of 
topological 

changes 

Organism Cells Cell adhesions, 
intercellular 

communications 

Gene/protein 
activities 

Cell 
division, 
cell death 

Cell migration 

Ecological 
community 

Species Ecological 
relationships 
(predation, 

symbiosis, etc.) 

Population, 
intraspecific 
diversities 

Speciation, 
invasion, 
extinction 

Changes in 
ecological 

relationships 
via adaptation 

Epidemiological 
network 

Individuals Physical contacts Pathologic 
states 

Death, 
quarantine 

Reduction of 
physical 
contacts 

Social network Individuals Social 
relationships, 
conversations, 
collaborations 

Socio-cultural 
states, 

political 
opinions, 

wealth 

Entry to or 
withdrawal 

from 
com-munity 

Establishment 
or 

renouncement 
of 

relationships 
 
 Over the last decade, several mathematical/computational models of state-topology 
coevolution have been developed and studied on various subjects, ranging from physical to 
social systems. One major research topic discussed there is the unique form of 
self-organization of adaptive networks. It has been demonstrated, using several different 
formalisms, that adaptive changes of network topology may give rise to self-organized 
criticality more easily than in other dynamical network models [18,19,20]. In these models, 
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connections are typically modified using local rules that are based on activities and/or 
similarities of node dynamics. 
 An illustrative class of adaptive network models is that of epidemiological models. 
Disease propagation on social networks has been extensively studied, yet when dynamic 
rewiring of social ties are allowed, the model behavior changes dramatically, causing 
substantial changes of phase diagrams and spontaneous formation of state-homogeneous 
subpopulations [21,22]. These results have significant implications for real epidemiology as 
people tend to alter social behaviors according to epidemiological states of their neighbors. 
 Social games have probably been the most extensively studied topic using adaptive 
network models [23-32]. A typical model setting is that the strategies and payoffs of agents, 
represented as node states, will evolve through iterative game play over social connections, 
and the connections themselves will also be modified locally based on the outcomes of those 
games. These models have demonstrated that the nature of the game becomes fundamentally 
different on adaptive networks, compared to that on networks of static topologies. Moreover, 
application of adaptive networks to social sciences does not stop at game theoretic models. 
Probably the newest application area is the modeling of organizational behavior, including the 
evolution of organizational networks inside a corporation and information/knowledge sharing 
and trust formation within it [33-35]. 
 As shown above, the body of literature on adaptive networks is rapidly growing. A 
more comprehensive list of relevant literature can be found online [36]. However, those 
models were developed using different modeling frameworks chosen for specific phenomena, 
making it rather difficult to generalize them and apply them to real-world data analysis across 
different fields. Therefore, one of the important research challenges is to establish a 
generalized modeling framework that can effectively describe the state-topology coevolution 
of complex adaptive networks, which should be suitable for not only theoretical investigation 
but also for more practical data-driven modeling and analysis. Historically, cellular automata 
and other discrete dynamical networks have played the role of common modeling tools. To 
meet the need of similar tools for adaptive network modeling, a graph-writing-based 
computational modeling framework, called generative network automata (GNA), is currently 
under development by the author. More details of this modeling framework can be found 
elsewhere [37-39]. 
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