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To identify protein–protein interaction pairs with high accuracy, we propose a
method for predicting these interactions based on characteristics obtained from
protein–protein docking evaluations. Previous studies assumed that the re-
quired protein affinity strength for an interaction was not dependent on protein
functions. However, the protein affinity strength appears to differ with differ-
ent docking schemes, such as rigid-body or flexible docking, and these schemes
may be related to protein functions. Thus, we propose a new scoring system
that is based on statistical analysis of affinity score distributions sampled by
their protein functions. As a result, of all possible protein pair combinations,
a newly developed method improved prediction accuracy of F-measures. In
particular, for bound antibody–antigen pairs, we obtained 50.0% recall (= sen-
sitivity) with higher F-measures compared with previous studies. In addition,
by combining two proposed scoring systems, Receptor-Focused Z-scoring and
Ligand-Focused Z-scoring, further improvement was achieved. This result sug-
gested that the proposed prediction method improved the prediction accuracy
(i.e., F-measure), with few false positives, by taking biological functions of pro-
tein pairs into consideration.

1. Introduction

Most biological functions involve interactions between several proteins in a cell.
Therefore, it is important to elucidate biological phenomena, including cell sig-
naling, enzyme reactions, and gene expression regulation, by analysis of protein–
protein interactions (PPIs). In the past, several reviews 1)–3) have examined the
interaction characteristics of known protein complexes and PPI maps, which
can play a role in discovering protein partners. Well-known experimental tech-
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niques have been developed for the systematic analysis of PPIs, including yeast
two-hybrid-based methods 4), protein-fragment complementation assay 5)–11), and
mass spectrometric identification of isolated protein complexes 12),13) and protein
chips 14). Several methods have been developed in computational studies for pre-
dicting PPIs using genomic information 15),16).

Recently, research on PPIs has focused on not only ascertaining their roles in
living organisms but also applying this knowledge to medicinal fields such as drug
design. In essence, the interactive properties associated with protein conforma-
tion need to be thoroughly investigated if we are to analyze the relationships be-
tween protein structure and function. Ideally, PPI studies for drug design should
be based on protein structural information. Structure-based PPI study includes
protein–protein docking. Most previous studies on docking have attempted to
solve protein-docking problems; the ultimate objective of these studies was to
accurately predict the structures of protein complexes from three-dimensional
(3D) structures of individual proteins.

Since accurate prediction involves searching among numerous possible protein–
protein docking conformations in 3D space, it is necessary to develop an efficient
method for reducing the search space. To identify structures that are most likely
to occur in nature, plausible candidates from docking must be ranked using scor-
ing functions. Katchalski-Katzir and Vakser et al. 17) and subsequently the pro-
grams FTDock 18), 3D-Dock 19), GRAMM 20), DOT 21), ZDOCK 22), and HEX 23)

pioneered a fast Fourier transform (FFT)-based method for searching rapidly in
order to maximize shape and chemical complementarity between a given pair of
interacting proteins. Other docking programs such as ROSETTA 24) and Patch-
Dock 25) search in a confined space using Monte Carlo methods and Geometric
hashing 26). Other than shape complementarity, these rigid-body dockings are ad-
equate for various searching methods and scoring functions such as electrostatic
and desolvation energies.

In this study, given that protein docking has the potential to decide whether or
not a complex actually occurs in nature and for measuring its affinity, we focused
on the 3D structures of proteins in order to calculate PPIs via protein–protein
docking. This kind of PPI study has been previously discussed by Smith, et al. 27),
although they did not clearly demonstrate the functioning of an actual system
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11 Improved Prediction Method for Protein Interactions

or analysis of results. Recent studies 28)–31) involved in predicting PPIs on the
basis of shape complementarity docking succeeded in up to 23 of 84 predictions.
Sacquin-Mora, et al. 32) successfully predicted 7 out of 10 interaction partners
using weighted interaction energies. However, methods for determining protein
affinity of only one complex pair have been confined to forecasting a local binding
likelihood for each protein–protein pair, therefore have not been considered that
the required strength of binding is probably different by biological functions.

In order to solve this problem, we focused on assessing protein interactions by
globally considering affinities of one protein with other proteins. In this study, we
propose a docking-based prediction method for PPIs by using all possible protein
pair combinations. The aim of this study is to improve the prediction accuracy
of PPIs.

2. Protein–Protein Interaction Problem

The problem of predicting the interactions between two proteins, designated
as a receptor and a ligand (see Section 2.2.3 for the definitions of receptor and
ligand), was considered.

2.1 Protein–Protein Interaction Prediction Method
Most of the previous studies in computational approach developed the genome-

scale techniques, whereas recently the structure-based studies are considered as
an effective mean of applying to drug design. This approach is based on predicting
PPIs by protein–protein docking. This method consists of three procedures that
are outlined in Fig. 1. 3D structures of a receptor and ligand are the input data
flow, and the predicted result of the interaction is the output. The squares with
“Protein Docking,” “Affinity Evaluation,” and “Interaction Prediction” are the
key procedures, and each input/output port is shown in parentheses.

2.1.1 Protein–Protein Docking
Protein–protein docking is performed for calculating the 3D structure of a pro-

tein complex, starting from individual structures of constituent proteins. That
is, the general aim of this study is to predict the near-native complex structure
of two proteins, which is different from that of a PPI prediction problem that
determines whether or not the proteins interact. The reason for considering pro-
tein docking as a procedure in a PPI prediction problem is based on the following

Fig. 1 Flowchart for PPI prediction by protein–protein docking.

assumption. It is assumed that protein affinity plays a role in deciding whether
or not proteins interact only when their binding affinity can be calculated ac-
curately. That is, if the affinity of proteins is equal to or more than a certain
threshold, then they can be computationally regarded as a protein pair that in-
teracts. Based on this assumption, PPI prediction can be realized by statistically
analyzing docking scores from protein docking programs.

A rigid-body model for expressing molecules is exhaustively screened in a six-
dimensional rotation and translation space. The procedure starts by rotating
a ligand as a probe protein. When the rotational angular step Δ is equal to
the widely used 15 degrees, λ (= 3,600) poses are sampled because of rotational
symmetry 33). A target protein (receptor) and 3,600 probe proteins (ligands)
are discretized into 3D grids n3 by a certain grid pitch γ (e.g., 1.2 Å), where
n is the number of grid points in each coordinate. Each grid point is assigned
to a structural and chemical property value based on geometric characteristics
(i.e., core, surface and cavity areas) and free energies, respectively. When the
rotated ligand is translated with respect to the receptor, the docking algorithm
calculates the product sum of assigned property values, which is referred to as
the docking score (s). Given the grid size of a receptor n3 and the number of
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sampled ligand poses λ, λn3 docking scores can be obtained by an exhaustive
search for only one protein pair. The top-ranked Ns (Ns ≥ 1) scores are generally
sampled as candidates because of a large number of docking results. The results
X = {xk | 1 ≤ k ≤ Ns} include not only the docking scores sk but also the
structural information of complex candidates:

xk =
(
sk, tk (tx, ty, tz) , rk (rθ, rφ, rψ)

)
, (1)

where tk(tx, ty, tz) and rk(rθ, rφ, rψ) are the translational distance and the rota-
tional angle of the ligand, respectively.

2.1.2 Affinity Evaluation
Based on the docking results, affinity evaluation plays a role in calculating the

binding likelihood. The aim is to assess how strong the interactions are. The
simplest way is to utilize the maximum value among Ns docking scores as protein
affinity such that

a = max
(
sk

)Ns

k=1
. (2)

An alternative is to use the statistical characteristics provided by clustering the
docking results according to the score or structural similarities between candi-
dates.

2.1.3 PPI Prediction
Interaction prediction makes the final decision as to whether or not proteins

interact. The primitive threshold-based approach is used to determine the inter-
actions as follows:

p =

{
1 if a ≥ τ

0 otherwise
, (3)

where p is the prediction result that includes the Boolean values (i.e., 1 and 0
indicating positive and negative PPI, respectively), and τ is the affinity threshold
for deciding whether or not proteins interact. Here, the threshold τ has to be
decided using biological knowledge or statistical characteristics of affinity values,
etc.

2.2 Previous Studies
The outlines of previous PPI prediction methods are described based on protein

docking evaluations.
2.2.1 Outline of ZDOCK
A previous method for PPI prediction, which we have designated as ZDOCK

hereafter, uses docking scores from the protein–protein docking program ZDOCK
3.0.1 34). This tentative method was used for comparing the prediction method
in Section 2.2.2. The ZDOCK 3.0.1 program can assess structural and chemical
complementarity between proteins. It enables us to find binding sites and com-
plex structures using a FFT-based search algorithm with a scoring function that
is based on pairwise shape complementarity, electrostatics, and explicit interface
atomic contact energies. In affinity evaluation, the maximum score from only
one docking simulation among 2,000 docking scores was used to simply assess
the affinity of a protein pair. The setting values defined in Section 2.1.1 are as
follows: Δ = 15, γ = 1.2, and Ns = 2,000, where Δ is the rotational angular
step, γ is the grid pitch, and Ns is the number of samplings for candidates. Here,
when applying the ZDOCK 3.0.1 program execution option, all default values
(i.e., −N (= 2,000), −S (= no at randomization), and −D (= none)) were used.
The threshold τ was determined to maximize the F-measure by ROC analysis
described in Section 3.2.3.

2.2.2 Outline of Affinity Evaluation and Prediction (AEP)
A previous study 31) had predicted the interactions by assessing the statistical

significance of binding likelihood based on shape complementarity characteristics
between protein pairs. Figure 2 shows the flowchart of this method called affin-
ity evaluation and prediction (AEP). In their protein–protein docking procedure,
the original docking program with a scoring function of pair-wise shape comple-
mentarity was developed. The improvements for the trade-off between time and
accuracy, which are important for protein docking, are as follows:
( 1 ) To improve prediction accuracy, protein modeling was controlled by strictly

tracing the concavo-convex shape and reducing surface thickness.
( 2 ) To improve computational time, a high-performance FFT library

(CONV3D) 35) was used for the actual complementarity search on mas-
sively parallel computers.

Here, setting values were Δ = 15, γ = 1.2, and Ns = 512. In the affinity
evaluation procedure, the statistical characteristics of Ns candidates were used
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Fig. 2 Flowchart of a previous prediction method (i.e., AEP).

to assess protein affinity. The docking scores were classified into several clusters
according to the structural similarities between candidates. Protein affinity in
previous studies was calculated by the distribution of docking scores of a repre-
sentative of each cluster and that of the cluster density. Key parameter settings
were also important for determining structural similarities and extracting cluster
characteristics in this procedure. In the PPI prediction procedure, the affinity
threshold τ was obtained by the receiver operating characteristics (ROC) proce-
dure. The values of key parameters in affinity evaluation and τ are optimized so
that the F-measure is maximized.

Using the above procedures, the previous study successfully predicted 23 in-
teraction pairs out of 84. The study assumed that the required protein affinity
strength for the interaction was not dependent on the function of proteins. How-
ever, the protein affinity strength appears to differ by different docking schemes
(i.e., rigid-body or flexible docking), and the scheme may be related to protein
functions.

2.2.3 Protein-Pair Data Set
In order to evaluate the performances of ZDOCK and AEP, 168 bound proteins

derived from 84 co-crystallized complex structures by Protein–Protein Docking

Benchmark 2.0 36),37) were used. All proteins were classified as either receptors
(R) or ligands (L) according to Weng’s dfinition, which resulted in 84 proteins of
each type. When the receptor and ligand were derived from the same complex,
the receptor molecule was always larger than the ligand. Here, these 84 complexes
were classified as follows: 10 pairs of antibody–antigen (functional category A), 12
pairs of bound antibody–antigen (AB), 23 pairs of enzyme–inhibitor or substrate
(E), and others (O). In addition, the complexes can be classified according
to conformational changes as follows: 63 pairs of rigid-body (conformational
category RB), 13 pairs of medium difficulty (MD), and 8 pairs of high difficulty
(HD), as shown in Table 1. Each complex was assigned with both a protein
data bank (PDB) ID and an index from 1 to 84.

To evaluate the prediction method more exhaustively, Np (NR × NL = 7,056)
possible pairs were constructed by combining NR (= 84) receptors and NL (= 84)
ligands, where Np is the total number of receptor–ligand pairs, and NR and NL

are the numbers of receptors and ligands, respectively. Therefore, the data set
included 84 pairs that have been previously identified experimentally as forming
complexes and 6,972 others. Because receptor–receptor or ligand–ligand protein
interactions are believed not to occur under normal biological conditions, we only
employed receptor–ligand pairs. Here, in order to directly compare our method
with previous results, the bound structures of proteins were used.

2.3 Performance Measures
All protein pairs in the data set were classified into either 84 pairs whose in-

teractions have been previously experimentally detected or 6,972 others whose
interactions have not been detected. Using the binary values of 1 or 0, the pre-
diction results suggested whether or not proteins interacted, indicating positive
or negative for PPIs. Table 2 shows the logical combinations of experimental
interactions and prediction results as a 2 × 2 contingency table. The four logi-
cal combinations (i.e., TP, FN, FP, and TN) are defined in Table 2, and these
numbers are represented as tp, fn, fp, and tn, respectively.

In general, performance measures for information retrieval are used for assessing
the prediction accuracy of a binary classification problem. Many of the different
measures, such as sensitivity (sens), recall (rec), precision (prec), and F-measure
(F ), are given by
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Table 1 Protein-pair data set consisting of 84 receptors and 84 ligands. “#” indicates the
index number from 1 to 84 corresponding to a PDB ID of each complex, “Cat.”
indicates the conformational category (i.e., RB, MD, and HD).

# PDB ID Cat. Receptor Ligand

Antibody–Antigen (10)

1 1AHW RB Fab 5g9 Tissue factor
2 1BGX MD Fab Taq polymerase
3 1BVK RB Fv Hulys11 HEW lysozyme
4 1DQJ RB Fab Hyhel63 HEW lysozyme
5 1E6J RB Fab HIV-1 capsid protein p24
6 1JPS RB Fab D3H44 Tissue factor
7 1MLC RB Fab44.1 HEW lysozyme
8 1VFB RB Fv D1.3 HEW lysozyme
9 1WEJ RB Fab E8 Cytochrome C

10 2VIS RB Fab Flu virus hemagglutinin

Bound Antibody–Antigen (12)

11 1BJ1 RB Fab vEGF
12 1FSK RB Fab Birch pollen antigen Bet V1
13 1I9R RB Fab Cd40 ligand
14 1IQD RB Fab Factor VIII domain C2
15 1K4C RB Fab Potassium Channel Kcsa
16 1KXQ RB camel VHH Pancreatic alpha-amylase
17 1NCA RB Fab Flu virus neuraminidase N9
18 1NSN RB Fab N10 Staphylococcal nuclease
19 1QFW RB Fv Human chorionic gonadotropin
20 2HMI HD Fab 28 HIV1 reverse transcriptase
21 2JEL RB Fab Jel42 HPr
22 2QFW RB Fv Human chorionic gonadotropin

Enzyme–Inhibitor or Substrate (23)

23 1ACB MD Chymotrypsin Eglin C
24 1AVX RB Porcine trypsin Soybean trypsin inhibitor
25 1AY7 RB Barnase Barstar
26 1BVN RB alpha-amylase Tendamistat
27 1CGI RB Bovine chymotrypsinogen PSTI
28 1D6R RB Bovine trypsin Bowman-Birk inhibitor
29 1DFJ RB Ribonuclease A Rnase inhibitor
30 1E6E RB Adrenoxin reductase Adrenoxin
31 1EAW RB Matriptase BPTI
32 1EWY RB Ferredoxin reductase Ferredoxin
33 1EZU RB D102N Trypsin Ecotin
34 1F34 RB Porcine pepsin Ascaris inhibitor 3
35 1HIA RB Kallikrein Hirustatin
36 1KKL MD HPr kinase C-ter domain HPr
37 1MAH RB Acetylcholinesterase Fasciculin
38 1PPE RB Bovine trypsin CMTI-1 squash inhibitor
39 1TMQ RB alpha-amylase RAGI inhibitor

40 1UDI RB Uracyl-DNA glycosylase Glycosylase inhibitor
41 2MTA RB Methylamine dehydrogenase Amicyanin
42 2PCC RB Cyt C peroxidase Cytochrome C
43 2SIC RB Subtilisin Streptomyces subtilisin inhibitor
44 2SNI RB Subtilisin Chymotrypsin inhibitor 2
45 7CEI RB Colicin E7 nuclease Im7 immunity protein

Others (39)

46 1A2K RB Ran GTPase Nuclear transport factor 2
47 1AK4 RB Cyclophilin HIV capsid
48 1AKJ RB MHC Class 1 HLA-A2 T-cell CD8 coreceptor
49 1ATN HD Actin Dnase I
50 1B6C RB FKBP binding protein TGFbeta receptor
51 1BUH RB CDK2 kinase Ckshs1
52 1DE4 HD beta2-microglobulin Transferrin receptor ectodom
53 1E96 RB Rac GTApase p67 Phox
54 1EER HD Erythropoietin EPO receptor
55 1F51 RB Sporulation response factor B Sporulation response factor F
56 1FAK HD Coagulation factor VIIa Soluble tissue factor
57 1FC2 RB Staphylococcus Protein A Human Fc fragment
58 1FQ1 HD CDK inhibitor 3 CDK2 kinase
59 1FQJ RB Gt-alpha RGS9 MSE
60 1GCQ RB GRB2 C-ter SH3 domain GRB2 N-ter SH3 domain
61 1GHQ RB Epstein-Barr virus receptor CR2 Complement C3
62 1GP2 MD Gi-alpha Gi-beta,gamma
63 1GRN MD CDC42 GTPase CDC42 GAP
64 1H1V HD Actin Gelsolin
65 1HE1 RB Rac GTPase Pseudomonas toxin GAP dom.
66 1HE8 MD Ras GTPase PIP3 kinase
67 1I2M MD Ran GTPase RCC1
68 1I4D RB Rac GTPase Arfaptin
69 1IB1 MD 14-3-3 protein Serotonin N-acteylase
70 1IBR HD Ran GTPase Importin beta
71 1IJK MD Botrocetin Von Willebrand Factor dom. A1
72 1K5D MD Ran GTPase Ran
73 1KAC RB Adenovirus fiber knob protein Adenovirus receptor
74 1KLU RB MHC class 2 HLA-DR1 Staphylococcus enterotoxin C3
75 1KTZ RB TGF-beta TGF-beta receptor
76 1KXP RB Actin Vitamin D binding protein
77 1M10 MD Von Willebrand Factor dom. A1 Glycoprotein IB-alpha
78 1ML0 RB Viral chemokine binding p. M3 Chemokine Mcp1
79 1N2C MD Nitrogenase Mo-Fe protein Nitrogenase Fe protein
80 1QA9 RB CD2 CD58
81 1RLB RB Transthyretin Retinol binding protein
82 1SBB RB T-cell receptor beta Staphylococcus enterotoxin B
83 1WQ1 MD Ras GTPase Ras GAP
84 2BTF RB Actin Profilin
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Table 2 Logical combinations of experimental interactions and prediction results.

Experimental interaction

Detected Not detected

Prediction result Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

rec(= sens) =
tp

tp + fn
, prec =

tp

tp + fp
, F =

2 · prec · rec
prec + rec

. (4)

Sensitivity (= recall) is represented as the proportion of true positives in protein
pairs with experimentally validated interactions. That is, a prediction method
with high sensitivity can reveal most of the pairs whose interactions have been ex-
perimentally detected. Then, the precision, which is the degree of reproducibility,
shows the proportion of pairs with experimental interactions from all prediction
results. Moreover, the F-measure is defined as the harmonic mean of recall and
precision. Its value increases significantly as the values of both these factors
increase. Considering the attributes of the used criteria, we employed the F-
measure to assess prediction results. Because the F-measure can quantitatively
gauge the prediction accuracy relative to the prevalence of a problem, we can
evaluate recall and precision as trade-off in the form of a combined value.

3. Method

We propose a method for predicting protein interactions from the docking
scores of protein pairs using their functional information.

3.1 Overview
In order to solve the problem of the previous study, we focused on the dock-

ing scores of functionally classified pairs. This is because when distributions of
scores of pairs with the same functions were checked, the following findings can
be revealed: (1) potential protein affinities exist that represent protein bindings,
and (2) affinity thresholds were different between particular functionally classi-
fied pairs, which determine whether or not proteins interact. Figure 3 shows a
flowchart of the proposed prediction method. The method consists of four pro-
cedures, including three key procedures, as shown in Fig. 1, and an additional
procedure by ROC analysis. In the ROC procedure, the optimal affinity thresh-
old τ is determined by ROC analysis. Although the flow outline is similar to

Fig. 3 Flowchart of the proposed prediction method.

that of a previous prediction method (i.e., AEP) in Fig. 2, repeated procedures
are quite different. Compared with “Protein Docking” and “Affinity Evaluation”
procedures in the previous method, only the “Protein Docking” procedure is
repeated Np (i.e., the number of all protein pairs) times. Since the proposed pro-
tein affinity is defined not only by docking scores of one pair but also by that of
others, the iteration in the “Protein Docking” procedure needs to be completed
before the “Affinity Evaluation” procedure. In addition, calculation methods in
each procedure and score definitions are different.

3.2 Algorithm
Input and output of the proposed method are as follows:

Input:
3D structures and functions of all receptor–ligand pairs,

Output:
prediction results of computational protein–protein interactions.
The method consists of four steps, as outlined in Fig. 3.

Step 1 (Protein Docking):
Search the structures of complex candidates with docking scores using the 3D
structure of one receptor–ligand pair. Step 1 is repeated for all protein pairs.
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Step 2 (Affinity Evaluation):
Evaluate protein affinities by statistically inspecting docking scores of pairs
using functional information.

Step 3 (ROC Analysis):
By ROC analysis, detect the optimal threshold τ for determining whether or
not protein pairs interact.

Step 4 (Interaction Prediction):
Predict computational interactions from protein affinities and functions of
pairs.

In order to describe the method, a protein is modeled according to the com-
putational information that represents the 3D structure and biological function,
where the protein structure includes the 3D coordinates of its constituent atoms,
and biological functions are as follows:

F = {“A”, “AB”, “E”, “O”}. (5)
In addition, the experimental interaction of each receptor–ligand pair for deter-
mining the threshold τ and measuring the performance of the prediction method
was previously detected by

I =

{
1 if experimental interaction is detected
0 otherwise

. (6)

3.2.1 Protein–Protein Docking (Protein Docking, Step 1)
In Step 1, we use the protein–protein docking program ZDOCK 3.0.1 to assess

structural and chemical complementarity between proteins. As described in Sec-
tion 2.2.1, ZDOCK 3.0.1 enables us to find binding sites and complex structures
using a FFT-based search algorithm with a scoring function based on pair-wise
shape complementarity, electrostatics, and explicit interface atomic contact ener-
gies. The setting values defined in Section 2.1.1 are as follows: Δ = 15, γ = 1.2,
and Ns = 2,000. Then, all default values (i.e., −N (= 2,000), −S (= no at ran-
domization), and −D (= none)) of execution options are used. This procedure
outputs the top Ns scores for each docking score sij of a receptor–ligand pair
(Ri, Lj). By repeating Step 1, docking scores of all Np (= NR × NL) pairs are
calculated.

3.2.2 Affinity Evaluation (Step 2)
In Step 2, protein affinities are assessed statistically based on functionally clas-

sified docking scores. In order to estimate the affinity of a target pair, dock-
ing scores of all pairs having the same function are considered. We propose
the following Z-scoring systems: Receptor-Focused Z-scoring (RFZ) and Ligand-
Focused Z-scoring (LFZ). The aim of this method was to statistically evaluate
each receptor- or ligand-focused group of docking scores and then convert the
docking score into an affinity based on the Z-score. That is, RFZ collects those
ligands that have scores similar to a specific receptor, while LFZ collects those
receptors that have scores similar to a specific ligand. Therefore, either receptor
or ligand functions are used for affinity evaluation. When RFZ evaluates protein
affinity based on docking score distribution of receptors having the same func-
tions, functional information of ligands is not used. Since the key steps for RFZ
and LFZ are the same, the details for only RFZ are shown below.

Input and output of the procedure are as follows:
Input:

docking scores,
Output:

protein affinities.
The method consists of three steps.

Step 2.1 (Preparation of docking scores):
Calculate the maximum score among Ns scores for each receptor and ligand
pair and obtain a set of docking scores {sij | Ri ∈ R, Lj ∈ L} for assessing
protein affinity.

Step 2.2 (Grouping of docking scores):
In this step, the available information for grouping the docking scores depends
on receptor–ligand pairs. In this study, the following cases can be considered:
(1) both structural and functional information of the confirmed pairs having
same functions, and (2) only the structural information of all pairs consisted
of proteins with varying functions.
All Np docking scores are classified according to pair functions. For example,
a set of receptors in functional category A (i.e., antibody–antigen) is given by:

RA = {Ri | Ri ∈ R, F (Ri) = “A”}, (7)
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where F (Ri) denotes the biological function of receptor Ri.
Next, NRA ×NL docking scores are split into NRA subset of scores of pairs that
have the same receptor such that:

sA
i = {sij | Lj ∈ L}, Ri ∈ RA, (8)

where NRA denotes the number of receptors with the function A among R.
Similarly, for other functions AB, E, and O, other subsets sAB

i , sE
i , and sO

i are
obtained from sij .

Step 2.3 (Z-score calculation):
In this step, the Z-score of each score subset is calculated as follows:

aA
ij =

sij − E(sA
i )

σ(sA
i )

, (9)

where E(sA
i ) and σ(sA

i ) denotes the mean and standard deviation of scores sA
i ,

respectively. Thus, the affinities of all pairs, aij , are determined.
3.2.3 Receiver operating characteristic analysis (ROC Analysis,

Step 3)
In Step 3, the affinity threshold τ is decided to maximize the F-measure by

ROC analysis. When the optimal τ value is used for determinating PPIs, many
prediction results of the 84 protein pairs (Ri, Lj) with experimentally validated
interactions (i.e., Iij = 1) are correctly evaluated as positives for PPIs (i.e., pij =
1), and the other 6,972 pairs whose interactions have not been experimentally
detected (i.e., Iij = 0) are correctly predicted as negatives (i.e., pij = 0). In ROC
analysis, a cut-off value is generally used as the criterion for separating the two
classes (i.e., positives and negatives for PPIs). When the cut-off value is changed
by a certain incremental amount from minimum to maximum of all affinities (a),
recall and precision values for each cut-off value are obtained. Therefore, the F-
measure is obtained from recall and precision values. Although there are various
ways of obtaining the optimal threshold, we employed a method based on the
balance of recall and precision, as the objective of this study is to maximize the
F-measure. The threshold τ was determined so that the value of {recall2 + (1 −
precision)2} becomes maximum.

The values of τ vary with prediction methods and functional categories. That
is, τA

RFZ for predicting the interactions of pairs in functional category A by RFZ
is different from τAB

RFZ for predicting AB pairs by the same method. In addition,

τA
RFZ is not equal to τA

LFZ in spite of same functional categories. When the
prediction method uses a combination of RFZ and LFZ, called RFZ×LFZ and
RFZ+LFZ (see Section 3.2.4 for the definitions of RFZ×LFZ and RFZ+LFZ),
a threshold τA

RFZ×LFZ for protein pairs in A from RFZ×LFZ shows a pair of
thresholds for both RFZ and LFZ such as (τA

RFZ, τA
LFZ).

In the previous method, the entire protein-pair data set, including 84 target
protein pairs, was used for determining the threshold τ by ROC analysis. In
order to directly compare the previous results, the entire data set was also used
in this study.

3.2.4 Interaction Prediction (Step 4)
In Step 4, the interactions of all receptor–ligand pairs are finally predicted.

Protein affinities are assessed by comparisons with the optimal threshold τ . If
the affinity value is more than or equal to τ , the prediction result pij is set to
1, indicating “positive;” Otherwise, the value is set to 0, indicating “negative,”
such as

pij =

{
1 if aij ≥ τ

0 otherwise
. (10)

Here, we propose additional scoring systems, RFZ×LFZ and RFZ+LFZ, which
predict the interactions by combining the results of RFZ and LFZ. That is,
the prediction result of each protein pair, pRFZ×LFZ

ij is defined by the logical
AND operation of pRFZ

ij and pLFZ
ij , while pRFZ+LFZ

ij is defined by the logical OR
operation.

4. Results and Discussion

The important findings of this study are as follows: (1) achieving improved
prediction accuracy by assessing protein affinities by considering biological func-
tions, and (2) achieving additional refinement of prediction accuracy by combin-
ing proposed scoring systems, RFZ and LFZ. We discuss these points in this
order below.

4.1 Prediction Performance of RFZ and LFZ
For comparison with previous methods, we employed the protein-pair data

set in Section 2.2.3. At the first evaluation for improving prediction accuracy
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Table 3 Comparison of proposed methods, RFZ and LFZ, and previous methods. Prediction
performances (%) are determined by the F-measure, Recall (= Sensitivity), and
Precision. τ indicates the threshold for determining protein–protein interactions.

Performance measures

Method F-measure Recall Precision tp fp fn tn

RFZ (τ = 2.984) 28.3 20.2 47.2 17 19 67 6,953
LFZ (τ = 3.103) 21.9 16.7 31.8 14 30 70 6,942
AEP (τ = 4.520) 6.3 27.4 3.5 23 629 61 6,343
ZDOCK (τ = 1,364.018) 4.0 73.8 2.1 62 2,941 22 4,031

using the proposed method, the entire data set (84 × 84 = 7,056 protein pairs)
was used. Table 3 shows comparison of prediction accuracy for the proposed
scoring systems (RFZ and LFZ) and previous methods (AEP and ZDOCK). AEP
indicates the previous method detailed in Section 2.2.2, and the best performance
of AEP is given by optimizing key parameters, as shown in Table 3. ZDOCK is a
simple PPI prediction method that directly uses ZDOCK 3.0.1 for protein-protein
affinity calculations, as described in Section 2.2.1. The proposed RFZ and LFZ
greatly improved prediction accuracy, with the obtained F-measures higher than
those obtained by previous methods. This improvement arose as the proposed
method could reduce many false positives; the number of false positives obtained
by RFZ was only 19 among all 6,972 negative examples, compared with 629 by
AEP. As a result, using only structural information of proteins, RFZ and LFZ
correctly predicted the interactions of 17 and 14 pairs among 84, respectively.

For predictions using both structural and functional information of proteins,
Fig. 4 summarizes the comparison results of prediction methods in each func-
tional category. Horizontal and vertical axes denote the F-measure value or
recall/precision and the prediction method, respectively. The detailed value of
each criterion and the numbers of TP, FP, FN, and TN are shown in Table 4.
The previous methods, ZDOCK and AEP, indicate prediction results only using
protein pairs having same functions. Each threshold τ was determined so as to
maximize the F-measure by ROC analysis. Here, it was not always necessary
that the proposed method, which used affinities based on functionally classified
docking scores, could improve the prediction accuracy. One reason was that sev-
eral pairs having different functions and high affinities were present in all 7,056
pairs. These high scores were greater than those of pairs with the same functions.

Fig. 4 Comparison of prediction accuracy in respective functional categories. The bar chart
and line graph denote the values of the F-measure and recall/precision, respectively.

An example of a high affinity pair is R3 and L26, where R3 denotes a receptor
protein of 1BVK (index: 3, functional category: A, conformational category:
RB) 38), which is the Fv fragment of a humanized anti-hen egg white lysozyme
Ab (HuLys), and L26 denotes a ligand protein of 1BVN (26, E, RB) 39), which
is the alpha-amylase inhibitor Hoe-467A (Tendamistat). In a preliminary ex-
periment, the affinity of a(R3, L26) was 1.43 times greater than that of the 10
affinities of {a(R3, L1), a(R3, L2), · · · , a(R3, L10)} (minimum: −1.28, maximum:
0.91) for pairs having the same receptor R3 in functional category A. For all
receptors R1–R10 in category A, there were 122 high affinity pairs among 740
pairs that had different functions, that is, 16.5% of all pairs. As shown in Ta-
ble 4, both proposed scoring systems improved the performance in F-measures
in almost all cases compared to that by previous methods. Only in the case of
LFZ, the 10× 10 subset of functional category A was less than that of AEP (Ta-
ble 4 (a)). As shown in Table 4, LFZ gave a prediction accuracy of 24.2% with
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Table 4 Comparison of proposed methods, RFZ and LFZ, and previous methods in respective
functional categories. Prediction performances (%) are determined by the F-measure,
Recall (= Sensitivity), and Precision. τ indicates the threshold for determining
protein–protein interactions.

Performance measures

Method F-measure Recall Precision tp fp fn tn

(a) Antibody–Antigen (10 × 10)

RFZ (τ = 2.001) 33.3 20.0 100.0 2 0 8 90
LFZ (τ = 0.445) 24.2 40.0 17.4 4 19 6 71
AEP (τ = 4.630) 33.3 30.0 37.5 3 5 7 85
ZDOCK (τ = 1,489.529) 23.7 90.0 13.6 9 57 1 33

(b) Bound Antibody–Antigen (12 × 12)

RFZ (τ = 1.751) 47.1 33.3 80.0 4 1 8 131
LFZ (τ = 0.949) 31.6 50.0 23.1 6 20 6 112
AEP (τ = 4.590) 22.2 25.0 20.0 3 12 9 120
ZDOCK (τ = 1,831.057) 29.8 58.3 20.0 7 28 5 104

(c) Enzyme–Inhibitor or Substrate (23 × 23)

RFZ (τ = 1.536) 36.7 47.8 29.7 11 26 12 480
LFZ (τ = 1.751) 37.2 34.8 40.0 8 12 15 494
AEP (τ = 4.530) 20.9 30.4 15.9 7 37 16 469
ZDOCK (τ = 1,320.669) 16.2 73.9 9.1 17 170 6 336

(d) Others (39 × 39)

RFZ (τ = 3.131) 40.0 25.6 90.9 10 1 29 1,481
LFZ (τ = 3.483) 39.2 25.6 83.3 10 2 29 1,480
AEP (τ = 3.970) 7.1 66.7 3.8 26 665 13 817
ZDOCK (τ = 1,359.312) 10.9 74.4 5.9 29 463 10 1,019

an F-measure < 33.3% of AEP because of the increase from 5 false positives by
AEP to 19 by LFZ, whereas the number of true positives was slightly increased
by one. In contrast, RFZ provided maximum performance in each category. The
considerable improvement by RFZ was owing to the decrease of many false pos-
itives. This is supported by the fact that precision was greater than recall in
three of four categories. In addition, although there was naturally a trade-off
between recall and precision, LFZ in the AB category achieved the best recall
(= sensitivity) that was 50.0% more than AEP (Table 4 (b)). These results indi-
cate that the proposed scoring system could provide a significant improvement in
prediction accuracy using both structural and functional information of proteins.

As described in Section 3.2.3, in order to make direct comparisons with previ-
ous results, all protein-pair data sets, including target protein pairs, were used

Table 5 Comparison of prediction accuracy by LOOCV and other methods using all data
sets, including target pairs in functional categories A and E. RFZ and LFZ denote
the proposed method with the optimum threshold τ by ROC analysis, simply using
all data sets. RFZ LOOCV and LFZ LOOCV denote RFZ and LFZ with the average
threshold τave from the LOOCV method.

Performance measures

Method F-measure Recall Precision tp fp fn tn

(a) Antibody–Antigen (10 × 10)

RFZ (τ = 2.001) 33.3 20.0 100.0 2 0 8 90
LFZ (τ = 0.445) 24.2 40.0 17.4 4 19 6 71
RFZ LOOCV (τave = 1.969) 33.3 20.0 100.0 2 0 8 90
LFZ LOOCV (τave = 0.550) 6.7 10.0 5.0 1 19 9 71

(b) Enzyme–Inhibitor or Substrate (23 × 23)

RFZ (τ = 1.536) 36.7 47.8 29.7 11 26 12 480
LFZ (τ = 1.751) 37.2 34.8 40.0 8 12 15 494
RFZ LOOCV (τave = 1.536) 33.9 43.5 27.8 10 26 13 480
LFZ LOOCV (τave = 1.752) 29.3 26.1 33.3 6 12 17 494

for determining the threshold τ by ROC analysis. Here, we also investigated
the prediction results using the threshold τ by leave-one-out cross-validation
(LOOCV). Table 5 shows a comparison of prediction accuracy of the pro-
posed scoring systems (i.e., RFZ and LFZ) and other methods based on LOOCV
(i.e., RFZ LOOCV and LFZ LOOCV). RFZ and LFZ indicate prediction ac-
curacy using the optimum threshold τ determined by all data sets, including
target protein pairs. Because the processes for determining the threshold τ were
based on the training data and evaluating the validation data using this thresh-
old τ were repeated for a required number of times (e.g., 10 × 10 = 100 times
in functional category A), τave denotes the mean of these thresholds. In func-
tional category A, although prediction results of RFZ LOOCV were the same as
that of RFZ, LFZ LOOCV gave a prediction accuracy of 6.7% F-measure that
was less than 24.2% by LFZ because of the decrease from four true positives by
LFZ to one by LFZ LOOCV (Table 5 (a)). In functional category E, 33.9% F-
measure of RFZ LOOCV is less than 36.7% of RFZ because of the decrease from
11 true positives by RFZ to 10 by RFZ LOOCV. The number of true positives by
LFZ LOOCV (tp = 6) is less than that by LFZ (tp = 8) (Table 5 (b)). The num-
ber of false positives in each functional category was not changed by the LOOCV
method. These results indicate that the performance of the proposed scoring
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Fig. 5 Comparison with prediction accuracy of F-measure. A, AB, E, and O indicate respec-
tive functional categories. “All” indicates prediction accuracy using all data sets.

system RFZ and LFZ decreases based on thresholds by the LOOCV method.
4.2 Effect of combining RFZ and LFZ
For further analysis, we investigated the influence of further improvement by

combining RFZ and LFZ. Figure 5 shows a comparison with prediction accuracy
based on the F-measure. For predictions using all data sets and considering only
the structural information of proteins, the use of both RFZ×LFZ and RFZ+LFZ
exceeded RFZ and LFZ over previous methods. In addition, regarding the re-
sults of function-related predictions, F-measures of proposed methods were more
than or equal to those of RFZ and LFZ in each functional category. Comparing
RFZ×LFZ and RFZ+LFZ performances, RFZ×LFZ was better than RFZ+LFZ
in three (i.e., A, E, and O) of four functional categories. These results indicate
that combining RFZ and LFZ is effective for improving prediction accuracy.

4.3 High-Affinity Complexes
Figure 6 shows the predicted and non-predicted protein pairs by the proposed

methods. The PDB index from 1 to 84 on the horizontal axis indicates protein
pairs that have been identified experimentally to form complexes. The relation-
ships between PDB IDs of these complexes and their corresponding indices are

Fig. 6 Predicted and non-predicted protein pairs by all proposed methods. M1, M2, M3,
and M4 are abbreviations for RFZ×LFZ, RFZ+LFZ, RFZ, and LFZ, respectively.

shown in Table 1. The vertical axis represents the proposed prediction meth-
ods of M1, M2, M3, and M4 indicating RFZ×LFZ, RFZ+LFZ, RFZ, and LFZ,
respectively. The high-affinity pairs are shown as straight lines parallel to the
vertical axis. Thus, the low-affinity pairs that were not predicted by any method
are shown as white spaces in M1 + M2 + M3 + M4. Each method predicted sim-
ilar protein pair interactions, such as 1BGX (index: 2, functional category: A,
conformational category: MD) 40), 1BJ1 (11, AB, RB) 41), 1AVX (24, E, RB) 42),
and 1EER (54, O, HD) 43). Table 6 shows the results of a number of high- and
low-affinity complexes. The complexes of MD or HD in conformational categories
are shown in parentheses. The number of pairs successfully predicted by at least
one method is the highest at 58.3% of total pairs in functional category AB. In
addition, predictions by all methods were very similar in E and O categories;
that is, between one and three methods can predict several protein pairs such
as 1F34 (34, E, RB) 44) and 1IJK (71, O, MD) 45). On the other hand, all 84
complexes include 21 complexes in conformational categories MD or HD. About
half of these 21 complexes were predicted by all methods, and the remaining 10
pairs were not predicted by any method. Especially in category O, nine pairs
predicted by all methods were in MD or HD conformational categories. These
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Table 6 Results of the number of high-affinity complexes predicted by proposed methods. A,
AB, E, and O indicate respective functional categories. The protein pairs of medium
difficulty (MD) or high difficulty (HD) in conformational categories are shown in
parentheses.

Complex Num. of high-affinity complexes

Cat. Num. 0 methods 1–3 methods 4 methods

A 10 (1) 6 (0) 2 (0) 2 (1)
AB 12 (1) 5 (1) 4 (0) 3 (0)
E 23 (2) 12 (2) 3 (0) 8 (0)
O 39 (17) 28 (7) 2 (1) 9 (9)

Total 84 (21) 51 (10) 11 (1) 22 (10)

results suggest that although all four methods predict similar protein pairs, the
effect of combining RFZ and LFZ can be obtained by several different pairs by
each method (i.e., RFZ and LFZ). In addition, our proposed methods can predict
protein pair interactions with conformational changes at high accuracy.

5. Conclusions

We have proposed a method for predicting protein interactions from the docking
scores of protein pairs that have same functions. We developed PPI prediction
scoring systems, RFZ and LFZ, to statistically evaluate separate receptor- or
ligand-focused groups of docking scores and convert the docking score into protein
affinity based on the Z-score. The proposed method assessed the improvement
in prediction accuracy using a protein-pair data set. The following conclusions
were derived from the results and discussion.
( 1 ) By an analysis of biological functions of protein pairs, the prediction ac-

curacy is significantly improved without changing the prediction algorithm
itself.

( 2 ) Further refinement of prediction accuracy was achieved by combining RFZ
and LFZ.

In the near future, we plan to study the identification of protein functions
using the existing docking programs with various scoring functions. We also aim
at extending the new findings for application to related research such as drug
design.
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