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This paper investigates the space complexity of a self stabilizing leader elec-
tion in a mediated population protocol (SS-LE MPP). Cai, Izumi and Wada
(2009) showed that SS-LE in a population protocol (SS-LE PP) for n agents
requires at least n agent-states, and gave a SS-LE PP with n agent-states for
n agents. MPP is a model of distributed computation, introduced by Chatzi-
giannakis, Michail and Spirakis (2009) as an extension of PP allowing an extra
memory on every agents pair. While they showed that MPP is stronger than
PP in general, it was not known if a MPP can really reduce the space com-
plexity of SS-LE with respect to agent-states. We in this paper give a SS-LE
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MPP with n — 1 agent-states and a single bit memory on every agents pair for
n agents.

1. Introduction

Population Protcol (PP), proposed by Angluin et al,l), is a model of distributed
computation consisting of agents and communication links among them, and Mediated
Population Protocol (MPP) proposed by Chatzigiannakis et al.7>, is an extended model
of PP allowing memories on communication links. PP and MPP are models of sensor
networks consisting of passively mobile agents with limited computational resources,
motivated by practical networks such as networks of smart sensors attached to cars or
animals, synthesis of chemical materials, complex biosystems, and so on (cf.l)’7)).

In MPP, every agent is identically programmed as a finite state machine, and every
communication link is equipped with a (finite) buffer. The agents sequentially interact
with each other updating their states; a pair of agents chosen by a scheduler updates
their own agent-states and edge-states between them in an interaction. The order of
interactions of agent-pairs is unpredictable, and is scheduled by an adversarial sched-
uler satisfying a fairness condition; the scheduler must accept any possible interaction
within a finite time if a configuration in which the interaction can arise should appear
infinitely many times.

Angluin et al.®) discussed the leader election in a population protocol, which is a
fundamental problem in distributed computing, and introduced the problem of self
stabilizing leader election in a population protocol (SS-LE PP, for short). In a SS-LE
PP, any initial configuration of agent-states eventually have to reach at a configuration
whose successive configurations contain exactly one leader. Thus a SS-LE PP should be
equipped with seemingly conflicting functions; the protocol has to decrease the number
of leaders if a configuration contains two or more leaders, while the protocol has to

appoint an agent to be a leader if a configuration does not contain a leader. This causes
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some difficulties on SS-LE, as it is usual with self-stabilizing distributed problems.

Angluin et al.? discussed that no SS-LE PP with any constant number of agent-
states exists for general n agents on some types of interaction graphs. Fischer and
Jiangg) discussed SS-LE PP assuming a (global) oracle for leader detector on complete
communication graphs. Canepa and Potop-Butucaru6) discussed SS-LE PP on any
communication graph in the same assumption with?. Cal, Izumi and Wada® discussed
SS-LE on complete interaction graph without any (global) oracles, and showed that
SS-LE for n agents requires at least n agent-states, and presented a SS-LE PP with n
agent-states for n agents.

This paper is concerned with the space complexity of self stabilizing leader election in
a mediated population protocol (SS-LE MPP, for short) for n agents, where we assume
that an interaction graph is complete as did Cai, Izumi and Wada®. We present a SS-
LE MPP with n— 1 agent-states and two edge-states for n agents. As far as the authors
know, this is the first result on SS-LE MPP. One may say it obvious that the number of
agent-stats decreases in MPP comparing with PP due to extra memories on edges. In
fact, it is clear that n is also sufficient for the number of agent-states in SS-LE MPP for
n agents. However, extra memories on edges in MPP, which are expected to resolve the
issue of conflicting functions in the self-stabilizing setting instead of a certain number of
agent-states, may cause another issue of increasing possible (bad) initial configurations
in the self-stabilizing setting.

This paper is organized as follows; in Section 2, we describe the detail of our model.
We in Section 3 give a SS-LE MPP with n — 1 agent-states and 2 edge-states for n

agents.
2. Model Description — SS-LE MPP

A mediated population protocol is defined by 3-tuple (@, S, ), where @ denotes a finite
set of agent-states, S denotes a finite set of edge states, and 6: @ X Q XS — Q X Q xS
denotes a transition function. Let A denote the set of anonymous agents and let n = |A|,
and let ¢ % Q4 x S(Q) denote all configurations. A transition from a configuration
C € C to the next configuration C’ € C is defined as follows. An arbitrary pair of agents

ai,a; € A(a; # aj) is chosen by a scheduler, thus an interaction graph is complete in
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our model. States of the agents a; and a;, and a state of an edge {a;,a;} are updated
according to a transition function §. Let r : (p,q,s) — (p’,q’,s’) denote a specified
transition rule of &, and let C ——"%s ¢’ denote a transition from C' € C to C' € C
in which agents a; and a; interact and their states p, ¢ and edge-state s between them
are updated to p’,¢’, s’ according to the rule r of §. We simply write C = C’ without
confusing. An execution of a protocol is represented by an infinite sequence of con-
figurations and transitions Co,r0,C1,71,..., where Cp is an initial configuration and
Ci =5 Cita(i > 0).

We assume that a scheduler in a MPP is adversarial but (globally) fair, as usual
(cf.5)). Thus we have to think that an adversarial scheduler schedules the order of in-
teractions in a worst case scenario for us, but it is forced to satisfy that if a configuration
C € C appears infinitely often in an execution, a configuration C’ € C must also appear
infinitely often in an execution, where C’ is a configuration obtained by an arbitrary
transition r € § which arises in C. We say that C' eventually transits to C’, denoted
by C = ', if C' must appear after C by the adversarial but globally fair scheduler in
MPP. In addition, we describe a sequence of transitions as the trace T.

Leader election in a MPP is to assign a special state, representing a “leader”, in S
to exactly one agent. We say a configuration C € C is legal if C' contains exactly one
agent with the leader state, and so does any configuration C’ satisfying C' = C’. Let
L denote the set of all legal configurations. We say a protocol for the leader election
(for a distributed problem, in general), is self-stabilizing if C 5 ', C" € L hold for any
C € C. We simply say SS-LE MPP as a mediated population protocol for the leader
election which is self stabilizing.

Our goal is to give upper bound of the sizes of the agent-states ) and edge-states S
for SS-LE MPP concerning the number of agents n. Main results of the paper are to
give a SS-LE MPP with |Q| =n — 1 and |S| = 2 for n agents in Section 3.

3. Simple SS-LE MPP with n — 1 Agent-states

In this section, we show the following.
Theorem 1. There exists a SS-LE MPP with n — 1 agent-states and 2 edge-states for
n(>4) agents.
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We give a constructive proof. In particular, we show that Protocol Pi, defined as
follows, is a SS-LE MPP.

Protocol P;
Q ={q.q,--
S ={so,s1},
6 ={

,Ggn—2}, where go denotes the leader state.

r1: (qo,qo, 8) + (qo, gn—2,50) for s€ S,

a1, q1,8) = (q1,92, 50) for se€S,

92,42, 50) + (g2, q2, 51),
)

(

ra: (

(
T4t (g2, G2, 81) = (g2, 41, 50),
( )

(

(

T3:
S
q2,q1,51) = (g2,90,50)  ((q1,42,51) = (qo, 92, 50), symmetrically),
G, qi, S) — (Gi, qi—1,80) for i>3,s€ S,

T5:
T6:
r7:

1.

Remark. Fxcept for Transition rs, the state of an agent can change only when the

Qs ik, S) = (5, Qi So) for j#k,s €S, except for the case of 5

agent interacts with another agent in the same state.

Let v, (C) for k € {0,1,...,n — 2} denote the number of agents with state g, in a
configuration C' € C. We define a set of configurations £ C C by

Y(C) >0 for k € {0,1,...,n—2}, 1(C) +72(C) =3,

both ends of an edge with state s; are agents with state gs.

c¥lcoec

Note that the number of edges with state s1 in C' € £ is at most one since v2(C) is at
most two from the definition of L.

In the following, we claim that £ is the set of legal configurations for Protocol P;.
Let H denote a subconfiguration of C' € L consisting of three agents with states g1 or
g2 and three edges among them. Then H can be one of three types of subconfigurations
Hi, Hs, Hs of six possible types Hi, Ha, Hs, Hs4, Hs, Hg in Fig.1 which satisfy that the
number of edges with state s; is at most one, v1(C') > 0 and ~2(C) > 0. First, we show
that £ is “closed” under the transition function ¢.

Lemma 2. If configurations C' and C' satisfy C € £ and C = C', then C' € L and
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0 1 {Hi,H2, Hs} is closed.

*

C'" = C hold.

Proof. Transition r; cannot arise in a configuration C' € £ by the condition v (C) =1

in £. By the condition 71 (C) + 72(C) = 3 and (C) > 0 for k € {0,1,...,n —2}, C

satisfies v, (C) =1 for k € {3,4,...,n —2}. Thus, Transition r¢ cannot arise in C' € L.
Now we show that Transition 75 cannot arise in C. Since the edge-state s1 appears

only within the subconfiguration H of C' € L, it is enough to show that Transition rs

cannot arise in subconfigurations Hi, He, Hs of C.

Case 1. H = H;: Consider an agent with state g1 as a and agents with state g2 as b, c,

and consider every state of every edge among them as state sg. Then Transitions r3 or

r7 can arise in Hy, that is Hi I3, Hs or Hy I, Hi.

Case 2. H = H,: Consider an agent with state g1 as a and agents with state g2 as b, c,

and consider a state of the only one edge between the two agents b, ¢ as state s;. Then
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Transitions r4 or r7 can arise in Ha, that is Ha T4, Hs or Ho I, Ho.
Case 3. H = Hs: Consider agents with state g1 as a,b and an agent with state ¢q2 as ¢
and consider every state of every edge among them as state sgp. Then Transitions r2 or
r7 can arise in Hs, that is Hs T2, Hy or Hs I, Hs.

Therefore, if C € £ and C” satisfies C = C’, then C’ € £ and C’ =5 C hold. O

Next, we show that any configuration C' € C eventually transits to a configuration
C' € L, in Lemma 5. To show Lemma 5, we show Lemmas 3 and 4.
Lemma 3. If a configuration C € C satisfies v(C) > 0 for k € {0,2,3,...,n—2}, and
C 5 ', then the configuration C' also satisfies v, (C") > 0.

Proof. After an agent with state ¢i for k € {0,2,3,...,n — 2} interacts with any other
agent, vx(C) decreases at most one in any transition. In fact, yx(C) decreases only
when the agent interacts with another agent in the same state gx. This implies that

1 (C') never decreases from one to zero by any transition. O

Lemma 4. If configurations C,C’" € C satisfy v%(C) = 0, C 5 C’ and v(C') = 0,
then the followings hold;

(1) Ele ~7(C') > Zle ~i(C) for any k € {2,3,...,n— 2}.

(2) Ifv(C) >0, then v:(C") > 0.

Proof. 1. If 4(C) = 0 and 40(C’) = 0 hold, Transition 5 cannot have arisen on
C 5 C'. Note that Transition 77 does not change any agent-state. Since n — 2 states
are assigned to n agents, there exists a pair of agents and they are in a common state
qi- When i > 3, Transitions r¢ or r7 can arise in C and exactly one of the agents
changes its state from ¢; to gi—1. Thus v;—1(C') + 1 (C’) = ~vi—1(C) + 7:(C) and
7i—1(C") = ~i—1(C) + 1. When i = 1,2, Transitions ro,73 or 74 can arise in C ex-
cept for Transitions 75 and r7 and their transitions does not change g € {qi,¢2} to
¢ ¢ {q1,q2}. Therefore, for any r € {ra,rs,74} a configuration C’ of C' 55 C’ satisfies
that y1(C) 4+ 72(C) = 11 (C") + 72(C"). That indicates Zle 7 (C') > Zle i (C).

2. By Lemma 3, if 7(C) = 0 and 0(C’) = 0, Transition rs cannot have arisen
on C' 5 C'. In arbitrary transitions except for rs, 71(C) decreases at most one in a

transition. 71 (C') decreases only when a pair of agents with same state g1 interact. This
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implies that 71 (C) never decreases from one to zero by any transition. O

Lemma 5. For any configuration C' € C, there ewists a configuration C' € L and
c5.

Proof. Case 1. 4(C) =0

We show that for any configuration C' € C, there exists a configuration C’ € C satisfying
that C' = C” and ~o(C") > 0.

Case 1.1. 71(C) +12(C) <3

,qn—2 are assigned to at least n — 3 agents, there exists a

Since n — 4 states g3, qu, . ..
pair of agents and their states are common ;. When i > 3, Transitions r¢ or r7 can
arise in C' and exactly one of the agents changes its state from ¢; to ¢;—1. By Lemma 4,
~i(C)(> 0) does not become zero by any transition and Zle vi(C) does not decrease
by any transition, thus there exists a configuration C’ € C satisfying that C' = C" and
11(C") +72(C") > 3.

Case 1.2. 71(C) 4+ 1(C) >3

e . . * oy
Suppose Transition rs5 cannot have arisen on C — C’, then Transitions 72, 73,74, Or

r7 can arise in C' except for Transition rs. It implies that C' eventually transits to a
configuration C’ € C satisfying v2(C’) > 3, thus configurations satisfying v2(C’) > 3
infinitely often appear. Consider three agents a, b, c with state g2. A trace (rs;a,b),
(rs;b,c), (ra;a,b), (rs;c,b) can infinitely often arise in C’. Therefore, it contradicts the
assumption of the global fairness, the configuration eventually transits to Case 2.
Case 2. v(C) >0

If v(C) > 1, Transition r1 can infinitely often have arisen by fairness condition.

Hence C' eventually transits to a configuration C’' € C satisfying v (C') = 1. If
Zf:() v (C) > k+ 3 for k > 3, in a similar way as Case 1, C eventually transits to
a configuration C” € C and ~0(C") > 2, and Zf:o 7i(C") decreases again after Tran-
sition r; arises. Since n — 1 states are assigned to n agents and v;(C)(> 0) except for
j = 1 does not become zero by any transitions, C' eventually transits to C’ € C satis-
fying v2(C’) = 2 and ~,(C") = 1 except for j = 2. By Lemma 3 such a configuration
C' infinitely often appears, therefore Transition 77 can have arisen until no edge with

state s; remain C’. It is clear that such a configuration is included in L. O
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We obtain Theorem 1 by Lemmas 2 and 5.
4. Conclusion

We gave a SS-LE MPP with n — 1 agent-states and two edge-states for n agents.
Although we get a result of lower bound now, this paper do not include the result. A
future work is to analyze SS-LE MPP with a constant edge-states. Analyses on other

interaction graphs may be another future work.
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