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本論文は，自己安定リーダー選挙メディエイテッドポピュレーションプロトコル
(SS-LE MPP)の領域複雑度に関する研究結果である．Cai, Izumi and Wada (2009)

は nエージェントに対する自己安定リーダー選挙ポピュレーションプロトコル (SS-LE

PP)は少なくとも n個のエージェント状態を必要とすることを示した. さらに nエー
ジェントに対する SS-LE MPP のうちエージェント状態数が n であるプロトコルを
与えた. MPP は Chatzigiannakis, Michail and Spirakis (2009) によって紹介され
た. MPPは分散ネットワークモデルの 1つで, 各エージェント間に局所的なメモリを
追加した PPの拡張モデルである. 一般的にMPPは PPよりも計算能力が高いこと
が知られている. 一方で SS-LE のエージェント状態に対する空間複雑度の減少可能
性については知られていない. 本稿では, n エージェントの SS-LE MPP のうちエー
ジェント状態数が n− 1 であり, 各エージェント間に 1 ビットのメモリが与えられた
プロトコルを与える.

On Space Complexity of Self-Stabilizing Leader
Election in Mediated Population Protocol

Ryu Mizoguchi,†1 Hirotaka Ono,†1 Shuji Kijima†1

and Masafumi Yamashita †1

This paper investigates the space complexity of a self stabilizing leader elec-
tion in a mediated population protocol (SS-LE MPP). Cai, Izumi and Wada
(2009) showed that SS-LE in a population protocol (SS-LE PP) for n agents
requires at least n agent-states, and gave a SS-LE PP with n agent-states for
n agents. MPP is a model of distributed computation, introduced by Chatzi-
giannakis, Michail and Spirakis (2009) as an extension of PP allowing an extra
memory on every agents pair. While they showed that MPP is stronger than
PP in general, it was not known if a MPP can really reduce the space com-
plexity of SS-LE with respect to agent-states. We in this paper give a SS-LE

MPP with n− 1 agent-states and a single bit memory on every agents pair for
n agents.

1. Introduction

Population Protcol (PP), proposed by Angluin et al.1), is a model of distributed

computation consisting of agents and communication links among them, and Mediated

Population Protocol (MPP) proposed by Chatzigiannakis et al.7), is an extended model

of PP allowing memories on communication links. PP and MPP are models of sensor

networks consisting of passively mobile agents with limited computational resources,

motivated by practical networks such as networks of smart sensors attached to cars or

animals, synthesis of chemical materials, complex biosystems, and so on (cf.1),7)).

In MPP, every agent is identically programmed as a finite state machine, and every

communication link is equipped with a (finite) buffer. The agents sequentially interact

with each other updating their states; a pair of agents chosen by a scheduler updates

their own agent-states and edge-states between them in an interaction. The order of

interactions of agent-pairs is unpredictable, and is scheduled by an adversarial sched-

uler satisfying a fairness condition; the scheduler must accept any possible interaction

within a finite time if a configuration in which the interaction can arise should appear

infinitely many times.

Angluin et al.3) discussed the leader election in a population protocol, which is a

fundamental problem in distributed computing, and introduced the problem of self

stabilizing leader election in a population protocol (SS-LE PP, for short). In a SS-LE

PP, any initial configuration of agent-states eventually have to reach at a configuration

whose successive configurations contain exactly one leader. Thus a SS-LE PP should be

equipped with seemingly conflicting functions; the protocol has to decrease the number

of leaders if a configuration contains two or more leaders, while the protocol has to

appoint an agent to be a leader if a configuration does not contain a leader. This causes

†1 九州大学
Kyushu University

c⃝ 2010 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

1

Vol.2010-AL-132 No.4
2010/11/19



some difficulties on SS-LE, as it is usual with self-stabilizing distributed problems.

Angluin et al.2) discussed that no SS-LE PP with any constant number of agent-

states exists for general n agents on some types of interaction graphs. Fischer and

Jiang9) discussed SS-LE PP assuming a (global) oracle for leader detector on complete

communication graphs. Canepa and Potop-Butucaru6) discussed SS-LE PP on any

communication graph in the same assumption with9). Cai, Izumi and Wada5) discussed

SS-LE on complete interaction graph without any (global) oracles, and showed that

SS-LE for n agents requires at least n agent-states, and presented a SS-LE PP with n

agent-states for n agents.

This paper is concerned with the space complexity of self stabilizing leader election in

a mediated population protocol (SS-LE MPP, for short) for n agents, where we assume

that an interaction graph is complete as did Cai, Izumi and Wada5). We present a SS-

LE MPP with n−1 agent-states and two edge-states for n agents. As far as the authors

know, this is the first result on SS-LE MPP. One may say it obvious that the number of

agent-stats decreases in MPP comparing with PP due to extra memories on edges. In

fact, it is clear that n is also sufficient for the number of agent-states in SS-LE MPP for

n agents. However, extra memories on edges in MPP, which are expected to resolve the

issue of conflicting functions in the self-stabilizing setting instead of a certain number of

agent-states, may cause another issue of increasing possible (bad) initial configurations

in the self-stabilizing setting.

This paper is organized as follows; in Section 2, we describe the detail of our model.

We in Section 3 give a SS-LE MPP with n − 1 agent-states and 2 edge-states for n

agents.

2. Model Description — SS-LE MPP

A mediated population protocol is defined by 3-tuple (Q,S, δ), where Q denotes a finite

set of agent-states, S denotes a finite set of edge states, and δ : Q×Q×S → Q×Q×S

denotes a transition function. Let A denote the set of anonymous agents and let n = |A|,
and let C def

= QA × S(
A
2) denote all configurations. A transition from a configuration

C ∈ C to the next configuration C′ ∈ C is defined as follows. An arbitrary pair of agents

ai, aj ∈ A(ai ̸= aj) is chosen by a scheduler, thus an interaction graph is complete in

our model. States of the agents ai and aj , and a state of an edge {ai, aj} are updated

according to a transition function δ. Let r : (p, q, s) 7→ (p′, q′, s′) denote a specified

transition rule of δ, and let C
r;ai,aj−−−−→ C′ denote a transition from C ∈ C to C′ ∈ C

in which agents ai and aj interact and their states p, q and edge-state s between them

are updated to p′, q′, s′ according to the rule r of δ. We simply write C
r−→ C′ without

confusing. An execution of a protocol is represented by an infinite sequence of con-

figurations and transitions C0, r0, C1, r1, . . . , where C0 is an initial configuration and

Ci
ri−→ Ci+1(i ≥ 0).

We assume that a scheduler in a MPP is adversarial but (globally) fair, as usual

(cf.5)). Thus we have to think that an adversarial scheduler schedules the order of in-

teractions in a worst case scenario for us, but it is forced to satisfy that if a configuration

C ∈ C appears infinitely often in an execution, a configuration C′ ∈ C must also appear

infinitely often in an execution, where C′ is a configuration obtained by an arbitrary

transition r ∈ δ which arises in C. We say that C eventually transits to C′, denoted

by C
∗−→ C′, if C′ must appear after C by the adversarial but globally fair scheduler in

MPP. In addition, we describe a sequence of transitions as the trace T .

Leader election in a MPP is to assign a special state, representing a “leader”, in S

to exactly one agent. We say a configuration C ∈ C is legal if C contains exactly one

agent with the leader state, and so does any configuration C′ satisfying C
∗−→ C′. Let

L denote the set of all legal configurations. We say a protocol for the leader election

(for a distributed problem, in general), is self-stabilizing if C
∗−→ C′, C′ ∈ L hold for any

C ∈ C. We simply say SS-LE MPP as a mediated population protocol for the leader

election which is self stabilizing.

Our goal is to give upper bound of the sizes of the agent-states Q and edge-states S

for SS-LE MPP concerning the number of agents n. Main results of the paper are to

give a SS-LE MPP with |Q| = n− 1 and |S| = 2 for n agents in Section 3.

3. Simple SS-LE MPP with n− 1 Agent-states

In this section, we show the following.

Theorem 1. There exists a SS-LE MPP with n− 1 agent-states and 2 edge-states for

n(≥ 4) agents.
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We give a constructive proof. In particular, we show that Protocol P1, defined as

follows, is a SS-LE MPP.

Protocol P1

Q ={q0, q1, . . . , qn−2}, where q0 denotes the leader state.

S ={s0, s1},
δ ={

r1 : (q0, q0, s) 7→ (q0, qn−2, s0) for s ∈ S,

r2 : (q1, q1, s) 7→ (q1, q2, s0) for s ∈ S,

r3 : (q2, q2, s0) 7→ (q2, q2, s1),

r4 : (q2, q2, s1) 7→ (q2, q1, s0),

r5 : (q2, q1, s1) 7→ (q2, q0, s0) ((q1, q2, s1) 7→ (q0, q2, s0), symmetrically) ,

r6 : (qi, qi, s) 7→ (qi, qi−1, s0) for i ≥ 3, s ∈ S,

r7 : (qj , qk, s) 7→ (qj , qk, s0) for j ̸= k, s ∈ S, except for the case of r5

}.
Remark. Except for Transition r5, the state of an agent can change only when the

agent interacts with another agent in the same state.

Let γk(C) for k ∈ {0, 1, . . . , n − 2} denote the number of agents with state qk in a

configuration C ∈ C. We define a set of configurations L ⊂ C by

L def
=

{
C ∈ C

∣∣∣∣∣ γk(C) > 0 for k ∈ {0, 1, . . . , n− 2}, γ1(C) + γ2(C) = 3,

both ends of an edge with state s1 are agents with state q2.

}
.

Note that the number of edges with state s1 in C ∈ L is at most one since γ2(C) is at

most two from the definition of L.
In the following, we claim that L is the set of legal configurations for Protocol P1.

Let H denote a subconfiguration of C ∈ L consisting of three agents with states q1 or

q2 and three edges among them. Then H can be one of three types of subconfigurations

H1,H2,H3 of six possible types H1,H2,H3,H4, H5, H6 in Fig.1 which satisfy that the

number of edges with state s1 is at most one, γ1(C) > 0 and γ2(C) > 0. First, we show

that L is “closed” under the transition function δ.

Lemma 2. If configurations C and C′ satisfy C ∈ L and C
∗−→ C′, then C′ ∈ L and

図 1 {H1, H2, H3} is closed.

C′ ∗−→ C hold.

Proof. Transition r1 cannot arise in a configuration C ∈ L by the condition γ0(C) = 1

in L. By the condition γ1(C) + γ2(C) = 3 and γk(C) > 0 for k ∈ {0, 1, . . . , n − 2}, C
satisfies γk(C) = 1 for k ∈ {3, 4, . . . , n− 2}. Thus, Transition r6 cannot arise in C ∈ L.
Now we show that Transition r5 cannot arise in C. Since the edge-state s1 appears

only within the subconfiguration H of C ∈ L, it is enough to show that Transition r5

cannot arise in subconfigurations H1, H2, H3 of C.

Case 1. H = H1: Consider an agent with state q1 as a and agents with state q2 as b, c,

and consider every state of every edge among them as state s0. Then Transitions r3 or

r7 can arise in H1, that is H1
r3−→ H2 or H1

r7−→ H1.

Case 2. H = H2: Consider an agent with state q1 as a and agents with state q2 as b, c,

and consider a state of the only one edge between the two agents b, c as state s1. Then
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Transitions r4 or r7 can arise in H2, that is H2
r4−→ H3 or H2

r7−→ H2.

Case 3. H = H3: Consider agents with state q1 as a, b and an agent with state q2 as c

and consider every state of every edge among them as state s0. Then Transitions r2 or

r7 can arise in H3, that is H3
r2−→ H1 or H3

r7−→ H3.

Therefore, if C ∈ L and C′ satisfies C
∗−→ C′, then C′ ∈ L and C′ ∗−→ C hold.

Next, we show that any configuration C ∈ C eventually transits to a configuration

C′ ∈ L, in Lemma 5. To show Lemma 5, we show Lemmas 3 and 4.

Lemma 3. If a configuration C ∈ C satisfies γk(C) > 0 for k ∈ {0, 2, 3, . . . , n−2}, and
C

∗−→ C′, then the configuration C′ also satisfies γk(C
′) > 0.

Proof. After an agent with state qk for k ∈ {0, 2, 3, . . . , n− 2} interacts with any other

agent, γk(C) decreases at most one in any transition. In fact, γk(C) decreases only

when the agent interacts with another agent in the same state qk. This implies that

γk(C) never decreases from one to zero by any transition.

Lemma 4. If configurations C,C′ ∈ C satisfy γ0(C) = 0, C
∗−→ C′ and γ0(C

′) = 0,

then the followings hold;

( 1 )
∑k

i=1
γi(C

′) ≥
∑k

i=1
γi(C) for any k ∈ {2, 3, . . . , n− 2}.

( 2 ) If γi(C) > 0, then γi(C
′) > 0.

Proof. 1. If γ0(C) = 0 and γ0(C
′) = 0 hold, Transition r5 cannot have arisen on

C
∗−→ C′. Note that Transition r7 does not change any agent-state. Since n − 2 states

are assigned to n agents, there exists a pair of agents and they are in a common state

qi. When i ≥ 3, Transitions r6 or r7 can arise in C and exactly one of the agents

changes its state from qi to qi−1. Thus γi−1(C
′) + γi(C

′) = γi−1(C) + γi(C) and

γi−1(C
′) = γi−1(C) + 1. When i = 1, 2, Transitions r2, r3 or r4 can arise in C ex-

cept for Transitions r5 and r7 and their transitions does not change q ∈ {q1, q2} to

q′ /∈ {q1, q2}. Therefore, for any r ∈ {r2, r3, r4} a configuration C′ of C
r−→ C′ satisfies

that γ1(C) + γ2(C) = γ1(C
′) + γ2(C

′). That indicates
∑k

i=1
γi(C

′) ≥
∑k

i=1
γi(C).

2. By Lemma 3, if γ0(C) = 0 and γ0(C
′) = 0, Transition r5 cannot have arisen

on C
∗−→ C′. In arbitrary transitions except for r5, γ1(C) decreases at most one in a

transition. γ1(C) decreases only when a pair of agents with same state q1 interact. This

implies that γ1(C) never decreases from one to zero by any transition.

Lemma 5. For any configuration C ∈ C, there exists a configuration C′ ∈ L and

C
∗−→ C′.

Proof. Case 1. γ0(C) = 0

We show that for any configuration C ∈ C, there exists a configuration C′ ∈ C satisfying

that C
∗−→ C′ and γ0(C

′) > 0.

Case 1.1. γ1(C) + γ2(C) ≤ 3

Since n − 4 states q3, q4, . . . , qn−2 are assigned to at least n − 3 agents, there exists a

pair of agents and their states are common qi. When i ≥ 3, Transitions r6 or r7 can

arise in C and exactly one of the agents changes its state from qi to qi−1. By Lemma 4,

γi(C)(> 0) does not become zero by any transition and
∑k

i=1
γi(C) does not decrease

by any transition, thus there exists a configuration C′ ∈ C satisfying that C
∗−→ C′ and

γ1(C
′) + γ2(C

′) > 3.

Case 1.2. γ1(C) + γ2(C) > 3

Suppose Transition r5 cannot have arisen on C
∗−→ C′, then Transitions r2, r3, r4, or

r7 can arise in C except for Transition r5. It implies that C eventually transits to a

configuration C′ ∈ C satisfying γ2(C
′) ≥ 3, thus configurations satisfying γ2(C

′) ≥ 3

infinitely often appear. Consider three agents a, b, c with state q2. A trace (r3; a, b),

(r3; b, c), (r4; a, b), (r5; c, b) can infinitely often arise in C′. Therefore, it contradicts the

assumption of the global fairness, the configuration eventually transits to Case 2.

Case 2. γ0(C) > 0

If γ0(C) > 1, Transition r1 can infinitely often have arisen by fairness condition.

Hence C eventually transits to a configuration C′ ∈ C satisfying γ0(C
′) = 1. If∑k

i=0
γi(C) ≥ k + 3 for k ≥ 3, in a similar way as Case 1, C eventually transits to

a configuration C′′ ∈ C and γ0(C
′′) ≥ 2, and

∑k

i=0
γi(C

′′) decreases again after Tran-

sition r1 arises. Since n− 1 states are assigned to n agents and γj(C)(> 0) except for

j = 1 does not become zero by any transitions, C eventually transits to C′ ∈ C satis-

fying γ2(C
′) = 2 and γj(C

′) = 1 except for j = 2. By Lemma 3 such a configuration

C′ infinitely often appears, therefore Transition r7 can have arisen until no edge with

state s1 remain C′. It is clear that such a configuration is included in L.
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We obtain Theorem 1 by Lemmas 2 and 5.

4. Conclusion

We gave a SS-LE MPP with n − 1 agent-states and two edge-states for n agents.

Although we get a result of lower bound now, this paper do not include the result. A

future work is to analyze SS-LE MPP with a constant edge-states. Analyses on other

interaction graphs may be another future work.

参 考 文 献

1) Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in

networks of passively mobile finite-state sensors. Distributed Computing, 18 (2006),

235–253.

2) Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-

tocols. Lecture Notes in Computer Science, 3974 (2005), 103–117.

3) Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilin-

ear. Lecture Notes in Computer Science, 3560 (2005), 63–74.

4) Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the

EATCS, 93 (2007), 98–117.

5) Cai, S., Izumi, T., Wada, K.: Space complexity of self-stabilizing leader election

in passively-mobile anonymous agents. Lecture Notes in Computer Science, 5869

(2010), 113–125.

6) Canepa, D., Potop-Butucaru, M.G.: Stabilizing leader election in population pro-

tocols. Unpublished (2007).

http://hal.archives-ouvertes.fr/docs/00/16/66/52/PDF/RR-6269.pdf

7) Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols.

Lecture Notes in Computer Science, 5556 (2009), 363–374.

8) Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Recent advances in population

protocols. Lecture Notes in Computer Science, 5734 (2009), 56–76.

9) Fischer, M.J., Jiang, H.: Self-stabilizing leader election in networks of finite-state

anonymous agent. Lecture Notes in Computer Science, 4305 (2006), 395–409.

c⃝ 2010 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

5

Vol.2010-AL-132 No.4
2010/11/19


