
Surface Detection using Accelerometer Sensor
Time Series Data in 4-legged Robot

 Saengrungruangsri Sutthikorn† Atsushi Ueno† Shoji Tatsumi†

1. Introduction
Creating effective robot motion to maximize their performance

is substantially challenging task. Since particular environments
which potentially affect speed or stability of robots might be
considered as one of crucial factors affecting the process of
defining the best motions. Therefore, the calibration of individual
specific environment is necessary in order to keep the robots
operating at peak performance.

In recent years, the accelerometer-based gait or activity
recognition has been studied extensively. Kwapisz et al. [2]
developed an activity recognition system using phone-based
accelerometer in Android-based smartphone to identify the
physical activity which a user is performing. He & Jin [5] argued
that FFT is too costly for real-time computation. Their approach
is using AR model instead of time-domain features to represent
the signals from the tri-axis accelerometer carried by user. Cho
et al. [6] reported 93% overall accuracy on their proposed
method using SVM on tri-axis accelerometer data to recognize
user’s activity.

A 4-legged robot Sony AIBO equipped with tri-axis
accelerometer which can enhance its ability to recognize and
interact with environment better. Vail et al. [1] proposed learning
approaches that use data from AIBO’s built-in accelerometer
sensor to model the state of a robot or the state of its
environment. As a result, the accuracy of overall performance of
surface recognition can reach up to 84.9%. They created a
decision tree using C4.5 algorithm and used 10-fold cross
validation to quantify the accuracy of the final classifier over 6-
features data which consists of variances in x, y, and z
accelerations along with the (x, y), (x, z), (y, z) correlation
coefficients over each data window.

In this study, we propose an approach of extracting pattern of
time series gathered from AIBO’s built-in accelerometer sensor
which will be used for the surface detection process. In our first
experiment, we reduce dimension of labeled-data by resampling
data at several sample rates and reconstructed the phase space for
each sample rate before clustering the data using k-means
algorithm to compare error rate of each sample rate. Furthermore,
the process of pattern extraction and surface detection are
described in the reminder of this paper.

2. Data Dimension Reduction
2.1. AIBO

Sony AIBO ES7 which equipped 64-bit MIPS processor
running at 576 MHz and 64MB of main memory inside was used
in this study. The robot has total 20 degrees of freedom (DOF)
consisting of three for head, one for mouth, three for each legs,
one for each ear, two for tail. In addition to its 350,000 CMOS
camera, AIBO also equip with Distance sensor (in its snout and

on its chest), Head touch sensor, Back touch sensors, Chin
sensor, Paw sensors, Vibration sensor, and tri-axis Accelerometer
sensor. The accelerometer sensor operates at 125Hz and has
value in the range of [-2,2] gravities or [-19.613300,19.613300]
m/s2 for each axis. x-axis depicts front-back direction (positive x
value indicates robot’s front size), y-axis represents left-right
direction (positive y value indicates robot’s left side), and z-axis
represents up-down direction (positive z value indicates robot’s
up size). The sample accelerometer data is demonstrated in figure
1.

Figure 1. 15-second data acquired from tri-axis accelerometer
while AIBO is walking on concrete.

2.2. Urbi Platfrom
In our experiment, we use Urbi Server 2.0 and UrbiLab for

remoting and data acquisition.
Urbi is an open source cross-platform based on a parallel and

event-driven script language, and on a distributed component
architecture which is used to develop portable applications for
robotics and artificial intelligence. The lack of consensus about
standards of robotics result in greater susceptibility of the Urbi
platform to the differences of Application Program Interfaces
(APIs) among robots, components and so forth. The Urbi
platform architecture is illustrated in figure 2.

2.3. Resampling Data
Chaotic data is observed often in experiments in many fields

and traditional technique such as Fourier analysis are not
effective when dealing with such chaotic signals. According to
the studies conducted by Takens in 1981 and Sauer et al. in 1991,
time delayed coordinates of the signal are used to construct a new
set of coordinates. Data

!

x(t) where

!

t =1!N in time domain
is transformed into time delay domain

!

x(t +") .
AIBO’s accelerometer sensor operates at 125Hz, in other

words, 125 data points will be generated in 1 second on each axis
(375 points/second in total). As a result of limited system
resources, AIBO can not deal well with such huge amount of

平成22年度　情報処理学会関西支部　支部大会

† Graduate School of Engineering, Osaka City University

-15

-11

-8

-4

0

4

8

11

39
18

08
39

26
35

39
34

35
39

42
35

39
50

35
39

58
35

39
66

35
39

74
44

39
82

44
39

90
43

39
98

43
40

06
43

40
14

43
40

22
43

40
30

43
40

38
43

40
46

43
40

54
43

40
62

58
40

70
58

Ac
ce

le
ra

tio
n

Time
accelX accelY accelZ

C-01

real-time data. We resample 15-second data while AIBO is
walking on concrete at 8, 10, 12.5, 25, 40, 50Hz and perform
time-delayed phase space reconstruction for each sample rate
follow by comparing error rate in clustering data using k-means
algorithms. Given k is a pattern size of each sample rate.

Figure 2. Urbi Platform Architecture

Since each time data set has to be stationary before performing
phase space reconstruction, we trim off head and tail of data set
(the data when AIBO is increasing speed and start walking, and
the data when AIBO is decreasing speed and finally stop
walking) and perform phase space reconstruction using time
delay

!

" =1 . As described in figure 3, the increase in frequency
of sample rate causes an inadequate distribution of data in phase
space.

Figure 3. Phase space of each sample rate

Data is labeled as pattern point before being clustered using k-
means. Figure 4 describes error rate of comparison labeled data
with clustering result. The accuracy of clustering decreases
continuously while sample rate increases. At 50Hz sample rate,
error rate on x-, y- axis reach 90% that might interprets as
practically unusable.

Figure 4. Error rate of comparing labeled class with k-means
result of each sample rate

Considering both the accuracy and the cost of computation, we
might, therefore, be reasonably conclude that 8Hz is the most
suitable sample rate for using in our approach.

3. Surface Detection
3.1. Pattern Extraction

Before it is possible to enter into a detailed discussion of
pattern extraction, we must try to clarify our principle concept of
pattern. In this paper, we use the term “pattern” to refers to a
pattern that occurs frequently in a data set, or “frequent pattern”
in time series.

We gather 15-second tri-axis accelerometer sensor data at 8Hz
while AIBO is walking on concrete and carpet. Each surface
comprises of 5 sets of data for training and another 5 sets for
testing. Each time series undergo preprocess to ensure that its
mean value is constant over time, in other words, stationary time
series. We then reconstruct phase space for each axis of data set
and compute distance from each pattern point P1...Pn to all data
points d2...dN to construct distance matrix. Data in distance
matrix are chunked into block of pattern-size in each column.
The Euclidean distance is given as:

 (1)
is used to compute distance between Pi to dj, where Pi is point

in pattern, and dj is data point in time series. But, in order to
diminish cost of computation, we derive distance equation as:

 (2)
The distance matrix and the minimum values of each block is

depicted in Table 1.
Since AIBO’s gait is periodic movement, the period within

walking can be called the gait cycle. The minimum value in each
block indicates the point in one gait cycle that has the minimum

Remote Components Applications

U
rb

iL
ab

G
os

ta
iL

ab

R
em

ot
e

su
rv

ei
lla

nc
e

ot
he

r

Client code
through liburbi UObject

lib
ur

bi
 C

++

lib
ur

bi
 Ja

va

lib
ur

bi
 m

at
la

b

C
++

Ja
va

Urbi Kenel

Urbi Engine (Embedded) Urbi Engine (Remote)

Operating System

W
in

do
w

s

M
ac

 O
S

X

Li
nu

x

0

25

50

75

100

8 10 12.5 25 40 50

33.78

53.93
47.50

70.00

90.15 94.26

24.19 25.61

69.70

81.50
86.80

95.59

31.08
41.18

61.70
55.75

63.69

85.63

Er
ro

r R
at

e
(%

)
Sample Rate (Hz)

accelX accelY accelZ

distance to reference pattern point. By averages minimum values
of each block, pattern points are extracted. The pattern point
values and the slopes between 2 adjacent pattern points in pattern
are used in our method to define the pattern. The slope can be
computed by:

 (3)
where di ,dj are adjacent points.

Table 1. Distance matrix of x-axis data. PAT refers to points in
pattern. Highlighted cells indicated the minimum value of each
block.

We apply the extracted patterns on test data to perform a cross
checking. The average accuracy in classifying data using
extracted patterns was shown in table 2.

Table 2. Accuracy of classified test data using extracted patterns.

3.2. Surface Detection
In research on surface detection in robot, high accuracy

method, often fails to grasp computation cost. Numerous
attempts have been made offline on server to reach high
precision. Conversely, our approach would rather focus on
enabling computation to be performed on robot itself.

We use sliding window algorithm in pattern matching process,
and define a window width equal to the size of pattern (4 on x-
axis and z-axis, and 8 on y-axis). The window moves step by step
for searching the patterns. Window will move the length, if the
pattern is found, or, it will move just one point until the pattern is
found. To perform pattern matching, we use both point’s value
and slope of 2 adjacent points. The value describe the similarity
of data to each point in pattern, while slope describe direction of
pattern. The surface is recognized only if detected pattern of 2 in
3 axises refers to the same surface.

In the experiment, we gather data while AIBO is walking from
carpet to concrete, and from concrete to carpet. We then employe
extracted patterns to detect surface at that time by simulate on

matlab. Figure 5 shows the result of simulating surface detection
using matlab.

We, then embed extracted patterns in Urbi’s default walking
script and revise the script for enabling AIBO to detect surface
while it is walking. The sliding window algorithm is also
employed in detecting surface on robot. In contrast with
conducting surface detection on server which full time series data
is already available, detecting surface on robot must collect data
point by point on each axis, and then match observed data point
to pattern points. In the experiment, we achieve average overall
accuracy at 75%, but slow response is slightly detected. One
possible reason is, the response might result from time-
consuming during the computation of AIBO as the complete set
of data is required to be filled in the window before defining the
surface.

Figure 5. Detecting surface using data on each axis. The
observed data, the pattern while walking on concrete, and the
pattern obtained during walking on carpet are represented by

gray, blue, and orange lines respectively.

4. Discussion
The overall accuracy of detection result obtained from the

approach are approximately 76% for carpet, and 72% for
concrete. Our method can not deal with certain non-linear
variations in time dimension in time series, e.g. lag in time series
and etc.

Dynamic Time Warping (DTW) is a method allows a computer
to find an optimal match between two given sequences with
certain restrictions. Comparing DTW method to the Euclidean
Distance, the DTW is tedious method that consumes greater both
time and resources for the computation.

Regards we use only 4 pattern points on x-axis and z-axis, and
8 pattern points on y-axis for pattern matching on 8Hz time
series. It might be considered as a small pattern-size which can
be treated effectively with the DTW technique. In future work,
we will implement DTW technique for the process of pattern
matching in surface detection, with the aimed of achieving higher
accuracy.

-2

-1

0

1

2

3

4

5

6

7

8

[4
8
3
8
3
7
:]

[4
8
4
0
6
8
:]

[4
8
4
3
3
2
:]

[4
8
4
5
7
3
:]

[4
8
4
8
0
5
:]

[4
8
5
0
3
6
:]

[4
8
5
2
7
5
:]

[4
8
5
5
3
2
:]

[4
8
5
7
4
1
:]

[4
8
5
9
7
9
:]

[4
8
6
2
3
6
:]

[4
8
6
4
6
9
:]

[4
8
6
7
0
0
:]

[4
8
6
9
4
1
:]

[4
8
7
1
7
2
:]

[4
8
7
4
3
6
:]

[4
8
7
6
7
5
:]

[4
8
7
9
0
9
:]

[4
8
8
1
4
1
:]

[4
8
8
3
7
9
:]

[4
8
8
6
3
6
:]

[4
8
8
8
7
6
:]

[4
8
9
1
1
5
:]

[4
8
9
3
7
2
:]

[4
8
9
6
0
4
:]

[4
8
9
8
1
9
:]

[4
9
0
0
7
6
:]

[4
9
0
3
0
8
:]

[4
9
0
5
7
2
:]

[4
9
0
8
1
1
:]

[4
9
1
0
4
5
:]

[4
9
1
2
7
6
:]

[4
9
1
5
1
5
:]

[4
9
1
7
7
2
:]

[4
9
2
0
1
2
:]

[4
9
2
2
5
1
:]

[4
9
2
5
0
8
:]

[4
9
2
7
4
0
:]

[4
9
2
9
5
5
:]

[4
9
3
2
1
2
:]

[4
9
3
4
4
4
:]

[4
9
3
7
0
8
:]

[4
9
3
9
4
9
:]

[4
9
4
1
8
0
:]

[4
9
4
4
1
2
:]

[4
9
4
6
5
1
:]

accelX carpetX concreteX

-5

-4

-3

-2

-1

0

1

2

3

4

5

[4
8
3
8
3
7
:]

[4
8
4
0
6
8
:]

[4
8
4
3
3
2
:]

[4
8
4
5
7
3
:]

[4
8
4
8
0
5
:]

[4
8
5
0
3
6
:]

[4
8
5
2
7
5
:]

[4
8
5
5
3
2
:]

[4
8
5
7
4
1
:]

[4
8
5
9
7
9
:]

[4
8
6
2
3
6
:]

[4
8
6
4
6
9
:]

[4
8
6
7
0
0
:]

[4
8
6
9
4
1
:]

[4
8
7
1
7
2
:]

[4
8
7
4
3
6
:]

[4
8
7
6
7
5
:]

[4
8
7
9
0
9
:]

[4
8
8
1
4
1
:]

[4
8
8
3
7
9
:]

[4
8
8
6
3
6
:]

[4
8
8
8
7
6
:]

[4
8
9
1
1
5
:]

[4
8
9
3
7
2
:]

[4
8
9
6
0
4
:]

[4
8
9
8
1
9
:]

[4
9
0
0
7
6
:]

[4
9
0
3
0
8
:]

[4
9
0
5
7
2
:]

[4
9
0
8
1
1
:]

[4
9
1
0
4
5
:]

[4
9
1
2
7
6
:]

[4
9
1
5
1
5
:]

[4
9
1
7
7
2
:]

[4
9
2
0
1
2
:]

[4
9
2
2
5
1
:]

[4
9
2
5
0
8
:]

[4
9
2
7
4
0
:]

[4
9
2
9
5
5
:]

[4
9
3
2
1
2
:]

[4
9
3
4
4
4
:]

[4
9
3
7
0
8
:]

[4
9
3
9
4
9
:]

[4
9
4
1
8
0
:]

[4
9
4
4
1
2
:]

[4
9
4
6
5
1
:]

accelY carpetY concreteY

-14

-12

-10

-8

-6

-4

-2

0

[4
8
3
8
3
7
:]

[4
8
4
0
6
8
:]

[4
8
4
3
3
2
:]

[4
8
4
5
7
3
:]

[4
8
4
8
0
5
:]

[4
8
5
0
3
6
:]

[4
8
5
2
7
5
:]

[4
8
5
5
3
2
:]

[4
8
5
7
4
1
:]

[4
8
5
9
7
9
:]

[4
8
6
2
3
6
:]

[4
8
6
4
6
9
:]

[4
8
6
7
0
0
:]

[4
8
6
9
4
1
:]

[4
8
7
1
7
2
:]

[4
8
7
4
3
6
:]

[4
8
7
6
7
5
:]

[4
8
7
9
0
9
:]

[4
8
8
1
4
1
:]

[4
8
8
3
7
9
:]

[4
8
8
6
3
6
:]

[4
8
8
8
7
6
:]

[4
8
9
1
1
5
:]

[4
8
9
3
7
2
:]

[4
8
9
6
0
4
:]

[4
8
9
8
1
9
:]

[4
9
0
0
7
6
:]

[4
9
0
3
0
8
:]

[4
9
0
5
7
2
:]

[4
9
0
8
1
1
:]

[4
9
1
0
4
5
:]

[4
9
1
2
7
6
:]

[4
9
1
5
1
5
:]

[4
9
1
7
7
2
:]

[4
9
2
0
1
2
:]

[4
9
2
2
5
1
:]

[4
9
2
5
0
8
:]

[4
9
2
7
4
0
:]

[4
9
2
9
5
5
:]

[4
9
3
2
1
2
:]

[4
9
3
4
4
4
:]

[4
9
3
7
0
8
:]

[4
9
3
9
4
9
:]

[4
9
4
1
8
0
:]

[4
9
4
4
1
2
:]

[4
9
4
6
5
1
:]

accelZ carpetZ concreteZ

x-axis y-axis z-axis
carpet 83.81% 82.85% 62.05%

concrete 85.09% 74.56% 57.17%

DATA/PAT P1 P2 P3 P4
d2 6.772433381 0 - -
d3 24.84173342 7.025356543 0 -
d4 33.52504688 19.92397378 0.702545712 0
d5 38.72381944 40.01651831 7.025386717 1.011651744
d6 0.112405973 46.59221005 40.01651831 27.70804986
d7 46.81701731 0.449623892 11.52159479 31.58606699
d8 37.99319403 20.51406625 0.562029194 3.653204177
d9 38.4990085 43.72590267 8.823878595 1.124057047
d10 0.14050579 45.66488928 38.24617687 25.99390973
d11 41.59023277 0.056202987 12.70186555 31.75470981
d12 42.54560844 18.20977968 0.281015603 5.957505835
d13 34.424294 43.52918987 9.357808308 0.702534984
d14 17.56339136 36.22278956 10.48187608 1.264572224

Recently, the Urbi has been recognized as an universal
platform for robot development. As we used the Urbi as
development environment, therefore, the approach employed in
this study can be widely applied for the further legged-robot
projects.

5. Summary
We propose a low-computation cost method in surface

detection using AIBO’s built-in accelerometer sensor data. This
approach differs significantly from the others that generally
emphasize only the increase in accuracy. The results from the
experiment show that the use of pattern extraction together with
surface detection can reduce computation cost with acceptable
levels of accuracy.

6. Reference
[1] Douglas Vail, Manuela Veloso., Learning From

Accelerometer Data On A Legged Robot, In
proceeding of the 5th IFAC/EURON Symposium on
Intelligent Autonomous Vehicles, Lisbon, Portugal
2004

[2] Jennifer R. Kwapisz, Gary M. Weiss, Samuel A.
Moore., Activity Recognition using Cell Phone
Accelerometers, In proceeding of the 4th
International Workshop on Knowledge Discovery
from Sensor Data (SensorKDD-2010), Washington,
DC, USA 2010

[3] Michael Fitzgerald Nowlan., Human Recognition
via Gait Identification Using Accelerometer Gyro
Force, In proceeding of the 7th ACM Conference on
Embedded Networked Sensor Systems, Berkeley,
CA, USA 2009

[4] Jani Mäntyjärvi, Mikko Lindholm, Elena
Vildjiounaite, Satu-Marja Mäkelä, Heikki Ailisto.,
Identify users of portable devices from gait pattern
with accelerometers, In proceeding of International
Conference on Acoustics, Speech, and Signal
Processing, Philadelphia, PA, USA 2005

[5] Zhenyu He and Lianwen Jin., Activity recognition
from accelerat ion data using AR model
representation and SVM. In proceeding of
International Conference on Machine Learning and
Cybernetics, Hong Kong, China 2008.

[6] Yongwon Cho, Yunyoung Nam, Yoo-Joo Choi, and
We-Duke Cho., Smartbuckle: human activity
recognition using a 3-axis accelerometer and a
wearable camera. In proceedings of the 2nd

International Workshop on Systems and Networking
Support for Health Care and Assisted Living
Environments, Breckenridge, CO, USA 2008.

[7] Sonia Chernova, Manuela Veloso., An Evolutionary
Approach To Gait Learning For Four-Legged
Robots. In proceedings of In Proceeding of
International Conference on Intelligent Robots and
Systems, Sendai, Miyagi, Japan 2004.

[8] Jean-Christophe Baillie., URBI: Towards a
Universal Robotic Low-Level Programming
Language . In proceeding of International
Conference on Intelligent Robots and Systems,
Alberta, Canada 2005

[9] Jean-Christophe Baillie, Akim Demaille, Quentin
Hocquet, Matthieu Nottale, Samuel Tardieu., The

Urbi Universal Platform for Robotics. In
proceeding of International Conference on
S I M U L A T I O N , M O D E L I N G a n d
PROGRAMMING for AUTONOMOUS ROBOTS,
Venice, Italy 2008

[10] Gostai., The Urbi Software Development Kit 2.0
[11] Gostai., Uribi Doc for Aibo ERS2xx, ES7 and URBI

1.0 : Devices Document
[12] David Filliat., Introduction to liburbi-matlab

