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Motion Synthesis for Synchronizing with Streaming Music

JIANFENG XU, KoicHI TAKAGI and RyOICHI KAwADAT!

In this report, we present the first system to automatically synthesize hu-
man motion that is synchronized with streaming music using both rhythm and
intensity features. In our system, a motion capture database is re-organized
into a graph-based representation with meta-data (called meta motion graphs)
beforehand, which is specially designed for the streaming application. When
receiving an amount of music data as a segment, our system will search a best
path for the segment on a meta motion graph. This approach can compose
motions segment by segment, which (1) are synchronized with the music at
a beat level, (2) are connected seamlessly with the previous segment, and (3)
have the necessary synchronization capacity for the remaining music.

1. Introduction

To enrich the experience of music, automatic generation of a CG music visual-
izer is attracting ever greater attention. By means of the visualizer, 3D dancing
animation is concatenated to synchronize with the music by reusing motion cap-
ture data®. However, there are few systems for streaming music, although
streaming music such as Internet radio is becoming more popular as portable de-
vices with Internet connectivity become more freely available to the public. The
purpose of this paper is to automatically generate 3D dancing animation that is
synchronized with streaming music, targeting at the entertainment of nonprofes-
sionals. In such an application, the basic constraint is that only part of the music
is available for our system at a time instant to synthesize a dancing animation
on-the-fly, which causes the so called horizon problem®, and there is no chance
to further modify any of the rendered animation.

Regarding people’s dancing to music, one of the features common to both dance
and music is the rhythmic structure, thus this feature is commonly used in music
synchronization systems®%. Obviously, rthythmic structure provides the basis
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for synchronization in the temporal domain. Moreover, the matching of intensity
between motion and music is considered to be the next most important feature
in Shiratori’s system?, which is related to the spatial domain. As pointed in®,
it is derived from the fact that people feel quiet and relaxed when listening to
relaxing music such as a ballad, and they feel excited when listening to intense
music such as hard rock music.

From the literature, the following are the definitions of the basic concepts used

D=3 Motion beats, the concept of which is borrowed from the beat

in the systems
of music and thus reflects the rhythmic structure of dancing motions, are defined
as the regular moments when the movement is changed significantly in direction
or magnitude®. Motion intensity expresses the excitement of motion®, which
may be expressed as the kinetic energy®.

In this paper, we also employ the above rhythm and intensity features as a
means to obtain music synchronization. Therefore, two straightforward require-
ments are the beat and intensity features in the generated motion should be
synchronized with those in music respectively. Moreover, the motion should be
synthesized in high quality. These three requirements are the main objective in
our system. As one of the prevailing approaches to re-use of motion capture data,
the concept of so-called motion graphs® is extended to a graph-based represen-
tation with meta data, which is specially designed for the streaming application.
Then, to synchronize motions with streaming music, a best path is searched
segment by segment on our graphs. Naturally, the longer the segment is, the
better the synchronization is. However, the length of a segment is restricted to
the permitted delay, buffer size, and so on. Moreover, the total time of data
processing should be no longer than the rendering time of the previous segment,
which limits the scale of the motion capture database and the complexity of the
synchronization algorithm. In the search stage, besides defining the important
objective function for the above three requirements, it is essential to connect
to the motions in the previous segment smoothly and guarantee the ability to
synchronize with the unknown remaining segments in order to deal with the hori-
zon problem® . Our experiments in a user study demonstrate that the generated
motion is plausible with a competitive quality to the conventional methods for
non-streaming music.
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2. Related Work and Issues to be Solved

In this report, we focus on the techniques based on reusing motion capture
dataV®. To synchronize human motion with music, Kim et al.? synthesize a
new motion from a motion capture database according to the rhythmic pattern
by traversing a movement transition graph to match the beat of the music. Due
to absence of intensity constraints, it depends on external constraints to synthe-
size motions such as user’s mouse movements as demonstrated in". Shiratori
et al.? employ both beat and intensity features in their system to improve the
performance further, where the input music is divided into segments by the re-
peating patterns, and then candidate motion segments, the rhythm features of
which are matched to those of each music segment, are searched for, and finally
the motion is found whose intensity is similar to that of the music segments. Our
previous work® also uses both beat and intensity features to globally search a
best path on a proposed weighted motion graph, which is much faster than Shi-
ratori’s method? with comparable performance. From the viewpoint of features,
Shiratori’s system? and our previous work® are close to the system proposed
in this paper. However, both systems are unsuitable for streaming applications,
which is the target of this paper, as they use global searching.

3. Proposed System of Motion Synthesis for Streaming Music

3.1 System Overview

Our system uses a double-buffering scheme as shown in Fig. 1 (a), where the
back buffer receives the streaming music and feeds an amount of music data
(called a segment) to motion synthesis for music synchronization, and both the
music and motion data are swapped to the front buffer for continuous rendering
at the proper time. As shown in Fig. 1 (b), motion synthesis is performed for the
current segment while the previous segment is being rendered, which requires that
the processing time should be no longer than the rendering time of the previous
segment. After an initial delay, our system can generate 3D dancing animation in
real time. In the cases of spare time, a best-effort approach is certain to improve
performance. However, in our implementation, a fixed-length segment is adopted
for simplicity. More technically, our system is composed of two parts as shown
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Fig.1 Double-buffering scheme (a) and its time slots (b) for synchronizing human motion
with streaming music.
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Fig.2 System framework for generating human motion that is synchronized with streaming
music. Meta motion graphs are constructed beforehand and a best path is searched in
the graph to generate a synchronized motion segment by segment.

in Fig. 2. In the first part, which is performed beforehand, we re-organize the
motion capture database into meta motion graphs. In the second part, a human
motion is concatenated on-the-fly from the meta motion graph to synchronize
with the music segment by segment.
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Fig.3 Construction of a weighted motion graph3), where only beat frames are checked for
transition possibility and edge weights are assigned for music synchronization.

3.2 Novel Motion Graphs for Streaming Application

As described in Section 2, it is necessary to embed the features used in music
synchronization and the so-called synchronization capacity for the nodes in the
proposed meta motion graphs. First, we separate the entire database into sub-
groups by the motion genres from the annotations in the database (recorded
during the capturing procedure”), and motion tempos which are calculated from
motion beat extraction (separating a genre equally with a fixed tempo range).
Then, a meta motion graph is constructed in a sub-group. This technique ensures
that the motions in a graph belong to the same motion genre and share a range
of tempos while limiting the size of the motion graphs.

Motion graph construction: In our previous work®, a weighted motion
graph is proposed for music synchronization in a non-streaming mode. This
allows the beat and intensity to be embedded in the graph. Here is a brief
introduction. Before construction of our meta motion graphs, it is necessary to
extract the features including motion beats and intensity from each motion in the
database. A short-term principal component analysis (short-term PCA) method,
proposed in our previous work®, is adopted to detect the frames at beat instants
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(called beat frames) in each motion. The motion intensity can be calculated as
the total kinetic energy between two neighboring beats to express the level of
excitement of motions®. As shown in Fig. 3, a weighted motion graph WMG
is constructed in a sub-group as {V, E,W(E)} for the set of nodes, edges, and
edge weights, respectively. The node set V' includes all of the beat frames in the
sub-group. The edge set E consists of two subsets including the sets of mono-
directional edges E' and bi-directional edges E?, and the edge weight set W (FE)
has two corresponding subsets, i.e., W!(E) for E* and W?(E) for E>.

Two successive beat frames Fj and Fj™' are connected by a mono-directional
edge el (Fg, Fg"l) and the motion intensity between the beat frames is assigned
as the edge weight w'(Fj, F5t'), where Fj, denotes the i-th beat frame in a
motion. For beat frames Fj, and F}, with similar poses that satisfy (1), they are
connected by a bi-directional edge e?(Fj, F3) and the edge weight w?(Fj, Fi)
is calculated as (2).

d(t, )
rd = — - - - <THS (1)
d(thy = 1,tly + 1) +d(ty — 1,t5 + 1)

PR rd if rd >THR
w*(Fp, Fp) = { THR others 2)

d(tly, th) =

M=

w(m) || log(d)yaim) II” 3)

3
I

where ¢4, denotes the frame index of beat frame Fj, the frame distance d(ti, t%)
is calculated as the weighted difference of joint orientations®, T'H S is a threshold
that controls the number of bi-directional edges, THR is a threshold larger than
1, M denotes the number of joints in a frame, and q; , is the orientation of joint
m in frame F5. Here we compare the frame distance of two beat frames with
those of their neighboring frames to decide if the beat frames are similar or not.

Dealing with the horizon problem: As pointed out by Forsyth et al.¥), the
horizon problem is one of the main concerns in local search, which is a charac-
teristic unique to streaming applications. A local search like “greedy algorithm”
has the possibility of falling local minimum due to the invisibility of future music,
which, in the worst case, leads to no path in the motion graph being available
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for the future music. Therefore, it is helpful to know how many successors the
potentially selected node can be followed by. For example, the end node (from
which no mono-directional or bi-directional edge exists) has no ability to connect
any more. Fortunately, it is possible to calculate the synchronization ability for
the node in the stage of motion graph construction, referred to as synchroniza-
tion capacity. Thus, we can guarantee that a path exists for the next segment in
the stage of motion synthesis by limiting the last node in the current segment in
those nodes the synchronization capacities of which are larger than the threshold.

The calculation of synchronization capacity is based on the following facts.

(1) If a node u is an end node, its synchronization capacity C(u) is zero, i.e.,
C(u) =0.
(2) TIf a node v only has the successor u and C'(u) # oo, then C(v) = C'(u) + 1.
(3) If a node u is in a cycle, its synchronization capacity C'(u) is infinite, i.e.,
C(u) = 0.
(4) If a path exists from node u to v, then C(v) > C(u).

For each node, we first decide if it is an end node or in a cycle (based on the
depth-first search method). Then, we find those nodes that reach the above nodes
and calculate the synchronization capacity by Property (2) or (4) iteratively.

Once the synchronization capacity of each node is calculated in the weighted
motion graphs, our meta motion graphs are constructed by adding the syn-
chronization capacity C(u) as node weight w(u), denoted as MMG =
{V,E,W(V),W(E)}, where W(V) is the set of node weights.

3.3 Motion Composition

Basically, we search a best path in a meta motion graph M MG segment by
segment with the constraints from the previous and future segments. At the first
segment, as initialization, our system will select a meta motion graph that is
compatible with the music genre and covers the music tempo.

For any segment of music data, we first extract music beats using existing
techniques such as'® and the music intensity, which is calculated as the sound
pressure level between two beat instants. Then, a best path for the current
segment is searched in the selected graph beat by beat. To seamlessly connect
with the previous segment, the last node in the previous segment is selected as the
first node in the current segment. Moreover, the last node in the current segment
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is limited to those nodes with enough synchronization capacity to avoid the case
where there is no path to synchronize with the remaining music. Furthermore,
it is important to properly define an objective function for matching the motion
with music.

Basically, three requirements should be met in the generated motion. First, in
the temporal domain, beat instants in the generated motion should be synchro-
nized with those in the music. Because the beat frames are and only are in the
node set V', we can exactly synchronize the beat instants in any path with those
in the music by modifying the frame rate between two nodes in the path. In other
words, there is no time difference between the corresponding beat instants in the
music and the motion. Therefore, the cost of beat synchronization is controlled
to zero, i.e., the granularity of synchronization is at the beat level. Second, in
the spatial domain, the motion intensity should be matched to that in the mu-
sic. Their error is expressed by the absolute difference between the normalized
values of motion intensity in the music and the motion. Third, the generated
motion should be as smooth as possible, where the source of motion artifacts is
the motion inconsistence at bi-directional edges and the temporal modification.

As aresult, the cost function of an edge e(F5, F]{?)a which is a mono-directional
edge e! (Fg,Fé) or a bi-directional edge 62(1‘7%,1‘7%) with its following mono-
directional edge e!(F%, F4™), is defined as:

edgeCost(e(Fg, F]{?), k)=

intCost if e(Fh, Fl) e E*
s-w?(Fg, F}) -intCost  if e(Fj, F)e E? (4)
00 others
intCost =|| @' (Fy, F3) — T(k) | 5)
i—1 i i it
. max(rate(FB LFL) rate(Fh, FLT )) (©)

rate(Fh, F5™) rate(Fy ', Fy)
where intCost denotes the cost from intensity matching, s denotes the cost from
the change of modification strength, w? denotes the edge weight in the set of W?2,
which shows the cost from the motion inconsistence at bi-directional edges (see
(2)), I(k) denotes the normalized music intensity from the k-th beat to (k+1)-th
beat or the k-th beat interval, w! denotes the normalized edge weight in the
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set of W', and rate(m,n) denotes the modified frame rate between beat frame
m and n. Note that standard scores are calculated for the normalization and
s - w? is a penalty for selecting a bi-directional edge. In addition, since the bi-
directional edge takes no time, it is only used with the following mono-directional
edge el(Fé, Flgﬂ) (i-e., no cost definition for just a bi-directional edge).

Then, assuming we have K beat intervals in the music segment, our objec-
tive function is min Zle edgeCost(e(F%, F]{?)a k), which can be optimized by a
method similar to dynamic programming algorithm as shown in (7)-(9). As de-
scribed previously, the initial node is the last node in the previous segment. For
the first segment, we use the first beat frames of all the motions in the graph as

initial nodes InitsS.

0 if FYelnitS
P(F? =
(F5,0) { o0 others (7)
P(FR.K) = min {P(Fhk—1) +edgeCost(e(Fh FY) )} ®)
Fiev
P =, min (P K)) o)

where P(F%, k) denotes the cost of a best path for the first k& beat intervals with
the last node of F§, P(K) is the cost of a best path for the entire segment of
music, C(F§) denotes the synchronization capacity of the node of Fj5, and THC
is the beat number of the remaining music if known or co otherwise.

Equation (8) shows that the current best path with the last node of F} is
searched based on the previous best path the last node of which is a node F5. In
standard dynamic programming, the cost function is the edge weight that remains
constant. In our definition, the cost function is dynamic, which is updated with
the music intensity for the k-th beat interval as (4). Note that our method is a
local searching method from the viewpoint of the entire piece of music. If the
average indegree of the nodes is D and the node number is N in the graph, we
only need to compare DN K times to search the best path, which is linear to the
number of beat intervals K in the music segment.

4. Experimental Results and Discussions

Experimental Conditions: Two pieces of music are tested from the RWC
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Fig.4 Comparison of average computational cost (milliseconds) for a segment. Segment
length includes 2s, 3s, 4s, 5s, 10s, and 30s (entire length).

music database'” including one with a slow tempo (Song004) and one with a
fast tempo (Song091). The dancing motions are from the CMU motion capture
database” including break and Indian dances, resulting in four different kinds
of content in our experiments. In order to reduce the evaluation time, only a
part (30 seconds) of a song is extracted for the user study with fade in and
fade out operations at cut points, which makes the shortened songs more natural
and the music intensity unevenly distributed. The global dynamic programming
method (baseline)® and Shiratori’s method? are compared with the proposed
method, where the beat and intensity features are common to all the methods.
The threshold THS in (1) is set as 3.0. The threshold THC in (9) is set as co.

Computational Cost: All the experiments are performed on the same PC
with an Intel(R) Core(TM)2 Quad CPU (2.83 GHz) and a 3.25 GB RAM memory.
As shown in Fig. 4, it takes less than 0.5 seconds on average to synthesize a 5s-
segment motion in our method for the Indian dance, increasing the initial delay
very little. At the same time, it is much shorter than the rendering time, which
is one of the constraints for streaming applications. In addition, it is observed
that the computational cost is almost linear to the segment length as discussed
in Section 3.3. Moreover, it demonstrates reasonable accuracy in terms of its
capacity to predict the computational time ¢ for any segment length L given the
average indegree D, node number N, and the music tempo P in a segment. In
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Fig.5 Mean opinion scores (MOSs) of three different methods including the baseline method
(global dynamic programming3)), Shiratori’s method?), and the proposed method.

the above PC, we get t = DN P(0.0030L — 0.0003) by the linear regression.

User Study: As the target of our application is general consumers, a total of
18 non-expert observers (ages in their 20s and 30s) are selected to evaluate the
results in our user study. The participants have evaluated the above 4 samples by
assigning a score for 1 to 5 for the 3 questions about beat synchronization, inten-
sity matching, and motion smoothness, respectively, where “strongly disagree”,
“somewhat disagree”, “neutral”, “somewhat agree”, and “strongly agree”, are de-
noted by the numbers 1 to 5 in that order. By randomly displaying the results,
participants do not know which sample is generated by which method.

Fig. 5 shows the mean opinion scores (MOSs) from all the participants for all
tests, where the length of the music segment is set as 5 seconds by preliminary
experiments. The MOSs in both the baseline method and the proposed method
are generally not worse than those in Shiratori’s method?. At the same time, a
t-test is performed between the proposed method and the baseline, which shows
that there is no significant difference between the proposed method and the
baseline method in all the four contents for all the three questions.

5. Conclusions

This paper has proposed a novel scheme for motion synchronization with
streaming music using a motion capture database. As far as we know, this is
the first such system for streaming music using both beat and intensity features.
Specially designed for this purpose, a graph-based representation called meta
motion graph is constructed on the database beforehand, where not only are the
necessary features embedded but also the synchronization capacity is calculated
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to express the ability to synchronize with music. Therefore, our system can
search a best path for each segment, considering not only the synchronization of
the current segment but also the constraints of the previous and future segments.
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