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In this paper, the effectiveness of deterministic Multi-step Crossover Fusion
(dMSXF) and deterministic Multi-step Mutation Fusion (dMSMF), which are
types of genetic multistep searches based on a neighborhood search mecha-
nism, in solving an unsupervised design problem of suitable structuring ele-
ments (SEs) of a morphological filter is shown. In our previous work, it was
shown that dMSXF and dMSMF are very effective for solving combinatorial
optimization problems, particularly on problems for which the landscape is an
AR(1) landscape observed in the NK model. In addition, their effectiveness
for reproduction mechanisms to obtain the offspring was shown to be retained
with increasing level of epistasis. In this paper, we show that a characteristic of
the AR(1) landscape is observed in an objective function for the unsupervised
design of SEs, and superior search performances of both dMSXF and dMSMF
for conventional crossover are shown. The processing results of the obtained
SEs are also compared with those of conventional filters used for impulse noise
removal.

1. Introduction

Images are often corrupted, blurred or distorted by various causes in digital
equipment. Among them, impulse noise due to a noisy circuit or a channel trans-
mission is known to significantly degrade the image quality, and it is important
to find the impulse noise and to replace it with the estimated original value
of the corrupted pixel 1). Various filters such as median filters based on order
statistics have been proposed 2)–6). As another way of recovering images from im-
pulse noise, morphological filters based on mathematical morphology have been
used 7)–9). Mathematical morphology is a fundamental framework for image ma-
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nipulation, and a wide range of nonlinear image processing filters can be unified
within this framework. Opening and closing, which is the dual of opening, are
typical morphological operations and fundamental morphological filters that are
idempotent. Mathematical morphological operations manipulate an image with a
small object called a structuring element (SE), which is equivalent to the window
of the image-processing filters. The opening operator composes the resultant im-
age object by arranging an SE inside a target object and removes residual regions
that are too small to hold the SE inside. The significance of opening is its quan-
titativeness with respect to the size of the image object. The removal of impulse
noise by opening is quantitatively achieved in the sense that noise objects smaller
than the SE are precisely removed. Since this operator composes an image by
repeatedly locating an SE, its shape and grayscale distribution appear directly
in the resultant image. When an SE is inappropriate for the image, it causes
the appearance of undesired microstructures that are unrelated to the original
image. This problem can be avoided by applying an appropriate grayscale SE
that resembles the objects in the target image. Thus, the determination of both
the shape and the grayscale distribution of an SE is an important problem. Here,
we use the opening operator for noise removal in textures corrupted by impulse
noise.

Evolutionary computations or neural networks have been applied to design
suitable SEs or filters considering the characteristics of the target corrupted im-
ages 10)–15). These methods require reference images or test patterns that are
similar to the target image, and the difference between it and the filtered image
is minimized to optimize the SE or filter. Alternatively, interactive evolution-
ary computations are applied to evaluate the filtering performance in order to
design filters 16). For practical use, we design, for textures, suitable SEs that
remove noise and directly reconstruct the image with high accuracy from only
the corrupted image. Our approach independently designs SEs, focusing on spe-
cific characteristics of the target texture. However, it can be applied to natural
images through combination with a segmentation algorithm 17).

In this paper, a genetic algorithm (GA) 18) is adopted as the optimization algo-
rithm for the unsupervised design. When we apply a GA to a problem, particu-
larly a combinatorial problem, it is important to design a crossover method that
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emphasizes the heredity of the favorable characteristics of parents. Deterministic
Multi-step Crossover Fusion (dMSXF) 19), which is a type of genetic multistep
search based on neighborhood search mechanisms, is a promising crossover op-
erator for combinatorial problems. dMSXF can be constructed by introducing
both a problem-specific neighborhood structure and a distance measure. By
multistep search, dMSXF can generate a wide variety of offspring between par-
ents and it performs particularly well in problems for which the landscape is an
AR(1) landscape, such as the Traveling Salesman Problem (TSP) 19). Determin-
istic Multi-step Mutation Fusion (dMSMF) is a complementary search method
to dMSXF and explores outside the distribution of the population. It has been
shown that the incorporation of dMSMF into dMSXF improves the search per-
formance in several combinatorial problems 20). In addition, we have shown that
the high search performance of both dMSXF and dMSMF was achieved by set-
ting the neighborhood size to a value near the correlation length, which is an
indicator of the level of epistasis 21). In this work, dMSXF is adopted as the
crossover method to optimize the SEs of morphological filters for texture images.
First we introduce the unsupervised design based on the Primitive, Grain and
Point Configuration (PGPC) texture model 22). The landscape of the objective
function used in the design of SEs is experimentally shown to be similar to an
AR(1) landscape observed in the NK model 23). In numerical experiments, we
apply dMSXF to typical textures, and show the effectiveness of dMSXF as the
main search operator of a GA. Then, the incorporation of dMSMF into dMSXF
is shown to improve the performance in this design problem. The processing
results of the obtained SEs are compared with those of conventional filters used
for impulse noise removal.

2. Genetic Multistep Searches

GAs are among the most effective approximation algorithms for optimization
problems. GAs are applicable to a wide range of problems and have been applied
to numerous combinatorial problems, such as the TSP, and various scheduling
problems. In combinatorial optimization problems, GAs actualize an effective
search through the use of genetic operators for the inheritance and acquisition of
characteristics.

To apply GAs to these problems, it is important to design a crossover method
to consider problem-specific structures and characteristics. Various crossovers fo-
cusing on the inheritance of parents’ characteristics have been discussed. Among
them, Multi-step Crossover Fusion (MSXF) 24) and deterministic MSXF (dM-
SXF) 19), which are types of genetic multistep searches based on neighborhood
search mechanisms, have been proposed, since the incorporation of neighborhood
searches into GAs is essential in order to adjust the structural details of solutions
in combinatorial problems 25). dMSXF is an improved MSXF method and can be
constructed by introducing both a problem-specific neighborhood structure and
a distance measure.

The acquisition of characteristics that do not appear in the parents can be
achieved by incorporating deterministic Multi-step Mutation Fusion (dMSMF) 20)

into dMSXF. dMSMF also performs a multistep neighborhood search and ex-
plores the external domain of the population distribution.

2.1 Deterministic Multi-step Crossover Fusion
dMSXF performs a neighborhood search using a deterministic rule composed

of only a distance measure in a problem-independent manner. It advances the
neighborhood search from a parent p1 in the direction approaching the other
parent p2. The procedure of dMSXF is as follows. A set of offspring generated
by parents p1 and p2 is indicated by C(p1, p2).

Procedure of dMSXF
0. Let p1 and p2 be parents and set their offspring as C(p1, p2) = φ.
1. k = 1. Set the initial search point x1 = p1 and add x1 into C(p1, p2).
2. /Step k/ Prepare N(xk) composed of μ neighbors generated from the current

solution xk. ∀yi ∈ N(xk) must satisfy d(yi, p2) < d(xk, p2).
3. Select the best solution y from N(xk). Let the next search point xk+1 be y

and add xk+1 into C(p1, p2).
4. Set k = k + 1 and go to step 2 until k = kmax or xk equals p2.

At step 2 of the procedure of dMSXF, every neighborhood candidate yi (1 ≤
i ≤ μ) generated from xk must be closer to p2 than xk. In addition, dMSXF
necessarily moves its transition toward p2 even if all solutions in N(xk) are inferior
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Table 1 Application of dMSXF to the 1-max problem: Lbit = 10, kmax = 3, μ = 3.

p1 step1 step2 p2

(base solution xk) 0̄1̄1̄1̄110̄0̄0̄0 (5) 0̄1̄1̄1̄110̄110 (7) 11̄0̄1111110 (8)

010̂0̂111̂000 (4) 1̂10̂1111̂110 (8) →
0111110000 (5) 010̂111001̂0 (5) 00̂10̂110110 (5) 1000111110 (6)

01111101̂1̂0 (7) → 1̂10̂0̂110110 (6)

∗̄ of xk denotes the difference between xk and p2, and ∗̂ is introduced from p2.
d(p1, p2)/kmax(= 7/3 = 2 or 3) bits are introduced from p2 at each transition.

to the current solution xk. dMSXF requires two parameters, kmax and μ. kmax is
the number of steps in the neighborhood search and μ is the number of solutions
generated at each step of the neighborhood search. In the procedure of dMSXF,
at most kmax * μ solutions are generated, and C(p1, p2) is comprised of the best
neighbor solutions, i.e., {x1, x2, · · · , xkmax}.

Table 1 shows an example of the application of dMSFX to a 1-max problem.
In this problem, the Hamming distance is adopted as the distance measure. The
bits copied from p2 to xk are chosen randomly at each step. The step size of the
neighborhood search is d(p1, p2)/kmax (= w), and w bits are introduced from p2

at each transition.
2.2 Deterministic Multi-step Mutation Fusion
In contrast to dMSXF, in which the search approaches the other parent,

dMSMF advances the search in the direction away from the parents’ neighbor-
hood in a deterministic manner using both the quality of solutions and the dis-
tance measure as follows.

Procedure of dMSMF
0. Let p1 and p2 be parents and set their offspring as C(p1, p2) = φ.
1. l = 1. Set the initial search point x1 = p1.
2. /Step l/ Prepare N(xl) composed of λ neighbors generated from the cur-

rent solution xl. ∀yi ∈ N(xl) must satisfy both d(yi, p1) > d(xl, p1) and
d(yi, p2) > d(xl, p2).

3. Select the best solution y from N(xl). Let the next search point xl+1 be y

and add xl+1 into C(p1, p2).
4. Set l = l + 1 and go to step 2 until l = lmax.

At step 2 of dMSMF, every neighborhood candidate yi (1 ≤ i ≤ λ) generated
from xl must satisfy both d(yi, p1) > d(xl, p1) and d(yi, p2) > d(xl, p2). Even if
all solutions in N(xl) are inferior to the current solution xl, the transition to a
solution in N(xl) is necessarily accepted. In this procedure, at most lmax * λ

solutions are generated. Only in the case of binary problems is dMSMF a func-
tionally equivalent operator to dMSXF between p1 and p̂2, where p̂2 represents
the solution consisting of, genetically, the complete reverse of p2.

2.3 Generation Alternation Model
The generation alternation model we used for dMSXF or dMSXF+dMSMF

in this paper is outlined below. This model focuses on the local search per-
formance, and it have been shown to be effective in combinatorial optimization
problems 19),20),26).

Generation Alternation Model
0. Generate the initial population composed of Npop random solutions (individ-

uals) {x1, x2, · · · , xNpop
}.

1. Reset indexes {1, 2, · · · , Npop} to each individual randomly.
2. Select Npop pairs of parents (xi, xi+1) (1 ≤ i ≤ Npop), where xNpop+1 = x1.
3. For each pair (xi, xi+1), if d(xi, xi+1) is greater than predefined value dmin,

apply dMSXF; otherwise apply dMSMF.
4. For each pair (xi, xi+1), select the best individual c from offspring C(xi, xi+1)

generated by parents (xi, xi+1) and replace the parent xi with c.
5. Return to step 1 until some terminal criterion is satisfied, e.g., a number of

generations and/or evaluations.

3. Unsupervised Design of Structuring Elements for Noise Removal

3.1 Mathematical Morphology and Opening
In the context of mathematical morphology, an image object is defined by a

set. In the case of binary images, this set contains the pixel positions included in
the object, i.e., those of white pixels. In the case of grayscale images, an image
object is defined by an umbra set. If the pixel value distribution of an image
object is denoted as f(x ), where x ∈ Z

2 is a pixel position, its umbra U [f(x )] is
defined as
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U [f(x )] = {(x , t) ∈ Z
3|f(x ) ≥ t > −∞}. (1)

Consequently, when we assume a solid whose support is the same as a grayscale
image and whose height at each pixel position is the same as the pixel value
at this position, the umbra is equivalent to this solid and the whole volume
below this solid within the support. Another object, called a structuring element
(SE), is defined in the same manner as above. The SE is equivalent to the
window of image-processing filters and is considered to be much smaller than
the image object. Opening and closing are typical morphological operations and
fundamental morphological filters that are idempotent. They are used for various
methods of noise reduction and object extraction, for example. In the case of a
binary image and an SE, the opening of an image object X with respect to an
SE B, denoted XB , has the following property:

XB = {Bz|Bz ⊂ X, z ∈ Z
2}, (2)

where Bz indicates the translation of B by z.
Here, we concentrate on the opening, since the operations on closing are re-

garded as the dual of opening. In the case of the grayscale image and an SE, the
opening is similarly defined by replacing the sets X and B with their umbrae,
respectively, and assuming that z ∈ Z

3. This property indicates that opening is
the regeneration of an image produced by arranging the SE and removes smaller
white regions than the SE in the binary case. In the case of grayscale image,
the regions that are smaller than SE and have brighter pixels than those in their
neighborhood are removed. The fact that the opening operator eliminates smaller
structures and smaller bright peaks than the SE indicates that it acts as a filter
to distinguish object structures by their size. In this paper, we adopt the opening
with an SE as an impulse noise removal filter for texture images.

3.2 PGPC Texture Model and Primitive Estimation
When applying the opening operator to regenerate the target texture image,

the most important issue is how to choose the best SE that describes the charac-
teristics of the target. The Primitive, Grain and Configuration (PGPC) model 22)

is one of the methods for describing a texture image, and it represents a texture
as an image composed of a regular or irregular arrangement of objects much
smaller than the size of the image. In this model, the objects arranged in the
texture are called grains, and the grains are considered to be derived from one

or a few typical objects called primitives. We assume that the primitive is ex-
pressed by an SE. We also assume here that the grains are derived from the
r-fold homothetic magnification of one SE B, where the magnification is defined
as the (r-1)-fold Minkowski set addition between SE B and another small ele-
ment such as a single dot. The grain obtained as a result of this magnification is
expressed as rB. In this case, XrB is regarded as the texture image X composed
by the arrangement of rB only. It follows that rB-(r + 1)B indicates the region
included in the arrangement of rB but not in that of (r + 1)B. Consequently,
XrB-X(r+1)B is the region where r-size grains are arranged if X is expressed by
employing an arrangement of grains that are preferably large magnifications of
the primitive. The sequence {X-XB , XB-X2B , · · · , XrB-X(r+1)B , · · · } is the
decomposition of the target texture into the arrangement of grains of each size.
Since the sequence can be derived by using any SE, it is necessary to estimate
the appropriate primitive that is truly a typical representative of the grains.

In the estimation of a primitive (an SE) to regenerate precisely the target
image, the candidate SE yielding the simplest arrangement by its sufficiently high
homothetic magnifications is considered to be the optimal one. This concept is
similar to the minimum description length (MDL) principle; the distribution of
XrB − X(r+1)B has a heavy tail in small values of r for the optimal SE in this
case. In our unsupervised design approach, the principle of the PGPC model is
also the basis for constructing the objective function used for the estimation of
SEs. To remove impulse noise from the corrupted image, among the SEs with
their magnifications that are considered to be satisfying the condition described
above, an SE that can well eliminate instantaneous peaks is preferred.

3.3 Unsupervised Design of SEs
For textures corrupted by impulse noise, we design a suitable SE that can re-

move the noise and reconstruct the image accurately. Here, we consider grayscale
texture images with a gray level of 256, and an SE that is expressed as a 2-
dimensional shape B. Each element e(i, j) ∈ B has a pixel value, i.e., a bright-
ness, in the range [0, 255]. The pixel value of e(i, j) is a design variable in this
optimization problem. In our approach, for practical use, optimal SEs are de-
signed directly from the corrupted image and no training images are required. In
this section, we identify the problem and design the objective function.
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3.3.1 Noise Model
Impulse noise is known to be formulated as a bit error arising in a noisy circuit

or a channel transmission. There are several impulse noise models for images 4).
Here, we adopt the model below. In this model, Xo(i, j) indicates the pixel values
of the original image, and l represents a non-negative integer with a uniform
distribution. X(i, j) is rounded to 255 if Xo(i, j) + l exceeds 255.

X(i, j) =

{
Xo(i, j) + l prob. p

Xo(i, j) prob. 1 − p
(3)

3.3.2 Design of Objective Function
We adopt a size distribution function for constructing the objective function.

This function has been shown to be effective in optimizing the shape and pixel
values of SEs 27). The opening result of image X with respect to SE B means
that the residue of X is obtained by removing smaller structures than B, and it is
denoted as XB . We perform the opening of X with respect to the homothetic SEs
rB, which are the result of r-fold homothetic magnification of B, and obtain the
image sequence {X, XB , X2B , · · · , XrB , · · · }. In this sequence, XrB is obtained
by removing the regions smaller than rB. In the case of grayscale images, at each
r, we calculate the ratio of the value at each pixel position of XrB to that of the
original X, and then calculate the sum of the ratio �1. The function from size r to
the corresponding ratio decreases monotonically and becomes unity when the size
is 0. This function is called the size distribution function. The size distribution
function of size r, F (r), indicates the area ratio of the regions with sizes greater
than or equal to r. Here, the integral (summation) of F (r) from 1 to M shown in
Eq. (4) is used as the objective function and SE B is optimized by minimizing it.
This is because a positive correlation is observed between the evaluation values
and the preferable processing results, as shown in the next section. In Eq. (4),
N indicates the size of the target image, and XrB(i, j) and X(i, j) respectively
denote the values at the pixel position (i, j) in XrB and X. No constraints are
required in this optimization problem.

�1 In the original definition of the size distribution function, the ratio of the sum of the pixel
values of XrB to that of the original X is calculated. To consider the variance in the value
among pixels, we calculate the ratio at each pixel value.

Fig. 1 MSE vs Evaluation Value in pixel value optimization.

fobjective =
M∑

r=1

F (r), F (r) =
N∑

i=1

N∑
j=1

XrB(i, j)
X(i, j)

(4)

M is the parameter that determines the size of the largest magnification of SE,
and its setting depends on the characteristics of the target texture. M = 1 ∼ 3
has been shown to be effective for small textures 27). Here, we adopt M = 1
to reduce the calculation cost since we empirically confirmed that the filtering
performances of obtained SEs were not different much among M = 1, 2 and 3.

3.3.3 Validity of Objective Function
In this paper, we compare the filtering performance using the mean square

error (MSE) between the original image Xo and the filtered image obtained by
applying an SE to the corrupted image X.

Figure 1 shows the relationship between the evaluation value and the MSE of
an SE in the corrupted texture D20. This texture is an example from the set of
Brodatz textures 28) and is described in detail in Section 5. The distribution was
derived from 500 SEs with pixel values randomly assigned in the range of [0, 255]
to a 3x3 square shape. To generate corrupted images, 25% or 50% of the pixels
in the original images with positions that were randomly selected were replaced
with impulse noise.

From this result, at both noise rates, the distribution extends diagonally from
the bottom left to the top right, and we can confirm experimentally that pro-
cessing results closer to the original textures are obtained by minimizing the
summation of F (r).
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3.4 Application of GA to the Design of SEs
An SE is an individual (candidate solution) of a GA. For simplicity, we fix

the shape of every SE to a full square of 3x3 pixels and only optimize the pixel
values of elements e(i, j) (1 ≤ i, j ≤ 3) in this square. For the initial population,
a random value in the range [0, 255] is assigned to each element of an SE. During
the search using the GA, the value of each element is coded to a binary string
of 8 bits by binary coding ; consequently, an individual of the GA is expressed
as a binary string of 72 bits (= 8 bits * 9 elements). This design problem is a
binary problem; therefore, dMSXF and dMSMF are implemented as the bitwise
operator shown in Table 1.

4. Problem Difficulty Analysis and NK Model

4.1 Properties of Fitness Landscape
It is essential to investigate the problem difficulty before applying a GA to

an individual problem. There are several measurements for evaluating the com-
plexity in the fitness landscape of an objective function. Epistatic interactions
among design variables affect the features of local landscapes. The degree of
fitness correlation among neighborhood solutions reflects the level of epistasis,
which appears as the local ruggedness in a fitness landscape. The correlation
length �c is an indicator of the level of epistasis 29), and it is derived from the ran-
dom walk correlation function r(s) in Eq. (5), where a time series {f(xt)} defines
the correlation between two points s steps away along a random walk of length
m through the fitness landscape. f̄ and σ2

f respectively denote the average and
variance of the fitness values.

r(s) = lim
m→∞

1
σ2

f (m − s)

m−s∑
t=1

(f(xt) − f̄)(f(xt+s) − f̄)

�c = −1/ln(|r(1)|) (5)

If a time series {f(xt)} is isotropic, Gaussian and Markovian, then the func-
tion r(s) is of the form r(s) = r(1)s = e−s/�c . In this case, the landscape is
called an AR(1) landscape. AR(1) landscapes have been found in various combi-
natorial optimization problems, such as the TSP, and can be created by the NK
model. This landscape feature is also observed in the objective function used for

optimizing SEs, as demonstrated later in Section 4.3.
The lower the value of �c, the more rugged the landscape. No fitness correlation

is observed between the current point p and a point with a distance from p of
greater than �c i.e., it is difficult to estimate the behavior of a point distant from
p, whereas a neighbor within distance �c has a certain correlation with p 29). The
indicator �c has tremendous impact on the performance of any neighborhood
search method, and we can obtain useful information from the current solution
to generate neighborhood solutions if the scope of the neighborhood is smaller
than �c.

4.2 Description of the NK Model
The NK model 23) is a simple and flexible fitness function model in which the

ruggedness of the landscape can be tuned by changing one parameter. It is often
used for analyzing the search behavior of a GA in problems involving AR(1)
landscapes. In addition, various types of combinatorial optimization problems,
such as the TSP, can be traced to the NK model in terms of problem structures
and local properties of the landscape 30). The NK model is represented by a
binary string of length N . The parameter K represents the number of linkages
each gene has to other genes in the same chromosome; the fitness contribution fi

of each gene xi in chromosome x depends on xi and the values of K other genes.
For each gene xi, each of the 2K+1 allele combinations is assigned a random real
number value between [0, 1), and fi is derived as the pregiven random value
corresponding to the bitstring consisting of xi and K/2 other genes. The fitness
function of the NK model is the average overall fitness contribution described
below. In this work, we maximize the fitness in the NK model.

f(x) =
1
N

N∑
i=1

fi(xi, xi1 , · · · , xik
) (6)

The parameter K, which is set to be from 1 to (N -1), indicates the level of
epistasis and modifies the ruggedness of the landscape. With increasing K, the
landscape becomes more rugged and the fitness correlation between neighborhood
solutions also becomes smaller. There are two typical models of epistasis: the
nearest-neighbor model and the random epistatic model 31). In this work, we
adopt the former, for which the bit xi is linked to the K/2 nearest bits on each
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Fig. 2 Random walk correlation functions for texture images.

side of xi. The fitness landscape of the NK model has the AR(1) landscape; the
value of �c has been proved to be N/(K + 1) 32).

4.3 Fitness Landscape Feature of the Objective Function of SEs
Here, we show that the objective function used to design SEs for noise removal,

that is, the summation of the size distribution, has the feature of an AR(1) land-
scape. Random walk correlation functions of this design problem were examined
to analyze aspects of the fitness landscape and problem difficulty. At each step of
the random walk, a neighborhood solution was generated by the bit flip operator.
Two images, D57 and D74 from the set of Brodatz textures 28), were used for the
examination. These images are described in detail in Section 5. The probability
of impulse noise was set to 25% or 50% for both images.

The computed correlation functions are plotted in Fig. 2. These functions were
estimated experimentally by performing random walks of length 1x105. Random
walk correlation functions for different parameters of the NK model are also
plotted in the figure for comparison. All functions here are 72-bit problems,

which is the same bit length as that used to represent the individuals used for
designing SEs.

From the figure, we can see that the random walk correlation functions for the
design problem of SEs have an exponentially decaying form as expected for the
landscape of the NK model. This property was also observed in other values
of M . The local ruggedness of the objective functions of these textures in the
optimization of SEs is considered to be extremely similar to that in the NK
model. It is observed that the ruggedness of the function is different for the two
textures. In these examples, D74 is more rugged than D57. In addition, the level
of epistasis of the objective function decreases with increasing noise rate.

It has been shown that dMSXF performs very well on an AR(1) landscape 21).
Therefore, it is expected that dMSXF will be effective used for optimizing SEs for
noise removal. In addition, we can preliminarily examine the appropriate setting
parameters of dMSXF using the NK model, before applying it to design SEs.

5. Numerical Experiments

We next discuss the suitability of dMSXF and dMSXF+dMSMF for application
to the design of SEs. To show their effectiveness, we compare them with the
conventional crossover operator, the uniform crossover (UX), which generates
mostly intermediate offspring between parents in any rugged landscape. The
processing performance of the SEs designed for impulse noise removal is also
examined by comparing it to those of other typical filters.

Eight images, Brodatz textures 28) D3, D20, D57, D74, D87, D98, D101 and
D112, which have a wide variety of shape characteristics and brightness, were
used for the examination. The size of each image is 128x128 and the gray level
of each image is 256. These textures are illustrated in Fig. 3.

Before applying dMSXF and dMSXF+dMSMF to the design of SEs, their
search performance in the NK model is examined to determine the parameter
settings at which they are effective. The efficacy of generating offspring is also
compared using the progress rate (PR) 33), which is of the indicators for deter-
mining the efficiency of a search method. PR is the expectation value of the
progress per one step under a given condition. The original PR is a measure of
performance, particularly for the evolutionary strategy (ES) 34), and we adopt a
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Fig. 3 Brodatz textures.

redefined PR for crossover methods 19). The PR we adopt here is the average
amount of progress from the better of the parents to the best of the family, as
defined in Eq. (7). In Eq. (7), F is the family F = {p1, p2, C(p1, p2)}.

PR(p1, p2) = E(min
x∈F

f(x) − min
x∈{p1,p2}

f(x)) (7)

5.1 Performance of dMSXF against the Level of Epistasis
We confirm the appropriate setting of parameters of dMSXF using examples

of the NK model with N = 72. Since dMSMF searches a different solution space
from that of dMSXF, but is a functionally equivalent operator to dMSXF in
the case of binary problems, it is sufficient to examine the appropriate setting of
parameters in dMSXF only. The effectiveness of dMSXF+dMSMF was described
in our previous work 20),21). In the experiments, the population size was set to
10. The generation alternation model based on the elitist recombination model
(ER) 35) was adopted for UX.

Each trial was terminated after 25 generations in dMSXF and 50 generations
in UX in all instances of the NK model. The total number of evaluations was
the same for dMSXF and UX. For dMSXF, kmax was set to 2, 4, 8 or 16. The
number of offspring generated by each pair of parents, NC , was set to 32 for both
methods. μ was calculated as NC/kmax.

Table 2 shows the search performances of the NK model with N = 72, where
K was tuned in the range of 3 to 12. These results show the average and standard

Table 2 Search performances of dMSXF and UX (N = 72).

Parameters kmax=2 kmax=4 kmax=8 kmax=16 UX=32
K �c avg. std. avg. std. avg. std. avg. std. avg. std.
3 18.0 0.908 0.028 0.909 0.032 0.905 0.030 0.888 0.032 0.884 0.035
6 10.3 0.903 0.036 0.908 0.038 0.895 0.037 0.869 0.041 0.879 0.035
9 7.2 0.736 0.022 0.738 0.023 0.739 0.026 0.723 0.024 0.728 0.025
12 5.5 0.694 0.022 0.702 0.016 0.700 0.018 0.687 0.017 0.690 0.019

Fig. 4 Progress rate of crossovers.

deviation of fitness in 100 trials. Larger values are considered to be better. At
each trial, the same initial population was used in the GAs. Figure 4 illustrates
the PRs of both dMSXF and UX. In the figure, a white dot indicates the PR of
UX and the black dots are the PRs of dMSXF. Larger values are also superior in
this figure. These results show the average value of 1000 random pairs of parents
p1 and p2, for which d(p1, p2) is 9, 18 or 36 bits. The maximum distance, 36 bits,
is derived from N/2, which is the average distance between parents in the initial
population. The distances 9 and 18 are found in the middle stage of the search.

From Table 2, dMSXF shows a markedly superior performance to UX at all
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levels of epistasis. Among the settings of dMSXF, kmax = 4 performs satisfacto-
rily in these examples. For the distance between parents observed in the initial
generation, i.e., d = 36, we can see that kmax = 8 generates offspring more ef-
fectively than other values of kmax from Fig. 4. On the other hand, when the
population approaches convergence and the distance between parents becomes
smaller, kmax = 4 becomes more productive.

In these experiments, the total number of offspring NC is fixed, and μ decreases
with increasing kmax. When the offspring are sufficiently large, dMSXF with a
large kmax outperforms that with a small kmax; however, it is preferable to obtain
SEs with a small calculation cost, and we adopt kmax = 4 when designing SEs.

5.2 Effectiveness of dMSXF in the Design of SEs
Here, we apply dMSXF to the optimization of SEs that are effective for impulse

noise removal for textures. Eight images were used for the examination, and
the probability of impulse noise was set to 25% or 50% for each image. The
parameters of the GAs were the same as those described in the previous section.
In dMSXF, kmax was set to 4, which is considered the most productive.

Table 3 shows the best value of MSE between the processing results and the
original image, as well as the worst MSE (wst.), the average MSE (avg.) and the
standard deviation of MSE (std.) out of 20 trials. Smaller values are considered
to be better. The correlation length �c for each image, given in Table 3, was
estimated experimentally by performing random walks of length 1x105. Examples
of estimations with the best solutions of dMSXF are shown in Fig. 5.

From Table 3, dMSXF performs better than the conventional crossover and
yields good solutions. A marked improvement in processing performance is found
in the worst MSE, which indicates that dMSXF can design suitable SEs stably.

Table 4 shows the comparison of the processing performances between the de-
signed SEs and conventional filters: the median filter (MED) 1), the progressive
switching median filter (PSM) 5) and the progressive switching weighted average
filter (PSWA) 6) that are typical deterministic filters based on order statistics for
impulse noise removal. A full 3x3 square window was adopted in these conven-
tional filters. The processing performances of the SEs designed by GAs (dMSXF
and UX) are also compared with that of the SE obtained by our previous unsuper-
vised design method 27) using a simulated annealing 36), Mor(SA), in Table 4. The

Table 3 Processing results (MSE): dMSXF and UX.

Noise Rate = 25%
Example dMSXF UX

# MSE �c best wst. avg. std. best wst. avg. std.
D3 1506.4 11.2 260.6 356.6 292.0 21.2 266.7 438.0 294.8 35.7
D20 3052.3 9.7 105.9 245.0 121.5 30.1 106.4 239.6 133.9 37.3
D57 3996.3 10.2 274.5 362.8 287.9 24.1 275.4 439.6 312.1 53.8
D74 2102.7 9.4 110.3 132.8 118.0 6.4 111.9 136.2 121.3 6.5
D87 3298.5 10.6 280.7 311.1 291.0 6.5 287.0 336.9 299.4 12.5
D98 3712.0 9.1 27.7 36.7 30.4 2.4 27.7 52.1 32.9 6.8
D101 1819.3 9.3 261.3 580.6 354.9 95.6 282.9 688.3 397.9 114.3
D112 1682.6 9.6 87.7 105.7 93.2 5.2 88.5 130.9 99.4 10.6

Noise Rate = 50%
Example dMSXF UX

# MSE �c best wst. avg. std. best wst. avg. std.
D3 2918.7 11.6 441.3 505.3 462.7 18.9 443.1 543.2 471.5 31.3
D20 6331.9 11.4 265.3 319.4 273.1 13.2 266.4 331.7 277.2 14.5
D57 7979.4 11.7 383.7 442.4 392.3 12.7 384.9 463.7 404.9 23.7
D74 4076.7 10.9 226.2 286.2 237.5 13.4 226.4 289.3 252.4 22.0
D87 6580.7 11.6 472.4 516.4 486.3 12.2 473.0 529.8 491.3 15.0
D98 7409.7 9.6 69.5 76.3 71.7 1.8 70.1 123.6 84.7 13.6
D101 3667.0 11.1 438.9 513.8 462.4 20.1 440.2 533.7 470.8 24.8
D112 3427.6 10.9 180.7 230.3 188.6 10.5 181.9 256.4 200.9 20.7

Fig. 5 The processing results obtained by dMSXF.
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Table 4 Processing results (MSE): dMSXF, UX and other methods.

Noise Rate = 25%

Example dMSXF UX Mor(SA) MED PSM PSWA
bst. wst. bst. wst.

D3 260.6 356.6 266.7 438.0 340.5 919.6 608.5 490.0
D20 105.9 245.0 106.4 239.6 187.6 545.3 299.9 245.2
D57 274.5 362.8 275.4 439.6 288.4 778.5 341.6 299.1
D74 110.3 132.8 111.9 136.2 199.3 483.9 257.1 210.0
D87 280.7 311.1 287.0 336.9 380.0 896.0 496.7 402.8
D98 27.7 36.7 27.7 52.1 119.6 263.7 48.5 43.2
D101 261.3 580.6 282.9 688.3 255.7 688.8 416.6 344.7
D112 87.7 105.7 88.5 130.9 122.4 397.2 163.4 145.2

Noise Rate = 50%

Example dMSXF UX Mor(SA) MED PSM PSWA
bst. wst. bst. wst.

D3 441.3 505.3 443.1 543.2 713.3 2517.6 1505.9 773.7
D20 265.3 319.4 266.4 331.7 873.8 2878.1 1080.8 562.2
D57 383.7 442.4 384.9 463.7 807.3 3525.1 1194.7 537
D74 226.2 286.2 226.4 289.3 662.9 2038.5 826.8 382.5
D87 472.4 516.4 473.0 529.8 857.7 3230.1 1296.7 701.8
D98 69.5 76.3 70.1 123.6 429.2 2726.5 546.5 87.9
D101 438.9 513.8 440.2 533.7 788.4 2276.0 1260.8 458.2
D112 180.7 230.3 181.9 256.4 491.3 2127.5 878.5 257.4

setting of parameters of Mor(SA) were the same as those described in Ref. 27).
The results are the best values out of 20 trials.

From the comparison between the GAs and conventional methods, it is shown
that our unsupervised approach can design effective SEs that remove the noise
and reconstruct images with high accuracy. In particular, in the results for a noise
rate of 50%, even the worst MSE of GAs is smaller than those of conventional
methods for most textures.

5.3 Effectiveness of dMSXF+dMSMF in the Design of SEs
We examined the effectiveness of incorporating dMSMF into dMSXF. The

same examples were applied for this examination. The values of the parame-
ters of the GA were the same as those described in the previous section. In
dMSXF+dMSMF, dMSMF was applied instead of dMSXF when the distance
between parents was smaller than N x 0.1, where N denotes the bit length of the
chromosome. The number of steps in the neighborhood search of dMSMF, lmax,
was set to 4, which is the same value as kmax.

Table 5 Processing results (MSE): dMSXF+dMSMF and dMSXF.

Noise Rate = 25%
Example dMSXF+dMSMF dMSXF

# MSE �c best wst. avg. std. best wst. avg. std.
D3 1506.4 11.2 257.9 309.2 287.0 15.6 260.6 356.6 292.0 21.2
D20 3052.3 9.7 105.0 148.3 113.7 13.8 105.9 245.0 121.5 30.1
D57 3996.3 10.2 271.5 323.7 280.9 14.0 274.5 362.8 287.9 24.1
D74 2102.7 9.4 109.1 124.4 115.9 3.5 110.3 132.8 118.0 6.4
D87 3298.5 10.6 280.2 299.3 288.4 4.4 280.7 311.1 291.0 6.5
D98 3712.0 9.1 27.6 32.3 28.7 1.1 27.7 36.7 30.4 2.4
D101 1819.3 9.3 256.3 557.2 345.4 96.5 261.3 580.6 354.9 95.6
D112 1682.6 9.6 87.3 95.6 89.3 1.7 87.7 105.7 93.2 5.2

Noise Rate = 50%
Example dMSXF+dMSMF dMSXF

# MSE �c best wst. avg. std. best wst. avg. std.
D3 2918.7 11.6 441.0 482.3 455.1 10.1 441.3 505.3 462.7 18.9
D20 6331.9 11.4 264.6 268.2 266.3 0.8 265.3 319.4 273.1 13.2
D57 7979.4 11.7 380.8 401.1 387.7 4.0 383.7 442.4 392.3 12.7
D74 4076.7 10.9 225.8 234.6 230.1 2.1 226.2 286.2 237.5 13.4
D87 6580.7 11.6 472.3 486.0 478.6 4.3 472.4 516.4 486.3 12.2
D98 7409.7 9.6 68.7 74.0 70.1 1.2 69.5 76.3 71.7 1.8
D101 3667.0 11.1 431.8 470.5 459.5 10.5 438.9 513.8 462.4 20.1
D112 3427.6 10.9 179.9 194.2 183.5 4.2 180.7 230.3 188.6 10.5

Table 5 shows the best value of MSE between the processing results and the
original image, as well as the worst MSE (wst.), the average MSE (avg.) and the
standard deviation of MSE (std.) out of 20 trials.

As can be seen from Table 5, dMSMF improves the design accuracy of SEs.
From the perspective of both the average and the standard deviation of MSE, it
is shown that dMSXF+dMSMF yields suitable SEs more stably than dMSXF,
and we can confirm the importance of the search mechanism in exploring outside
the distribution of the population in this design problem.

6. Conclusions

Deterministic Multi-step Crossover Fusion (dMSXF) and deterministic Multi-
step Mutation Fusion (dMSMF) are superior genetic multistep operators for the
inheritance and acquisition of characteristics and are particularly effective for
problems associated with AR(1) landscapes. In this work, dMSXF and dMSMF
were adopted as crossover methods for optimizing the structuring elements (SEs)
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of morphological filters for texture images. A feature of an AR(1) landscape
was observed in the objective function for the design of SEs, and it was shown
that dMSXF and dMSXF+dMSMF can estimate more suitable SEs stably. SEs
obtained by these operators also outperformed promising conventional filters.
Here, we applied our unsupervised design method to the case of non-negative
integer impulse noise; however, it is extendable to the combination of opening
and closing to suppress more practical salt-and-pepper noise. This task is left as
a future goal.
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