
IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010)

Regular Paper

State and Threshold Sequence Minimization Algorithm

of Linear Separation Automata

Yuji Numai,†1 Yoshiaki Udagawa†2

and Satoshi Kobayashi†1

In this paper, we present a minimization algorithm of the number of states
of a linear separation automaton (LSA). An LSA is an extended model of a
finite automaton. It accepts a sequence of real vectors, and has a weight and a
threshold sequence at every state, which determine the transition from the cur-
rent state to the next at each step. In our previous paper, we characterized an
LSA and the minimum state LSA. The minimum state version for a given LSA
M is obtained by the algorithm presented in this paper. Its time complexity is
O((K + k) n2), where K is the maximum number of threshold values assigned
to each weight, k is the maximum number of edges going out from a state of
M , and n is the number of states in M . Moreover, we discuss the minimization
of a threshold sequence at each state.

1. Introduction

A finite automaton can be extended to deal with real values in some sense.
Such extensions include a hybrid automaton 1),2) and a timed automaton 3). Many
researchers utilize computational models that can deal with real values to solve
various problems including weather forecasting 4), motion recognition 5),6), and
time-sequential image analysis 7). Therefore, we believe that the establishment
of the theory of automata that can deal with real values is very important.

The study of a state minimization algorithm is important at various research
fields. For instance, in circuit design, the state minimization of finite sequential
machine plays an essential role to design a minimum size circuit. In the theory
of timed automata, a state minimization algorithm is utilized to improve the
efficiency of the analysis of real-time systems 8).

†1 Department of Computer Science, Graduate School of Electro-Communications, University
of Electro-Communications

†2 NTT-IT Corporation

In our previous paper 9), we theoretically analyzed a linear separation au-
tomaton (LSA). An LSA accepts a sequence of real vectors, and has a weight
function and a threshold sequence at every state, which determine the transi-
tion from the current state to the next at each step. Some algorithms to learn
an original finite automaton are similar to state minimization algorithms as in
Refs. 10), 11). Therefore the algorithm to minimize the number of states of an
LSA in this paper will play an important role in the theory of learning an LSA.

We have established the theory of state minimization of a given LSA. The state
minimization of an LSA M is to minimize the number of states of M . The state
minimized LSA is termed the minimum state LSA. We proved Myhill-Nerode
theorem for an LSA, established the uniqueness of the minimum state LSA for a
given one, and characterized the minimum state LSA for a given one.

More precisely speaking, the characterization of the minimum state LSA is
based on the concept of indistinguishability of states. We have proved that, if we
merge all the indistinguishable pair of states of a given LSA, then we will obtain
the minimum state version of a given one. However, we did not give any method
to find a indistinguishable pair.

This paper gives a method to detect the indistinguishability of states, and
presents an algorithm to minimize the number of states of a given LSA M . Its
time complexity is O((K + k) n2), where K is the maximum number of threshold
values assigned to each weight, k is the maximum number of edges going out
from a state of M , and n is the number of states in M . We moreover discuss the
minimization of a threshold sequence at each state.

In Section 2, we will give necessary definitions and notation needed in the
sequel of this paper. Section 3 introduces a linear separation automaton (LSA)
and some theoretical results. We present an algorithm to minimize the number
of states of a given LSA in Section 4. In Section 5, we discuss the minimization
of a threshold sequence at each state. Section 6 includes conclusions and future
works.

2. Preliminaries

In this section we introduce basic definitions and notation needed in this paper.
By R, we denote the set of real numbers. For a positive integer d, by Rd we

67 c© 2010 Information Processing Society of Japan

68 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

denote a d-dimensional vector space over R. For x, y ∈ Rd, x ⊗ y denotes the
inner product of x and y. We define (Rd)∗ as the set of all finite sequences of
vectors in Rd. For a sequence α = 〈x1, . . . , xn〉 ∈ (Rd)∗, we denote the length
of α by |α|, that is, |α| = n. An element in (Rd)∗ of length 0 is called an
empty sequence, and is denoted by λ. For sequences α, β ∈ (Rd)∗, we denote the
concatenation of α and β by αβ. For α = 〈x1, . . . , xn〉 ∈ (R1)∗, the sequence α

is said to be increasing if the inequality xi < xi+1 holds for every i.
Let S be a set. A partition π = {S1, . . . , Sk} of S is the set of mutually

disjoint non-empty subsets Si of S for 1 ≤ i ≤ k such that ∪i=1,...,kSi = S. A
partition π = {S1, . . . , Sk} of Rd is said to be linearly separable iff there exist
w ∈ Rd and an increasing h = 〈h1, . . . , hk−1〉 ∈ (R1)∗ such that, for any x ∈ Rd,

hi−1 < w ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k)
holds, where h0 = −∞ and hk = ∞.

Consider equivalence relations ≡,≡1, and ≡2 over (Rd)∗. The number of the
equivalence classes of ≡ is called the index of ≡. An equivalence relation ≡1

is finer than an equivalence relation ≡2 (or ≡2 is coarser than ≡1) iff x ≡1 y

implies x ≡2 y for any x and y. An equivalence relation ≡ is right invariant iff
α ≡ β implies αγ ≡ βγ for any α, β and γ.

Consider partitions π1 and π2 of Rd. A partition π1 is finer than a partition
π2 (or π2 is coarser than π1) iff for any block B1 ∈ π1, there exists a block
B2 ∈ π2 such that B1 ⊆ B2. We say that π1 is a refinement of π2 iff π1 is finer
than π2.
Lemma 1. Let w,w′ be unit vectors in Rd such that w �= w′, and consider any
h ∈ R. There exists h′ ∈ R such that for any ε > 0, there exist x1, x2 ∈ Rd

satisfying
h′ − ε ≤ w′ ⊗ x2 ≤ w′ ⊗ x1 = h′ and w ⊗ x1 = h < w ⊗ x2 ≤ h + ε.

Proof. First, we will consider the case of w �= −w′. Note that (w ⊗ w′)2 �= 1
holds. Let c1 = h, c2 = h + ε, and h′ = h. Take

xi = h w′ + αi(w − (w ⊗ w′)w′)
for i = 1, 2, where

αi =
ci − (w ⊗ w′)h
1 − (w ⊗ w′)2

.

Hence we have w′ ⊗ x1 = w′ ⊗ x2 = h = h′, w ⊗ x1 = h, and w ⊗ x2 = h + ε,

which satisfies the claim.
Next, we will consider the case of w = −w′. Let h′ = −h. Take

x1 = hw and x2 = (h + ε)w.

Hence we have w′⊗x1 = −h = h′, w′⊗x2 = h′−ε, w⊗x1 = h, and w⊗x2 = h+ε,
which satisfies the claim.

This lemma means that w′⊗x1 and w′⊗x2 can be put together closely enough
in the interval [h′− ε, h′], and that w⊗x1 and w⊗x2 are separated with respect
to the threshold value h.

3. Linear Separation Automata and Their Theoretical Results

In this section we introduce a linear separation automaton (LSA) and give some
theoretical results, which have been proved in our previous paper 9).

In Section 3.1, we illustrate the state transition of an LSA. In Section 3.2,
we formally define an LSA. We present some theoretical results for LSAs in
Section 3.3.

3.1 Overview
An LSA is an extended model of a finite automaton. It accepts a sequence

of real vectors, and has a weight and a threshold sequence at every state. The
transition from the current state to the next is determined by comparing the
inner product of the weight and input vectors with each element in the threshold
sequence. Figure 1 is a state transition diagram of an LSA M1.

Consider a state transition diagram as in Fig. 1, some interval I ⊆ R associ-
ated with some state transition from a state p is constructed with the threshold
sequence of p. Let an interval I0 be associated with a state transition from a
state q to r. If, in the current state q, the inner product of the weight and input
vectors is in I0, then the next state is r.
Example 1. Consider an LSA M1 in Fig. 1. The LSA M1 has the weight function
w, the threshold sequence function h, and the state transition function δ. Let α =
〈x1, x2, x3〉 be an input sequence of vectors in R2 with x1 = (3

√
10, 2

√
10), x2 =

(−√
5, 2

√
5), and x3 = (−3

√
10,−2

√
10). The inner product w(q1) ⊗ x1 = 11 is

in the interval (10,∞), which implies that δ(q1, x1) = q6. We see in the same
way that δ(q6, x2) = q4 and δ(q4, x3) = q4. The state q4 is a final state and thus
the sequence α is accepted by M1.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

69 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

Fig. 1 LSA M1.

3.2 Definitions and Notation
An LSA M is formally defined as an 8-tuple

M = (d,Q, q0, F, w, h, s, δ),
where

d is a positive integer specifying the dimension of input vectors to M ,
Q is a finite set of states,
q0 is an initial state (q0 ∈ Q),
F is a finite set of final states (F ⊆ Q),
w is a weight function from Q to Rd such that w(q) is a unit vector for any

q ∈ Q,
h is a threshold sequence function from Q to (R1)∗ such that h(q) is increasing

for every q ∈ Q, and is denoted by h(q) = 〈h(q)1, . . . , h(q)|h(q)|〉, and
s is a sub-transition function from Q to Q∗, and is denoted by s(q) = 〈s(q)1,

. . . , s(q)|s(q)|〉.
If |s(q)| ≥ 1, then the equality |h(q)| = |s(q)| − 1 holds for every q ∈ Q.
In order to improve the readability, we write iq = |h(q)| for any q ∈ Q.
δ is a state transition function from Q×Rd to Q; and is defined in the following

way by using w, h, and s. Consider any state q ∈ Q and vector x ∈ Rd. The
definition of δ is separated into three components.

First, in the case of |s(q)| = 0, the value δ(q, x) is undefined.
Secondly, suppose that |s(q)| = 1. The value δ(q, x) is defined as δ(q, x) = s(q)1.
Finally, assume that |s(q)| ≥ 2. The value δ(q, x) is defined as follows:

δ(q, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(q)1 if w(q) ⊗ x ≤ h(q)1
s(q)2 if h(q)1 < w(q) ⊗ x ≤ h(q)2
...

...

s(q)iq
if h(q)iq−1 < w(q) ⊗ x ≤ h(q)iq

s(q)iq+1 if h(q)iq
< w(q) ⊗ x.

Consider a state transition diagram as in Fig. 1. Suppose that δ(q, x) = p holds
if h(q)i < w(q) ⊗ x ≤ h(q)i+1. In the diagram, the transition from q to p is
associated with the interval (h(q)i, h(q)i+1].

For α = 〈x1, . . . , xl〉 ∈ (Rd)∗, we write δ(p, α) = q if there exists a sequence
p1(= p), p2, . . . , pl+1(= q) of states such that δ(pi, xi) = pi+1 holds for any i. We
define the set of sequences accepted by an LSA M , denoted by L(M), as

L(M) = {α ∈ (Rd)∗ | δ(q0, α) ∈ F }.
A subset L of (Rd)∗ is said to be regular if there exists an LSA M such that
L = L(M). We define the size of M as the cardinality |Q| of Q.

A state q ∈ Q is said to be reachable if there exists α ∈ (Rd)∗ such that
δ(q0, α) = q. A state q ∈ Q is said to be unreachable if q is not reachable.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

70 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

3.3 Theoretical Results
The theorems and lemmas in this subsection have been proved in Ref. 9).
Let ≡ be a right invariant equivalence relation over (Rd)∗, and consider an

equivalence class [α]≡ containing α ∈ (Rd)∗. An equivalence relation R([α]≡)
over Rd induced by [α]≡ is defined as follows:

x R([α]≡) y
def⇔ αx ≡ αy.

For any α and β with α ≡ β, the equality R([α]≡) = R([β]≡) holds, because
≡ is right invariant.

We say that a right invariant equivalence relation ≡ over (Rd)∗ is right lin-
early separable iff for any equivalence class [α]≡, there exists a finite linearly
separable partition of Rd that is finer than Rd/R([α]≡).
Definition 1 (Modified Myhill-Nerode Relation for LSAs). Let S ⊆
(Rd)∗ be a set of sequences. The equivalence relation ≡ over (Rd)∗ satisfying
the following conditions is called a modified Myhill-Nerode relation with
respect to S.
(1) The equivalence relation ≡ is right invariant.
(2) The equivalence relation ≡ is of finite index.
(3) The equivalence relation ≡ is right linearly separable.
(4) The set S is a union of some equivalence classes of ≡.

For any subset S of (Rd)∗, we define an equivalence relation ≈S over (Rd)∗ as
follows:

α ≈S β
def⇔ ∀γ ∈ (Rd)∗ (αγ ∈ S iff βγ ∈ S).

Theorem 1 (Myhill-Nerode Theorem for LSAs). Let S ⊆ (Rd)∗ be a set
of sequences. The following three statements are equivalent.
(1) The set S is regular.
(2) There exists a modified Myhill-Nerode relation with respect to S.
(3) The equivalent relation ≈S is of finite index and right linearly separable.

Theorem 1 characterizes the class of languages accepted by LSAs. Moreover,
the equivalence relation ≈S is utilized to characterize the minimum state LSA.

Let S ⊆ (Rd)∗ be a set of sequences, and α be an element in (Rd)∗. Since
≈S is right linearly separable, there exists a finite linearly separable partition
π = {S1, . . . , Sk} which is finer than Rd/ R([α]≈S

). Thus, there exist wα ∈ Rd

and hα = 〈h1, . . . , hk−1〉 ∈ (R1)∗ such that
hi−1 < wα ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k),

where h0 = −∞ and hk = ∞. We define
Mmin = (d,Qmin, q0min, Fmin, wmin, hmin, smin, δmin)

as follows:

Qmin = (Rd)∗/ ≈S , q0min = [λ]≈S
, Fmin = {[α]≈S

| α ∈ S },
δmin([α]≈S

, x) = [αx]≈S
, wmin([α]≈S

) = wα, hmin([α]≈S
) = hα.

Let M = (d,Q, q0, F, w, h, s, δ) and M ′ = (d,Q′, q′0, F
′, w′, h′, s′, δ′) be LSAs.

We say that M is isomorphic to M ′ iff there exists a bijection f from Q to Q′

satisfying the following conditions:
(1) f(q0) = q′0.
(2) f(δ(q, x)) = δ′(f(q), x) holds for any q ∈ Q and x ∈ Rd.
(3) f(F) = F ′.
Theorem 2 (Uniqueness of Minimum State LSA). Let S be a regular
subset of (Rd)∗. The LSA Mmin is isomorphic to every minimum state LSA
accepting S.

Let M = (d,Q, q0, F, w, h, s, δ) be an LSA accepting S with no unreachable
states. For any p, q ∈ Q, there exists α, β ∈ (Rd)∗ such that δ(q0, α) = p and
δ(q0, β) = q. We define the equivalence relation ∼ over Q as follows:

p ∼ q
def⇔ α ≈S β.

The states p and q are said to be indistinguishable iff p ∼ q. The states p

and q are said to be distinguishable iff p �∼ q.
Lemma 2.

p ∼ q ⇔ ∀γ ∈ (Rd)∗, δ(p, γ) ∈ F iff δ(q, γ) ∈ F.

Lemma 3.
p ∼ q ⇔ ∀α ∈ (Rd)∗, δ(p, α) ∼ δ(q, α).

For any p ∈ Q, by r(p) we denote a representative element of [p]∼. We
define an LSA

M/ ∼= (d,Q′, q′0, F
′, w′, h′, s′, δ′),

where
Q′ = Q/ ∼, q′0 = [q0]∼, F ′ = {[q]∼ | q ∈ F},

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

71 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

δ′([q]∼, x) = [δ(r(q), x)]∼, w′([q]∼) = w(r(q)), h′([q]∼) = h(r(q)).
Theorem 3 (Characterization of Minimum State LSA). Let M be an LSA.
The LSA M/ ∼ is a minimum state LSA for M such that L(M/ ∼) = L(M).

4. State Minimization Algorithm

In this section, we deal with an algorithm to minimize the number of states of
a given LSA. This algorithm is similar to that to minimize the number of states
of a given finite automaton 12),13).

In Section 4.1, we illustrate the approach to minimize the number of states of an
LSA, coarsest refinement approach. We next describe an algorithm to minimize
the number of states of a given LSA in Section 4.2, present an example run of
the algorithm in Section 4.3, and finally prove the correctness of the algorithm
in Section 4.4.

4.1 Coarsest Refinement Approach
Let M = (d,Q, q0, F, w, h, s, δ) be an LSA. For a state q1, q2 ∈ Q, we write

q1 ∼w q2 if w(q1) = w(q2). A state q1 is preceding to a state q2 with respect
to a state q, denoted by q1 ≺q q2, if there exists an integer i such that s(q)i = q1

and s(q)i+1 = q2. For q ∈ Q, we define
Δ(q) = { p | p ∈ s(q) }.

For a subset X of Q, we define
Δ(X) = { p | q ∈ X, p ∈ Δ(q) }.

Lemma 4. Consider q, q′ ∈ Q such that q �∼w q′ and |Δ(q)| > 1. For any states
p1, p2 with p1 ≺q p2, there exists x1, x2 ∈ Rd such that δ(q, xi) = pi (i = 1, 2)
and δ(q′, x1) = δ(q′, x2).
Proof. Since p1 ≺q p2, there exists an integer i such that s(q)i−1 = p1 and
s(q)i = p2. We deduce from Lemma 1 that there exists h′ ∈ R such that, for any
ε > 0, there exist x1, x2 ∈ Rd satisfying h′ − ε ≤ w(q′) ⊗ x2 ≤ w(q′) ⊗ x1 = h′

and h(q)i−1 = w(q) ⊗ x1 < w(q) ⊗ x2 ≤ h(q)i−1 + ε. If we take such ε small
enough, then we deduce from the definition of the state transition function δ that
δ(q, xi) = pi (i = 1, 2) and δ(q′, x1) = δ(q′, x2), completing the proof.

For a partition π of Q and q1, q2 ∈ Q, we write q1 ∼(π) q2 if there exists B ∈ π

such that q1, q2 ∈ B. For a subset X of Q, we define
W (X) = {w(q) | q ∈ X }.

For a subset X of Q and ω ∈ W (Q), we define
Xω = { q ∈ X | w(q) = ω }.

For any ω ∈ W (Q), we also define
H(ω) = {h(q)i | q ∈ Qω, 1 ≤ i ≤ iq, s(q)i �= s(q)i+1 } ∪ {∞}.

Example 2 below helps to understand these complex definitions.
For ω ∈ W (Q) and v ∈ H(ω), we define the function δω,v from Qω to Q as

follows:
δω,v(q) = δ(q, x) for some x ∈ Rd with ω ⊗ x = v.

We define the set of functions Δ as follows:
Δ = { δω,v | ω ∈ W (Q), v ∈ H(ω) }.

In the sequel, for simple description of the algorithm, we often use graph rep-
resentation of mappings f ∈ Δ and Δ : Q → 2Q, i.e., f is represented as a graph
containing edges between q1 and q2 such that q2 = f(q1), and Δ is represented
as a graph containing edges between q1 and q2 such that q2 ∈ Δ(q1).
Example 2. Consider an LSA M1 in Fig. 1. We have W (Q) = {w1, w2},
H(w1) = {−10, 0, 5, 10,∞}, and H(w2) = {20,∞}. Some functions in the set Δ
are represented in Fig. 2 and Fig. 3.
Theorem 4 (Characterization of Partition Q/ ∼). Let M = (d,Q, q0, F,

w, h, s, δ) be an LSA. The partition Q/ ∼ is a coarsest refinement π of π0 =
{F,Q − F} which satisfies the following conditions:
(C1) ∀B ∈ π ∀f ∈ Δ ∃B′ ∈ π such that f(B) ⊆ B′,
(C2) ∀B ∈ π (|W (B)| > 1 ⇒ ∃B′ ∈ π such that Δ(B) ⊆ B′).
Proof. We first show that Q/ ∼ is a refinement of π0 satisfying (C1) and (C2).

It is clear that Q/ ∼ is a refinement of π0, since we deduce from Lemma 2 that
q1 ∼ q2 implies δ(q1, λ) ∈ F ⇔ δ(q2, λ) ∈ F implies q1 ∈ F ⇔ q2 ∈ F .

Assume that (C1) does not hold for Q/ ∼, i.e., there exist B ∈ Q/ ∼ and f ∈ Δ
such that f(B) �⊆ B′ for any B′ ∈ Q/ ∼. This implies that, from the definition
of Δ, there exist q1, q2 ∈ B and x ∈ Rd such that q1 ∼ q2 and δ(q1, x) �∼ δ(q2, x).
This contradicts Lemma 3. Therefore, the partition Q/ ∼ satisfies (C1).

Assume that (C2) does not hold for Q/ ∼, i.e., there exists B ∈ Q/ ∼ such
that |W (B)| > 1 and Δ(B) �⊆ B′ for any B′ ∈ Q/ ∼. We consider the following
two cases:
(Case 1) Consider the case that there exists q ∈ B such that Δ(q) �⊆ B′ for

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

72 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

δw1,−10 δw1,0

Fig. 2 Some graphs in Δ for the weight w1.

δw2,20 δw2,∞
Fig. 3 Graphs in Δ for the weight w2.

any B′ ∈ Q/ ∼. There exist p1, p2 ∈ Q such that p1 ≺q p2 and p1 �∼ p2.
Let q′ ∈ B such that q �∼w q′. Such q′ should exist since |W (B)| > 1 holds.
Lemma 4 implies that there exist x1, x2 ∈ Rd such that δ(q, xi) = pi (i = 1, 2)
and δ(q′, x1) = δ(q′, x2). Since p1 �∼ p2, we have δ(q, xi) �∼ δ(q′, xi) for some
i = 1, 2, which contradicts q ∼ q′ from Lemma 3.
(Case 2) Consider the case that for any q ∈ B, there exists B′ ∈ Q/ ∼ such that
Δ(q) ⊆ B′. By the assumption that (C2) does not hold, there exist q1, q2 ∈ B

such that δ(q1, x) �∼ δ(q2, x) for any x ∈ Rd, which contradicts q1 ∼ q2 by
Lemma 3.

In both cases, we have a contradiction. Thus (C2) holds for Q/ ∼. In conclu-
sion, Q/ ∼ is a refinement of π0 satisfying (C1) and (C2).

Next we will show that Q/ ∼ is the coarsest. Let π∗ be any refinement of π0

satisfying (C1) and (C2). It suffices to show that for any q1, q2 ∈ Q, q1 ∼(π∗) q2

implies q1 ∼ q2.
Suppose that q1 ∼(π∗) q2 and q1 �∼ q2. Without loss of generality, we deduce

from Lemma 2 that there exists α = 〈x1, . . . , xn〉 ∈ (Rd)∗ such that δ(q1, α) ∈ F

and δ(q2, α) �∈ F . Let us define q
(j)
i = δ(qi, 〈x1, . . . , xj〉) for i = 1, 2 and j =

0, . . . , n.
Note that q

(n)
1 �∼(π∗) q

(n)
2 holds since π∗ is a refinement of π0. We will show

q
(n−1)
1 �∼(π∗) q

(n−1)
2 . Assume q

(n−1)
1 ∼(π∗) q

(n−1)
2 . In the case of q

(n−1)
1 ∼w q

(n−1)
2 ,

take ω = w(q(n−1)
1) and v = min{h ∈ H(ω) | ω ⊗ xn ≤ h }. Let f = δω,v ∈ Δ.

We deduce from the condition (C1) with respect to f that q
(n)
1 ∼(π∗) q

(n)
2 ,

which is a contradiction. In the case of q
(n−1)
1 �∼w q

(n−1)
2 , we deduce from the

condition (C2) that q
(n)
1 ∼(π∗) q

(n)
2 , which is a contradiction. In both cases,

we have a contradiction, and thus q
(n−1)
1 �∼(π∗) q

(n−1)
2 holds. By repeating the

same discussion, we can prove that q1 = q
(0)
1 �∼(π∗) q

(0)
2 = q2 holds, which is a

contradiction.
Therefore, the assumption q1 �∼ q2 is not correct.
4.2 Minimization Algorithm
Our algorithm uses two primitive refinement operations split1 and split2; the

former is for the condition (C1), and the latter is for (C2).
For a set S ⊆ Q, f ∈ Δ, and a partition π of Q, the operation split1(S, f, π) is

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

73 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

Fig. 4 split1(S, f, π).

defined as follows:

find all blocks B ∈ π such that f(B) ∩ S �= ∅ and f(B) �⊆ S. Define B1 =
B ∩ f−1(S) and B2 = B − B1. Then, split B ∈ π into the blocks B1 and B2,
which results in the refinement of π.

For a set S ⊆ Q and a partition π of Q, split2(S, π) is defined as follows:

find all blocks B ∈ π such that Δ(B) ∩ S �= ∅, Δ(B) �⊆ S and |W (B)| > 1,
and split B into some smaller blocks defined in the following way; Define B′ =
{ q ∈ B | Δ(q) ∩ S �= ∅ and Δ(q) �⊆ S }, B1 = {q ∈ B − B′ | Δ(q) ⊆ S}, and
B2 = (B − B′) − B1. For each ω ∈ W (B′), consider B′

ω. Then, split B ∈ π into
B1, B2 and B′

ω’s for all ω ∈ W (B′), which results in the refinement of π.

These operations are also illustrated in Fig. 4 and Fig. 5. A concrete example
is shown in Section 4.3.

Now, we present an algorithm to minimize the number of states of a given
LSA, Algorithm 1. This algorithm checks the existence of a block B with which
splitting operations (split2 first, and then split1) can be applied to the current
partition. This process is continued until no more refinement is possible.

Fig. 5 split2(S, π).

Algorithm 1 Minimization Algorithm for LSA

Input: An LSA M = (d,Q, q0, F, w, h, s, δ)
Output: π

1: let π = {F,Q − F};
2: loop
3: if ∃B ∈ π such that split2(B, π) �= π then
4: replace π with split2(B, π);
5: else if ∃B ∈ π, ∃ f ∈ Δ such that split1(B, f, π) �= π then
6: replace π with split1(B, f, π);
7: else
8: output π and halt;
9: end if

10: end loop

How do we determine the weights and threshold sequences of the minimum
state LSA? Recall that the definition of weights and threshold sequences in the
minimum state LSA. Let M = (d,Q, q0, F, w, h, s, δ) be an LSA. The LSA
M/ ∼= (d,Q′, q′0, F

′, w′, h′, s′, δ′) is the minimum state version of M . The weight
w′ and threshold sequence h′ is defined as w′([q]∼) = w(r(q)) and h′([q]∼) =
h(r(q)), respectively. The weight of the block [q]∼ is equal to w(q′) such that

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

74 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

q′ ∼ q. Similarly, The threshold sequence of the block [q]∼ is equal to h(q′) such
that q′ ∼ q.

4.3 Example Run
We show an example run of Algorithm 1 for the input M1 in Fig. 1.
Let π = {Ba, Bb}, where

Ba = {q2, q4},
Bb = {q1, q3, q5, q6, q7, q8, q9, q10, q11, q12}.

First, consider split2(Ba, π). We find that Δ(Bb) ∩ Ba �= ∅, Δ(Bb) �⊆ Ba, and
|W (Bb)| = 2 > 1. Moreover, B′ = ∅. Thus, we split Bb into B1 = { q ∈ Bb −B′ |
Δ(q) ⊆ Ba } = {q5, q6, q7, q8} and B2 = (B2−B′)−B1 = {q1, q3, q9, q10, q11, q12}.
We rename B1 and B2 as Bc and Bd, respectively. Hence, the operation
split2(Ba, π) constructs the new partition π1 = {Ba, Bc, Bd}, where

Ba = {q2, q4},
Bc = {q5, q6, q7, q8},
Bd = {q1, q3, q9, q10, q11, q12}.

Next, we have split2(Bd, π1) = π2 = {Ba, Bc, Be, Bf}, where
Ba = {q2, q4},
Bc = {q5, q6, q7, q8},
Be = {q1, q3},
Bf = {q9, q10, q11, q12}.

Next, we have split2(Be, π2) = π3 = {Ba, Bc, Be, Bg, Bh}, where
Ba = {q2, q4},
Bc = {q5, q6, q7, q8},
Be = {q1, q3},
Bg = {q9, q10},
Bh = {q11, q12}.

Finally, we have split1(Bh, δw2,20, π3) = π4 = {Ba, Bc, Be, Bg, Bi, Bj}, where
Ba = {q2, q4},
Bc = {q5, q6, q7, q8},
Be = {q1, q3},
Bg = {q9, q10},
Bi = {q11},
Bj = {q12}.

Fig. 6 Minimum state LSA of M1.

No more refinement is possible. Therefore Algorithm 1 outputs π4 and halts.
Next, we determine the weight function and the threshold sequence function.

The weight of Ba, w(Ba), is w(q2) = w(q4) = w1 because q2 and q4 are in Ba.
The weight w(Bc) is either w(q5) = w(q7) = w1 or w(q6) = w(q8) = w2. Which
weight is correct? Of course, any weight is correct. The rest of weights are also
determined in a similar way. The threshold sequence h(Ba) is h(q2) = h(q4) =
〈−10, 0, 5〉. The rest of threshold sequences are also determined in a similar way.

Finally, the minimum state LSA for M1 with the set π4 of states is obtained
in Fig. 6.

4.4 Correctness of Algorithm
We give some basic properties of these operations:

Lemma 5. A partition π satisfies (C1) if and only if split1(B, f, π) = π for
every block B ∈ π and f ∈ Δ. A partition π satisfies (C2) if and only if
split2(B, π) = π for every block B ∈ π.
Proof. It is clear from the definition of split1 that the first statement of this

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

75 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

lemma holds.
First, we will prove that π satisfies (C2) only if split2(B, π) = π for every block

B ∈ π. Suppose that π satisfies (C2) and split2(B, π) �= π for some B ∈ π. There
exists B′ ∈ π such that Δ(B′) ∩ B �= ∅, Δ(B′) �⊆ B and |w(B′)| > 1, which is a
contradiction.

Next, we will prove that π satisfies (C2) if split2(B, π) = π for every block
B ∈ π. Suppose that split2(B, π) = π holds for every block B ∈ π and π does
not satisfy (C2). There exists B ∈ π such that |W (B)| > 1 and for any B′ ∈ π,
Δ(B) �⊆ B′ holds. Take a block B∗ ∈ π such that B∗ has an element of Δ(B).
We have Δ(B) ∩ B∗ �= ∅ and Δ(B) �⊆ B∗, which implies that split2(B∗, π) �= π,
which is a contradiction.
Lemma 6. If π2 is a refinement of π1 and split1(S, f, π1) = π1 holds, then
split1(S, f, π2) = π2 holds. If π2 is a refinement of π1 and split2(S, π1) = π1

holds, then split2(S, π2) = π2 holds.
Proof. We will prove the first statement. Let π1 be a partition satisfying
split1(S, f, π1) = π1 and π2 be a refinement of π1. Assume that split1(S, f, π2) �=
π2 holds. Then, there exists a block B ∈ π2 such that f(B) ∩ S �= ∅ and
f(B) �⊆ S. Since π2 is a refinement of π1, there exists a block B′ ∈ π1 such that
B ⊆ B′. Then, f(B′) ∩ S �= ∅ and f(B′) − S ⊇ f(B) − S �= ∅ hold. Therefore,
split1(S, f, π1) �= π1 holds, which is a contradiction.

The second statement of this lemma can be proved in a similar manner.
Lemma 7. The equalities split1(S1, f, π) = π and split1(S2, f, π) = π imply
split1(S1 ∪ S2, f, π) = π. The equalities split2(S1, π) = π and split2(S2, π) = π

imply split2(S1 ∪ S2, π) = π.
Proof. We will prove the first statement. Consider a partition π such that
split1(S1, f, π) = π and split1(S2, f, π) = π hold. Assume that split1(S1 ∪
S2, f, π) �= π holds. Then, there exists a block B ∈ π such that f(B)∩(S1∪S2) �=
∅ and f(B) �⊆ (S1 ∪ S2) hold. We deduce from f(B) ∩ (S1 ∪ S2) �= ∅ that either
f(B) ∩ S1 �= ∅ or f(B) ∩ S2 �= ∅ holds. We may assume f(B) ∩ S1 �= ∅ without
loss of generality. The equation f(B) �⊆ (S1 ∪ S2) implies f(B) �⊆ S1. Therefore,
split1(S1, f, π) �= π holds, which is a contradiction.

The second statement can be proved in a similar way.
Lemma 8. If π1 is a refinement of π2 and split2(S, π2) = π2 holds, then

split1(S, f, π1) is a refinement of split1(S, f, π2).
Proof. Let B be any block in π1. There exists B′ ∈ π2 such that B ⊆ B′ since
π1 is a refinement of π2. The operation split1(S, f, π1) might split B ∈ π1 into
B1 = f−1(S) ∩ B and B2 = B − B1. The operation split1(S, f, π2) might split
B′ ∈ π2 into B′

1 = f−1(S) ∩ B′ and B′
2 = B′ − B′

1. Then, we have B1 ⊆ B′
1 and

B2 = B − B1 = B − f−1(S) ⊆ B′ − f−1(S) = B′ − B′
1 = B′

2. Therefore, in the
case that B is split into B1 and B2 by split1(S, f, π1), whether B′ is split or not,
for each i = 1, 2, there exists a block Di ∈ split1(S, f, π2) with Bi ⊆ Di. Thus,
it is left to consider the case that B is not split, but B′ is split into B′

1 and B′
2.

Recall that split2(S, π2) = π2 holds. Therefore, for any D ∈ π2 such that
Δ(D) ∩ S �= ∅ and Δ(D) �⊆ S, we have |W (D)| = 1. From the assumption that
B′ is split, |W (B′)| = 1 should hold. Thus, W (B) = W (B′) = {ω} for some
ω ∈ W (Q). This implies that f is defined either on every q ∈ B′, or on no
q ∈ B′.

Since B is not split by split(S, f, π1), we have either f(B) ⊆ S or f(B)∩S = ∅.
In the case of f(B) ∩ S = ∅, we have f−1(S) ∩B = ∅, which implies B′

1 ∩B =
f−1(S)∩B′∩B = ∅. Therefore, we deduce from B ⊆ B′ that B ⊆ B′−B′

1 = B′
2

holds.
Let us assume f(B) ⊆ S. In the case that f is defined on no q ∈ B′, f(B)∩S =

∅ holds. Thus, by the discussion of the previous paragraph, we have B ⊆ B′
2.

Therefore, we should consider the case that f is defined on every q ∈ B′. In this
case, we deduce from the assumption f(B) ⊆ S that B ⊆ f−1(S), which implies
B ⊆ f−1(S) ∩ B ⊆ f−1(S) ∩ B′ = B′

1.
In conclusion, for every block in split1(S, f, π1), there exists a block

in split1(S, f, π2) containing it. Thus, split1(S, f, π1) is a refinement of
split1(S, f, π2).
Lemma 9. Let π1 be a partition satisfying (C1) and S be a union of some
blocks in π1. If π1 is a refinement of π2, then split2(S, π1) is a refinement of
split2(S, π2).
Proof. Let B be any block in π1. There exists D ∈ π2 such that B ⊆ D since
π1 is a refinement of π2. Let B′ = {q ∈ B | Δ(q) ∩ S �= ∅, Δ(q) �⊆ S }, B1 =
{q ∈ B − B′ | Δ(q) ⊆ S } and B2 = (B − B′) − B1. The operation split2(S, π1)
might split B into B1, B2, and B′

ω’s (ω ∈ W (B′)). On the other hand, let

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

76 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

D′ = {q ∈ D | Δ(q) ∩ S �= ∅, Δ(q) �⊆ S }, D1 = {q ∈ D − D′ | Δ(q) ⊆ S } and
D2 = (D−D′)−D1. The operation split2(S, π2) might split D into D1, D2, and
D′

ω’s (ω ∈ W (D′)).
Now, we will prove that B′ ⊆ D′, B1 ⊆ D1, and B2 ⊆ D2.
It is clear that B′ ⊆ D′, because B ∩ D′ = B′ holds.
We have

D1 ∩ B = { q ∈ D − D′ | Δ(q) ⊆ S } ∩ B

= { q ∈ D | Δ(q) ⊆ S } ∩ B

= { q ∈ B | Δ(q) ⊆ S }
= { q ∈ B − B′ | Δ(q) ⊆ S }
= B1.

Hence B1 ⊆ D1 holds.
Furthermore, we have

B2 = (B − B′) − B1

= (B − B ∩ D′) − B ∩ D1

= (B − D′) − D1

⊆ (D − D′) − D1

= D2.

Therefore, in the case that B is split by split2(S, π1), whether D is split or not,
for any of B1, B2 and B′

ω’s, there exists a block in split2(S, π2) containing it.
Thus, it is left to consider the case that B is not split, but D is split.

Since B is not split, we have either Δ(B) ∩ S = ∅, Δ(B) ⊆ S, or |W (B)| = 1.
In the case of Δ(B) ∩ S = ∅, we deduce from the definition of D′ and D1 that

D′ ∩ B = ∅ and B ∩ D1 = ∅. Therefore, B ⊆ (D − D′) − D1 = D2 holds.
In the case of Δ(B) ⊆ S, we deduce from the definition of D′ that D′ ∩B = ∅,

which implies B ⊆ D−D′. Therefore, from the definition of D1, we have B ⊆ D1.
Finally, let us consider the case of |W (B)| = 1. Recall that π1 satisfies (C1).

Let W (B) = {ω}. We consider the following two subcases: (a) D′ ∩ B �= ∅ and
(b) D′ ∩ B = ∅.

Subcase (a): There exists q ∈ B such that Δ(q) ∩ S �= ∅ and Δ(q) �⊆ S.
Then, there should exist v1, v2 ∈ H(ω) such that δω,v1(q) ∈ S and δω,v2(q) �∈ S.
Since π1 satisfies (C1) and S is a union of blocks in π1, we have δω,v1(q

′) ∈ S

and δω,v2(q
′) �∈ S for any q′ ∈ B. Therefore, B ⊆ D′ holds, which implies that

B ⊆ D′
ω.

Subcase (b): For any q ∈ B, either Δ(q) ∩ S = ∅ or Δ(q) ⊆ S holds. Let q

be any element of B. In the case of Δ(q) ∩ S = ∅, since π1 satisfies (C1) and S

is a union of blocks in π1, we have Δ(q′) ∩ S = ∅ for any q′ ∈ B, which implies
B ⊆ D2. In the case of Δ(q) ⊆ S, since π1 satisfies (C1) and S is a union of
blocks in π1, we have Δ(q′) ⊆ S for any q′ ∈ B, which implies that B ⊆ D1.

In conclusion, for every block in split2(S, π1), there exists a block in
split2(S, π2) containing it. Thus, split2(S, π1) is a refinement of split2(S, π2).
Lemma 10. Algorithm 1 maintains the invariant that any coarsest refinement
of the initial partition {F,Q−F} satisfying (C1) and (C2) is also a refinement
of the current partition π.
Proof. By induction on the number of refinement steps. The claim is true ini-
tially from the definition. Let π∗ be the coarsest refinement of {F,Q− F} satis-
fying (C1) and (C2). We deduce from Lemma 5 that split1(B, f, π∗) = π∗ and
split2(B, π∗) = π∗ for any B ∈ π∗ and f ∈ Δ.

Suppose that the claim holds before a refinement step by split1(B′, f, π) or
split2(B′, π) for some B′ ∈ π. Since π∗ is a refinement of π by the induction
hypothesis, B′ is a union of some blocks in π∗. Consider the case that the
refinement is done by split1(B′, f, π). Note that in this case split2(B′, π) = π

holds by the structure of if-conditions of Algorithm 1. Lemma 7 implies that
split1(B′, f, π∗) = π∗. Therefore Lemma 8 implies that π∗ = split1(B′, f, π∗) is
a refinement of split1(B′, f, π).

In the case that the refinement is done by split2(B, π), we can prove the in-
duction step in a similar way by using Lemma 9.

The following theorem shows the correctness of Algorithm 1.
Theorem 5 (Correctness of Algorithm 1). Let M = (d,Q, q0, F, w, h, s, δ)
be an LSA, and n = |Q|. Algorithm 1 for the input M is correct and terminates
after at most n− 1 refinement steps, having computed the coarsest refinement of
{F,Q − F} satisfying (C1) and (C2).
Proof. Since the number of blocks of a partition of Q is less than or equal to n,
and since the number of blocks increases at each refinement step, the algorithm
terminates at most n − 1 refinement steps. Lemma 5 implies that the final
partition πf satisfies (C1) and (C2). Moreover, Lemma 10 implies that πf

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

77 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

should be the coarsest refinement of {F,Q − F} satisfying (C1) and (C2).
Let us discuss the time complexity of Algorithm 1. We define

K = max{ |H(ω)| | ω ∈ W (Q) }
and

k = max{ |Δ(q)| | q ∈ Q }.
The following theorem holds.
Theorem 6 (Time Complexity of Algorithm 1). Let M = (d,Q, q0, F, w, h,

s, δ) be an LSA, and n = |Q|. The time complexity of Algorithm 1 for the input
M is O((K + k) n2).
Proof. Let m = (K + k)n, i.e., m is the upper bound of the total number of
edges contained in the graphs f ∈ Δ and in the graph Δ. It is straightforward
to see that finding a block B satisfying the if-conditions (at lines 3 and 5) and
refining π afterwards can be done in time O(m).

Moreover, the upper bound of the number of refining π is n − 1.
Hence the time complexity of Algorithm 1 is O(mn) = O((K + k) n2).

5. Minimization of Threshold Sequences

Up to now, we discussed the minimization of the number of states for a given
LSA, and not on that of a threshold sequence at each state. In actuality, different
minimum state LSAs for a given LSA might have different threshold sequences
at some states.

In this section, we will elucidate some important properties of LSAs related to
the threshold sequence, and minimize a threshold sequence at each state of an
LSA.

Let M = (d,Q, q0, F, w, h, s, δ) be an LSA. Consider q ∈ Q and x, y ∈ Rd such
that δ(q, x) = s(q)i and δ(q, y) = s(q)i+1. If s(q)i = s(q)i+1, then the threshold
value h(q)i is not necessary for the linear separation. Therefore it is better to
remove such unnecessary threshold values.

The threshold sequence minimization of an LSA M is to remove all the
unnecessary threshold values at all the states of M .
Lemma 11. Let M = (d,Q, q0, F, w, h, s, δ) and M ′ = (d,Q′, q′0, F

′, w′, h′, s′, δ′)
be LSAs. If M is isomorphic to M ′ with respect to the isomorphism f , then
w(q) = w′(f(q)) holds for any q ∈ Q such that |Δ(q)| > 1.

Proof. For any q ∈ Q such that |Δ(q)| > 1, there exists an integer i such that
s(q)i−1 �= s(q)i.

Now, assume that w(q) �= w′(f(q)). We deduce from Lemma 1 that there
exists h′ ∈ R such that, for any ε > 0, there exist x1, x2 ∈ Rd satisfying h′ − ε ≤
w′(f(q)) ⊗ x2 ≤ w′(f(q)) ⊗ x1 = h′ and h(q)i−1 = w(q) ⊗ x1 < w(q) ⊗ x2 ≤
h(q)i−1 + ε. If we take such ε small enough, then we deduce from the definition
of the state transition function δ that δ(q, x1) = s(q)i−1 and δ(q, x2) = s(q)i, and
δ′(f(q), x1) = δ′(f(q), x2).

The equation δ(q, x1) �= δ(q, x2) holds since s(q)i−1 �= s(q)i. Hence
f(δ(q, x1)) �= f(δ(q, x2)) holds since f is injective. We deduce δ′(f(q), x1) �=
δ′(f(q), x2) from the definition of f , which is a contradiction.

For any q ∈ Q, we define
H(q) = {h(q)i | s(q)i �= s(q)i+1, 1 ≤ i ≤ iq}.

All the unnecessary threshold values in h(q) are removed from H(q).
The following theorem shows that the state and threshold sequence minimized

LSA for a given one is uniquely determined.
Theorem 7 (Minimization of Threshold Sequences). Let M = (d,Q, q0, F,

w, h, s, δ) and M ′ = (d,Q′, q′0, F
′, w′, h′, s′, δ′) be LSAs. If M is isomorphic to M ′

with respect to the isomorphism f , then H(q) = H(f(q)) holds for any q ∈ Q.
Proof. Consider any q ∈ Q.
If |Δ(q)| = 1, then it is clear that H(q) = H(f(q)) = ∅.
Suppose that |Δ(q)| > 1 and consider any h ∈ H(q). We will prove the following
claim. The claim below immediately implies h ∈ H(f(q)), i.e., H(q) ⊆ H(f(q)).
Claim (A): For any ε > 0, there exists h′ ∈ H(f(q)) such that |h − h′| < ε.

Let ε be any positive real. There exists an integer i such that h(q)i = h and
s(q)i−1 �= s(q)i. Let ε′ = min{ε/2, h(q)i+1 − h(q)i, h(q)i − h(q)i−1} and take any
x, y ∈ Rd such that h− ε′ < w(q)⊗ x < h < w(q)⊗ y < h + ε′. We deduce from
the definition of ε′ that h(q)i−1 < w(q) ⊗ x < h(q)i < w(q) ⊗ y < h(q)i+1. We
have

δ(q, x) �= δ(q, y) ⇒ f(δ(q, x)) �= f(δ(q, y)) (since f is injective)
⇒ δ′(f(q), x) �= δ′(f(q), y). (from the definition of f)

Therefore, there exists h′ ∈ H(f(q)) satisfying either (a) w′(f(q)) ⊗ x ≤ h′ <

w′(f(q))⊗ y or (b) w′(f(q))⊗ y ≤ h′ < w′(f(q))⊗ x. Note that w′(q) = w(f(q))

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

78 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

Fig. 7 Threshold sequence minimized version of LSA in Fig. 6.

holds from Lemma 11. This means that w′(f(q)) ⊗ x < w′(f(q)) ⊗ y, and thus
the inequality (a) only holds. Therefore it holds that w(q) ⊗ x ≤ h′ < w(q) ⊗ y.
Finally, we have

|h − h′| ≤ w(q) ⊗ (y − x) (since h < w(q) ⊗ y and w(q) ⊗ x ≤ h′)
< 2ε′ (from the conditions of x and y)
≤ ε, (since ε′ ≤ ε/2)

completing the proof of Claim (A).
In a similar manner, we can prove H(f(q)) ⊆ H(q).
Now, we can say that the state and threshold sequence minimized LSA for

a given one is uniquely determined because such LSAs have the same weight
function and the set of threshold values at every corresponding state.

In order to minimize the threshold sequences of a given LSA M =
(d,Q, q0, F, w, h, s, δ), it is enough to remove all the threshold values h(q)i such
that s(q)i = s(q)i+1 for any integer i and rewrite δ according to such changes.
Let k be the maximum number of edges going out from q ∈ Q, and let n = |Q|.

This procedure can be done in time O(kn).
Example 3. The threshold sequence minimized version of the LSA in Fig. 6 is
illustrated in Fig. 7.

6. Conclusions

In this paper, we presented an algorithm to minimize the number of states of
a given LSA M . Its time complexity is O((K + k) n2), where K is the maximum
number of threshold values assigned to each weight, k is the maximum number
of edges going out from a state of M , and n is the number of states in M . We
moreover discussed the minimization of a threshold sequence at each state.

We minimized the number of states of a given LSA with coarsest refinement
approach. There is another approach for minimization, state merging approach.
This approach merges the indistinguishable pair of states of a given LSA one by
one to obtain the minimum state LSA. To theorize this approach and compare
two approaches is one of the open problems.

There exists a faster state minimization algorithm than that for the original
finite automata 14),15). Therefore, we might theorize a faster state minimization
algorithm than that in this paper. To theorize that algorithm is another open
problem.

Some algorithms to learn an original finite automaton is similar to state min-
imization algorithms as in Refs. 10), 11). Therefore the algorithm to minimize
the number of states of an LSA in this paper will play an important role in the
theory of learning an LSA. The development of the theory of learning an LSA is
one of the important future works.

References

1) Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J. and Yovine, S.: The Algorithmic Analysis of Hybrid
Systems, Theor. Comput. Sci., Vol.138, No.1, pp.3–34 (1995).

2) Lynch, N. and Vaandrager, F.: Hybrid I/O automata, Information and Computa-
tion, Vol.185, No.1, pp.103–157 (2003).

3) Lynch, N. and Vaandrager, F.: Forward and Backward Simulations for Timing-
Based Systems, Proc. Real-Time: Theory in Practice, pp.397–446 (1992).

4) Mohri, T. and Tanaka, H.: Weather Prediction by Memory-Based Reasoning, Jour-

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

79 State and Threshold Sequence Minimization Algorithm of Linear Separation Automata

nal of Japanese Society for Artificial Intelligence, Vol.10, No.5, pp.798–805 (1995).
5) Matsunaga, T. and Oshita, M.: Recognition of Walking Motion Using Support

Vector Machine, ISICE2007, pp.337–342 (2007).
6) Matsunaga, T. and Oshita, M.: Automatic estimation of motion state for motion

recognition using SVM, IPSJ SIG Technical Report, Vol.2008-CG-133, pp.31–36
(2008).

7) Yamato, J., Ohya, J. and Ishii, K.: Recognizing human action in time-sequential
images using hidden Markov model, Proc. IEEE Conference on Computer Vision
and Pattern Recognition, pp.379–385 (1992).

8) Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L. and Wong-Toi, H.: Mini-
mization of Timed Transition Systems, CONCUR ’92: Proc. Third International
Conference on Concurrency Theory, pp.340–354 (1992).

9) Numai, Y., Udagawa, Y. and Kobayashi, S.: Theory of Minimizing Linear Separa-
tion Automata, IPSJ Transactions on Mathematical Modeling and Its Applications,
Vol.3, No.2, pp.83–91 (2010).

10) Dupont, P.: Incremental Regular Inference, Proc. Third International Colloquium
on Grammatical Inference (ICGI-96), pp.222–237 (1996).

11) Oncina, J. and Garćıa, P.: Inferring Regular Languages in Polynomial Updated
Time, Pattern Recognition and Image Analysis, Series in Machine Perception &
Artificial Intelligence, Vol.1, pp.49–61 (1992).

12) Harrison, M.A.: Introduction to Switching and Automata Theory, McGraw-Hill
(1965).

13) McCluskey, E.J.: Introduction to the Theory of Switching Circuits, McGraw-Hill
(1965).

14) Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton,
Theory of Machines and Computations, pp.189–196 (1971).

15) Paige, R. and Tarjan, R.E.: Three Partition Refinement Algorithms, SIAM Journal
on Computing, Vol.16, No.6, pp.973–989 (1987).

(Received February 4, 2010)
(Revised March 24, 2010)
(Accepted May 12, 2010)

Yuji Numai was born in 1984. He received his B.E. and
M.E. degrees from University of Electro-Communications (UEC)
in 2006 and 2008, respectively. He has been a doctoral student at
UEC since 2008. His current research interests are the theory of
formal languages and its learning.

Yoshiaki Udagawa was born in 1984. He graduated from Uni-
versity of Electro-Communications in 2007. He has been working
in NTT-IT Corporation since 2007, and is now a developer of the
Web Conference System Division of NTT-IT.

Satoshi Kobayashi was born in 1965. He received his B.E.,
M.E., and D.E. degrees from the University of Tokyo in 1988,
1990, and 1993, respectively. Since 2007 he has been a profes-
sor of Department of Computer Science, University of Electro-
Communications. His research interests include computational
learning theory, theory of molecular computing, bioinformatics.
He is a member of IPSJ, IEICE, and JSAI.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 3 No. 3 67–79 (Oct. 2010) c© 2010 Information Processing Society of Japan

