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mm-GNAT: Index Structure for Arbitrary Lp Norm
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and Mamoru Hoshi†2

For fast ε-similarity search, various index structures have been proposed. Yi,
et al. proposed a concept multi-modality support and suggested inequalities by
which ε-similarity search by L1, L2 and L∞ norm can be realized. We pro-
posed an extended inequality which allows us to realize ε-similarity search by
arbitrary Lp norm using an index based on Lq norm. In these investigations a
search radius of a norm is converted into that of other norm. In this paper, we
propose an index structure which allows search by arbitrary Lp norm, called
mm-GNAT (multi-modality support GNAT ), with the extention of ranges of
GNAT, instead of extending the search radius. The index structure is based
on GNAT (Geometric Near-neighbor Access Tree). We show that ε-similarity
search by arbitrary Lp norm is realized on mm-GNAT. In addition, we per-
formed search experiments on mm-GNAT with artificial data and music data.
The results show that the search by arbitrary Lp norm is realized and the index
structure has better search performance than Yi’s method except for search by
L2 norm.

1. Introduction

To search multimedia data and/or time series data, we extract various features
for retrieval from original data and search objects in the feature space. In most
cases, the feature space is represented as a vector space. In this paper, we focus
attention on index structures for ε-similarity search on vector space.

Index structures for fast ε-similarity search have been studied, for example,
R-tree 1), SS-tree 2), SR-tree 3), VP-tree 4), M-tree 5) and GNAT 6). For the other
researches than those above see Böhm’s survey 7) and Chávez’s survey 8). In the
index structures, data set is divided into subsets. A retrieval speeds up based on
the subdivision of data set. Each subset, called a cluster, is constructed based
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on distance between points. Clusters vary depending on the norm used when
the clusters are constructed. Therefore, the index structures depend upon norms
used for constructing the clusters. When we execute ε-similarity search, some
clusters may not be searched. If a cluster and an ε-ball (which is a region to
be searched) in the space have no intersection, the cluster does not contain any
correct point of ε-similarity search and then need not to be searched. Intersection
check is realized using a distance between the query point and the cluster.

Yi and Faloutsos proposed a concept: multi-modality support 9). The concept
is that a user would search by various similarity models and the index structure
must support all similarity models. They considered Lp norm (Minkowski norm)
as similarity models and proposed a method which realizes ε-similarity search by
arbitrary Lp norm 9). They showed an inequality by which a query of Lp norm
is converted into that of Euclidean norm (L2 norm) and performed experiments
for L1 norm and L∞ norm. Lee, et al. applied this method to minimum dis-
tance 10). Ciaccia and Patella consider a class of norm which is lower bounded
by other norm. They proposed a retrieval method using the lower bound norm
and analyzed distance distribution 11). The key idea in the methods above is an
extension of search radius. Therefore search region becomes larger. In this paper,
we propose an index structure for ε-similarity search by arbitrary Lp norm with
the extention of ranges of GNAT, instead of extending the search radius.

In Section 2, we explain Yi’s method 9), QIC-m-tree 11) and GNAT 6) as related
works. In Section 3, we propose an index structure mm-GNAT for ε-similarity
search and show that ε-similarity search of arbitrary Lp norm can be realized
by mm-GNAT. In Section 4, we show experimental results of ε-similarity search
with mm-GNAT. In Section 5, we discuss the results. In Section 6, we show
results of ε-similarity search experiment on music data and discuss the results.

2. Related Works

We explain the framework of the ε-similarity search based on subdivision. The
ε-similarity search is executed as follows:
Step.1 determine unnecessary clusters which do not contain any correct point

for the search (we need not to check the points in the clusters).
Step.2 calculate distances between a query point and the points in the necessary
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clusters which may contain correct points of the search.
The more unnecessary clusters are found in Step.1, the fewer the number of
distance calculations is, in other words, the cost of search decreases.

2.1 Yi’s Method
Yi and Faloutsos showed the following inequalities among Lp norms (p =

1, 2,∞):

dist2(x,y) ≤ dist1(x,y), dist2(x,y) ≤ d
1
2 · dist∞(x,y),

where distp(x,y) is the Lp distance function for d dimensional vectors x :=
(x1, x2, . . . , xd),y := (y1, y2, . . . , yd):

distp(x,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

d∑
i=1

|xi − yi|p
}1/p

(p = 1, 2, · · · )
d

max
i=1

|xi − yi| (p = ∞)

.

The following inequality can be easily shown from their result:

dist2(x,y) ≤ d
1
2 · distp(x,y) (p = 3, 4, · · · ,∞).

By the inequality, ε-similarity search of Lp norm is replaced by d1/2 · ε-similarity
search of L2 norm. When we execute an ε-similarity search of Lp norm
(distp(x,y) ≤ ε) on the index structure of L2 norm, we execute the Step.1 of the
framework of search by using inequalities

dist2(x,y) ≤ ε (p = 1, 2),
dist2(x,y) ≤ d

1
2 · ε (p = 3, 4, . . . ,∞).

Then the Step.2 of the framework is done.
2.2 QIC-m-tree
Ciaccia and Patella proposed QIC-m-tree 11). They showed Lower-Bounding

property. They proposed multi-modality support retrieval for a class of norms by
scaling of ε and the following property :

distq(x,y) ≤ distp(x,y) (p = 1, 2, . . . , q),

distq(x,y) ≤ d
1
q − 1

p · distp(x,y) (p = q + 1, q + 2, . . . ,∞),

Algorithm 1: Construction algorithm of GNAT

Input: original data set, its cardinality is n (the number of data points);
k (the number of separate points);

Output: k separate points (SPi);
k clusters (DSPj

);

existence ranges between SPi and DSPj
;

Step.1 Choose k separate points from the data set.
Step.2 Divide the original data set into k clusters DSPj

.

Each point in DSPj
is nearer to SPj than other separate points.

Step.3 For each cluster DSPj
,

compute the minimum and the maximum distance between DSPj
and

separate points SPi (i = 1, . . . , k, i �= j).

where p, q are positive integers. By the inequality above, we execute ε-similarity
search of Lp norm on the index structure of Lq norm, we execute the Step.1 of
the framework of search by using inequalities

distq(x,y) ≤ ε (p = 1, 2, . . . , q),

distq(x,y) ≤ d
1
q − 1

p · ε (p = q + 1, q + 2, . . . ,∞).

Then the query by Lp norm is executed on Lq based index structure. When
p = 1, q = 2 or p = ∞, q = 2 in the inequality, we have the Yi’s inequalities.
The coefficient of the right-hand is tight on ε-similarity search. Kimura, et al.
independently proved the same property mentioned above 12).

2.3 GNAT
Brin proposed an index structure GNAT (Geometric Near-neighbor Access

Tree)6). A set of separate points is selected from data set and is used for subdi-
vision. Points in the space are divided into clusters such that every point in the
same cluster DSPi

is closer to the separate point SPi than to all other separate
points.

The algorithm for building GNAT is shown in Algorithm 1.
In Step.1, separate points are selected. In Step.2, clusters are computed with

the separate points. In this step, we compute distance between separate points
and all points in the data set and determine the nearest separate point SPi for
each point. The norm used for calculating the distance is called construction
norm. A cluster DSPj

is the set of points which are nearer to the separate point
SPj than the other separate points. This step corresponds to the computation of
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Voronoi diagram for separate points and each cluster corresponds to the Voronoi
region of a separate point. In Step.3, for each pair of DSPi

and SPj (i �= j),
we compute the minimum and the maximum distance between the cluster and
the separate point i.e., minx∈DSPj

dist(SPi,x) and maxx∈DSPj
dist(SPi,x). We

define the existence range of SPi and DSPj
as :

range(SPi,DSPj
) =

[
min

x∈DSPj

dist(SPi,x), max
x∈DSPj

dist(SPi,x)

]
.

GNAT has the following records:
• k separate points SPi (i = 1, . . . , k);
• cluster DSPj

for a separate point SPj (j = 1, . . . , k);
• existence ranges by the construction norm.

When the number of points in a cluster is large, we might apply the construction
algorithm to the cluster recursively, that is, the cluster is divided into subclusters
recursively. In such case, GNAT has tree structure of inclusion relation.

When we execute ε-similarity search at a query point q, we compute the fol-
lowing range

[dist(SPi, q) − ε,dist(SPi, q) + ε],
called query range. Intersection check is defined as whether the query range
and the existence range range(SPi,DSPj

) have intersection or not. When the
ranges have intersection, the check is true, otherwise is false. If the intersection
check is false, then the cluster DSPj

is unnecessary for the search. We apply the
intersection check above to all pairs of separate point SPi and cluster DSPj

(this
process corresponds to the Step.1 of the framework of search). For the necessary
clusters, we apply Step.2 of the framework, i.e., we compute distance between
the query point and each point in the necessary clusters and check whether the
distance is less than ε or not.

Suppose a GNAT based on L1 norm and search by L2 norm. Figure 1 shows
two ranges: one is based on L1 norm (dotted line segment) and another is on
L2 norm (solid line segment), called L1-based range and L2-based range, respec-
tively. Since L2 norm is smaller than or equal to L1 norm for any two points, the
L2-based range exists to the left side of the L1-based range. So, we can select
a query point q and a search radius ε such that the query range intersects with

Fig. 1 A case of a necessary cluster being regarded as unnecessary.

the L2-based range and does not with the L1-based range. When we execute
ε-similarity search by L2 norm at the q, the intersection check is executed. If
L2-based range is used for the check, L2-based range intersects with the query
range and then the cluster DSPj

is considered necessary. If L1-based range is
used for the check, L1-based range does not intersect with the query range and
then the cluster DSPj

is considered unnecessary (Fig. 1). In the next section, we
resolve this problem by extending the existence range.

3. mm-GNAT

In this section we propose an index structure mm-GNAT (multi-modality sup-
port GNAT) for ε-similarity search by arbitrary Lp norm.

The following inequalities hold among Lp norms.
Lemma 1 Let x,y be vectors. Then

dist∞(x,y) ≤ distp(x,y) ≤ dist1(x,y) (p = 1, 2, . . . ,∞)
hold for any Lp norm.
Proof: This inequality is directly proved from Hölder’s inequality. �

From Lemma 1, the existence range of GNAT can be extended well by replacing
the lower bound and the upper bound of the existence range with the lower bound
measured by L∞ norm and the upper bound measured by L1 norm, respectively.
We define the mm-range as follows:

mm-range(SPi,DSPj
) =

[
min

x∈DSPj

dist∞(SPi,x), max
x∈DSPj

dist1(SPi,x)

]
. (1)

Figure 2 shows L1-based range, L2-based range, L∞-based range and mm-range.
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Fig. 2 Intersection check on mm-GNAT.

The mm-range contains these three ranges.
The records other than existence range of GNAT are not changed. Therefore,

mm-GNAT has the following records:
• k separate points SPi (i = 1, . . . , k);
• cluster DSPj

for a separate point SPj (j = 1, . . . , k);
• mm-range(SPi,DSPj

) (i, j = 1, . . . , k, i �= j).
Tree structure of mm-GNAT may be constructed in the similar way to that of
GNAT.

We show that ε-similarity search by arbitrary Lp norm can be executed on mm-
GNAT. It is sufficient to show that any necessary cluster cannot be regarded as
unnecessary. We show that if a query range has intersection with the existence
range of Lp norm, then the query range has intersection with the mm-range (1).
It is sufficient to show the following two inequalities hold for any p:

minx∈DSPj
dist∞(SPi,x) ≤ min

x∈DSPj

distp(SPi,x),

maxx∈DSPj
dist1(SPi,x) ≥ max

x∈DSPj

distp(SPi,x).

We prove the former inequality. The latter is proved similarly. Let y∞ be a point
such that dist∞(SPi,y

∞) = minx∈DSPj
dist∞(SPi,x) and yp be a point such

that distp (SPi,y
p) = minx∈DSPj

distp(SPi,x). Then,

min
x∈DSPj

dist∞(SPi,x) = dist∞(SPi,y
∞)

≤ dist∞(SPi,y
p)

≤ distp(SPi,y
p)

= min
x∈DSPj

distp(SPi,x).

The relation above is shown from the minimality of y∞ and Lemma 1.
From the discussion above, all necessary clusters under arbitrary Lp norm are

surely found by the mm-range. For each point in the necessary clusters, the
distance of Lp norm from the query is computed, then the ε-similarity search of
Lp norm completes.

Theorem 2 The ε-similarity search by arbitrary Lp norm is performed by a
mm-GNAT.

Chávez, et al. showed an analysis for compact partitioning algorithm, which
contains GNAT and mm-GNAT, using the average and the variance of distance
between data points 8) [Section 7.3].

We also analyze search cost by mm-GNAT in another way. Fix a cluster DSPj
.

Consider the probability that the cluster is necessary on ε-similarity search.
Whether the cluster is necessary or not is determined based on the intersec-
tion between the existence range and the query range. Suppose a data set is
contained in d dimensional vector space [0, 1]d, then any existence range of Lp

norm is contained in [0, d1/p], where 0 and d1/p are the minimum and the max-
imum distance of Lp norm in the space. Suppose the distance of Lp norm is
uniform on the range [0, d1/p] for the simplicity of analysis. The probability of a
cluster being necessary is linear with the width of the cluster’s existence range.
When ε-similarity search is executed, the probability is expressed as the width
plus 2ε divided by the maximum width d1/p of the range (see Fig. 3). Thus, the
probability of the cluster being necessary is

rmax
p,i,j − rmin

p,i,j + 2ε

d1/p
,

where rmin
p,i,j and rmax

p,i,j are the minimum and the maximum Lp norm from a sep-
arate point SPi to the cluster DSPj

, respectively.
Then the intersection check is repeated k times. If the cluster passes all inter-

section checks, the cluster is necessary and we apply Step.2 of framework to the
cluster. So, the probability that a cluster is necessary is
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Fig. 3 Probability of a cluster being necessary.

k∏
i=1

(
rmax
p,i,j − rmin

p,i,j + 2ε

d1/p

)
.

Usually ε is rather small than the width of existence range. The quantity above
is approximated as follows:

k∏
i=1

(
rmax
p,i,j − rmin

p,i,j + 2ε

d1/p

)
∼
(

d̃iffp,j

d1/p

)k

,

where d̃iffp,j is the geometric mean of the width of existence range, i.e., d̃iffp,j ={∏k
i=1(r

max
p,i,j − rmin

p,i,j)
}1/k

. Therefore, the expectation of the number of distance
calculations is expressed by

E

⎡⎣ k∑
j=1

(
d̃iffp,j

d1/p

)k

· ∣∣DSPj

∣∣⎤⎦ .

Assume the following two conditions:
• each cluster contains n/k points on the average, where n is the number of

data points;
• the probability d̃iffp,j/d1/p that a cluster is necessary is independent of the

probability of the other clusters being necessary.
Under these assumptions, the expectation is computed:

n

k
· E
⎡⎣ k∑

j=1

(
d̃iffp,j

d1/p

)k
⎤⎦ =

n

k
·

k∑
j=1

E

⎡⎣( d̃iffp,j

d1/p

)k
⎤⎦ =

n

k
·

k∑
j=1

(
E

[
d̃iffp,j

d1/p

])k

=
n

k
·

k∑
j=1

(
E[d̃iffp,j ]

d1/p

)k

=
n

k
· k ·

(
E[d̃iffp,j ]

d1/p

)k

= n

(
E[d̃iffp,j ]

d1/p

)k

,

where E[d̃iffp,j ] is the expectation of d̃iffp,j and denoted by diffp below.
Finally, adding the expectation above to the number of distance calculation

between the query point and k separate points to determine the necessity of
clusters, we have

k + n

(
diffp

d1/p

)k

. (2)

This value is the expectation of the total number of distance calculations.
Similarly, the number of distance calculations of mm-GNAT can be ana-

lyzed. In this case, the maximum width on mm-range is d, and d̃iffmm,j ={∏k
i=1(r

max
1,i − rmin

∞,i)
}1/k

. Let diffmm be the expectation of d̃iffmm,j . The expec-
tation of the number of total distance calculations is

k + n

(
diffmm

d

)k

. (3)

The first terms of (2) and (3) are fixed when the index structures, GNAT and
mm-GNAT, are constructed. We focus on the second terms of (2) and (3) and
calculate the ratio between the second terms of (2) and (3):[

n

(
diffmm

d

)k
]/[

n

(
diffp

d1/p

)k
]

.

Then, we have the following term without n:(
diffmm

diffp

· d1/p−1

)k

. (4)

This term corresponds to the ratio of the expectation of the number of distance
calculations in Step.2 of the framework of mm-GNAT to that of GNAT for Lp

norm.

4. Experiment

In this section, we describe experiments and their results. To investigate the
performance of mm-GNAT, we implemented three methods below and compared
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Table 1 Data sets for experiment.

dimension number of points distribution type of data
DB1 4 100,000 uniform artificial
DB2 8 100,000 uniform artificial
DB3 16 100,000 uniform artificial

DB4 20 100,000 non-uniform music 15)

them:
( 1 ) standard method(GNAT): construct GNAT for each Lp norm, and execute

ε-similarity search of Lp norm (p = 1, . . . , 10,∞);
( 2 ) mm-GNAT: construct a mm-GNAT based on Lq norm�1 (q = 1, 2,∞), and

execute ε-similarity search of Lp norm(p = 1, . . . , 10,∞);
( 3 ) Yi’s method : construct a GNAT based on L2 norm, and execute ε-similarity

search of Lp norm (p = 1, 2) and d1/2 · ε-similarity search of Lp norm
(p = 3, 4, . . . ), where d is the dimension of the data.

Experiments were executed for 3 artificial data sets (DB1, DB2 and DB3) and a
music data (DB4) in Table 1. We describe search experiments on artificial data
below. The experiment on music data is shown in Section 6.

For each method we computed the existence range, executed ε-similarity search
and counted the number of points which are within ε from a query point (this
number is called the correct number).

The search performance of ε-similarity search on GNAT depends on clusters.
The clusters are computed from separate points with construction norm. A
thousand separate points were randomly selected from data set (1% of the data
set). We constructed mm-GNATs based on L1, L2 and L∞ norms, called L1-
based, L2-based and L∞-based mm-GNATs, respectively.
[Construction time of index structure] Table 2 (left) shows the construction
times of mm-GNAT and GNAT for 4 data sets. In standard method, an index
structure has to be constructed for each search norm, therefore, the whole of
construction time and storage are linear to the number of search norms which
can be used on the database system. In mm-GNAT, we need only one index

�1 This norm is construction norm which is used for constructing clusters of mm-GNAT, not
search norm.

Table 2 Construction time (left), diffmm and diffp (right) of mm-GNAT and GNAT.

construction time diffmm for mm-range
mm-GNAT DB1 DB2 DB3 DB4 DB1 DB2 DB3 DB4

L1-based 236 403 708 892 1.044 2.974 6.447 3.651
L2-based 245 415 741 840 1.020 2.941 6.405 3.617
L∞-based 160 270 514 583 1.058 3.038 6.460 3.774

standard method construction time diffp for existence range
GNAT(L1 norm) 206 339 586 824 0.463 1.552 3.200 0.766
GNAT(L2 norm) 255 387 636 905 0.221 0.533 0.777 0.176
GNAT(L3 norm) 257 390 636 899 0.194 0.412 0.520 0.123
GNAT(L4 norm) 288 458 827 944 0.188 0.375 0.441 0.107
GNAT(L5 norm) 264 399 673 928 0.187 0.361 0.407 0.101
GNAT(L6 norm) 281 440 753 925 0.188 0.355 0.390 0.097
GNAT(L7 norm) 271 440 705 920 0.188 0.352 0.381 0.096
GNAT(L8 norm) 263 423 716 1040 0.189 0.351 0.375 0.095
GNAT(L9 norm) 271 435 767 1038 0.191 0.350 0.372 0.094
GNAT(L10 norm) 282 453 686 977 0.191 0.350 0.370 0.094
GNAT(L∞ norm) 79 121 191 211 0.200 0.361 0.377 0.096

structure. So, construction time and storage are decreased appreciably.
[Existence range of mm-GNAT] In the experiment, L1-based, L2-based, L∞-
based mm-GNATs and GNATs for Lp norm (p = 1, . . . , 10,∞) were constructed.
We computed diffp, diffmm from the existence ranges of GNAT, mm-GNAT, re-
spectively. The values of diffp, diffmm are shown in Table 2 (right).
[Search experiment] To investigate the search performance based on standard
method and mm-GNAT, we checked relation between selectivity S and the total
number N of distance calculations, where selectivity S is the ratio of the correct
number to the total number of data points. The selectivity vary with the search
radius ε and search norm Lp norm. For example, when selectivity is about 0.03,
the ε is equal to 0.513 for L1 norm and to 0.308 for L2 norm, inversely, when ε

is about 0.3, selectivity is 0.004 for L1 norm and 0.03 for L2 norm�2. The total
number N of distance calculations is the sum of the number of distance calcu-
lations to obtain all correct answers for a search. The mathematical expression
(3) approximates this number.

�2 The number of distance calculations is about 10, 000 when selectivity is 0.004 for L1 norm
and 0.03 for L2 norm in Fig. 4 and Fig. 5, respectively.
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Fig. 4 Selectivity versus number of dis-
tance calculations (search by L1

norm, DB1).

Fig. 5 Selectivity versus number of dis-
tance calculations (search by L2

norm, DB1).

The details of search experiment were as follows. A query point q was randomly
selected from the data set. For q, we executed an ε-similarity search and counted
the correct number Cq,ε and the total number Nq,ε of distance calculations. We
repeated this operation 1000 times, and computed the average correct number
Cε over correct numbers Cq,ε for ε-similarity searches. The average number Nε

over Nq,ε was also computed.
With changing ε, we computed the average selectivity and the average number

of distance calculations with 3 data sets DB1,DB2,DB3 and standard method,
L1-based, L2-based and L∞-based mm-GNATs with searching by Lp norm (p =
1, 2, . . . , 10,∞). Due to space limitations, we show the results of ε-similarity
search on 4 dimensional artificial data (DB1) with searching by L1 norm, L2

norm and L∞ norm in Fig. 4, Fig. 5 and Fig. 6, respectively. The graph of
L1-based mm-GNAT (+) is similar to that of L2-based (+×) in Fig. 4 and Fig. 5,
the graph of L1-based overlaps that of L2-based.

We also executed search experiments for large artificial data set of a million
points of 4 dimensional data. We took 1,000 separate points in each experiments.
Figure 7 shows results for L2-based mm-GNATs, whose horizontal axis is selec-
tivity and vertical axis is the ratio of the number of distance calculations to the
number of data (105 or 106).

The results show that standard method (GNAT) has the smallest average num-
ber of distance calculations. It is easily expected, since the construction norm

Fig. 6 Selectivity versus number of dis-
tance calculations (search by L∞
norm, DB1).

Fig. 7 Selectivity versus the ratio of the
number of distance calculations to
the number of data n on L2-based
mm-GNATs.

Fig. 8 Relation between search norm and
the maximum increase ratio for
DB1.

Fig. 9 Expected ratio obtained by substi-
tuting the values of DB1 in Table 2
(right) into parameters (4).

and search norm are the same norm in the standard method. We investigate the
ratio of the average number of distance calculations on mm-GNAT to that on
standard method. This ratio indicates the performance of search by mm-GNAT
and is called the increase ratio. To investigate a relation between search norm
and the increase ratio, we computed the maximum of increase ratio per search
norm (Lp norm) among selectivities for each Lq-based mm-GNAT (q = 1, 2,∞).
We summarized the results in Fig. 8.
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5. Discussion

We discuss the following points:
• experimental confirmation of Theorem 2;
• relation between selectivity and the number of distance calculations;
• comparison with Yi’s method;
• effect of construction norm on search performance;
• scalability of mm-GNAT;
• comparison with theoretical analysis.

[Experimental confirmation of Theorem 2] The set of the correct points
of ε-similarity search on mm-GNAT was exactly the same as that by standard
method. Theorem 2 is experimentally confirmed from the results.
[Relation between selectivity and the number of distance calculations]
We discuss the results for artificial data DB1,DB2 and DB3. Each of data sets
has 4, 8, 16 dimension, respectively.

The search experiments for DB1 are shown in Fig. 4, Fig. 5 and Fig. 6. The
numbers of distance calculations of mm-GNATs in Fig. 4 and Fig. 6 are less than
about 20,000 and those in Fig. 5 are less than about 40,000. For DB1, the num-
bers of distance calculations of mm-GNAT are smaller than that of exhaustive
search, which is equal to 100,000.

The volume of ε-ball grows very rapidly as its dimension increases. Therefore,
we have to do exhaustive search even if selectivity is small. For DB2 (8 dimen-
sion), pruning unnecessary clusters based on mm-GNAT was effective except for
a search by L2 norm. The search by L2 norm was much the same thing as ex-
haustive search even for small selectivity. For DB3 (16 dimension), the search of
any Lp norm was exhaustive search. This phenomenon was also found on stan-
dard method. For these data, the number of distance calculations increased with
an increase in selectivity and was almost always larger than the number of the
data points. Because almost all clusters were regarded as necessary, the distance
calculation between the query point and all data points were needed. So, the
search became exhaustive search. In addition, the distance calculations for the
pruning were also needed.
[Comparison with Yi’s method] Figures 4 and 6 show that the number of

distance computations on Yi’s method is larger than those on GNAT and Lq-
based mm-GNATs for the search by L1 norm and L∞ norm. Thus, Lq-based
mm-GNATs (q = 1, 2,∞) has good search performance in the search by L1 norm
and L∞ norm for DB1. This is the same for DB2,DB3 and DB4 (Fig. 10 and
Fig. 12).

For the search by L2 norm (Fig. 5), Yi’s method has the best performance
among all methods. The retrieval by L2 norm in Yi’s method is the same as that
on GNAT. The comparison between GNAT and mm-GNAT is already shown in
[Search experiment].

Figure 8 shows that the graphs of maximum increase ratio of number of dis-
tance calculations for search by Lp norm (p = 1, 2, . . . , 10,∞) on Lq-based mm-
GNAT (q = 1, 2,∞) and Yi’s method. In the figure, each mm-GNAT has smaller
search cost than Yi’s method for Lp search norm (p = 1, 3, . . . , 10,∞). From the
viewpoint of multi-modality support for various Lp norm (except for L2 norm),
mm-GNAT is better than Yi’s method in our computational experiment.
[Effect of construction norm on search performance] We consider which
Lq-based mm-GNAT has good search performance. We look into Fig. 4, Fig. 5
and Fig. 6. Figure 4 shows the result of search by L1 norm. In the figure, the
number of distance calculations on L1-based mm-GNAT is smaller than those on
L2-based and L∞-based mm-GNATs. Figure 5 shows the result of search by L2

norm. The number of distance calculations on L2-based is smaller than those on
L1-based and L∞-norm mm-GNATs. Figure 6 shows the results of search by L∞
norm. The number of distance calculations on L∞-based mm-GNAT is smaller
than those on L2-based and L1-based mm-GNATs. These results show that the
number of distance calculations is smallest when search norm is the same as
construction norm. Otherwise, the number of distance calculations increases on
mm-GNAT. In the case of the same norms being used, the pruning of unnecessary
clusters works best, but in the other case, some unnecessary clusters are regarded
as necessary, therefore, the number of distance calculations increases.

In Fig. 8, L∞-based mm-GNAT has the best search performance among other
mm-GNATs for search by Lp norm (p = 4, 5, . . . , 10,∞), but L1-based mm-
GNAT has best for search by L1 norm. This case can be explained as follows.
The search performance is best when search norm is construction norm. When
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the subscript q of the construction norm (Lq norm) is near to that of the search
norm (Lp norm), the search performance of Lp norm is better rather than other
mm-GNATs. Thus L1-based, L2-based and L∞-based mm-GNATs have best
search performance for L1, Lp(p = 2, 3) and Lp(p = 4, 5, . . . , 10,∞) search norms,
respectively.
[Scalability of mm-GNAT] We executed search experiments for two 4 dimen-
sional artificial data set DB1 (105 data points) or DB5 (106 data points). The
results are shown in Fig. 7. Three pairs of curves are shown in the figure ({×,+},
{+×,�} and {�,©}). The pair ({+×,�}) are searches by L2 norm. The maximum
of increasing ratio (�) of search by L2 norm for DB5 is only 10% larger than
that (+×) for DB1, while the size of DB5 is 10 times larger than that of DB1.
The similar relation is found in the searches by L1 norm ({×,+}) and by L∞
norm ({�,©}).
[Comparison with theoretical analysis] We compare the expected ratio (4)
of the number of distance calculations with that in Fig. 8. The expected ratio (4)
depends on diffmm, diffp, which are determined by index structure, the number
of separate points k, dimension d and the search norm. Substituting p, d and
the values of diffmm, diffp in Table 2 (right) to (4), we have a graph with the
same vertical and horizontal axes as those of Fig. 8. We have a graph of expected
ratio (4) shown in Fig. 9 by substituting d = 4, k = 1 and the values of diffmm,
diffp for DB1 in Table 2 (right). The graph of Fig. 9 has a peak at p = 2 and a
shape similar to that of Fig. 8. Since each value of (4) is positive and equal to the
corresponding the value of Fig. 9 to the power of k, the graph of expected ratio
(4) has the shape similar to that of Fig. 9. Thus it is shown that the behavior of
the ratio in Fig. 8 is approximated by the expected ratio (4).

We also focus attention on search norm of expected ratio (4). Suppose con-
struction norm is fixed. The diffmm and the dimension d are constant, then the
value of (4) depends on d1/p/diffp. The enumerator d1/p monotonically decreases,
for example, for d = 4 the d1/p decreases from 4 to 1 when p = 1, . . .∞. The
denominator diffp decrease from 0.463 to 0.221 when p = 1, 2 and the values for
p = 3, . . . , 10,∞ are contained between 0.188 to 0.200. So, the denominator is
regarded as constant for p = 3, . . . , 10,∞. Thus the value of (4) depends on only
d1/p for p = 3, . . . , 10,∞.

Fig. 10 Selectivity versus number of dis-
tance calculations (search by L1

norm, music data).

Fig. 11 Selectivity versus number of dis-
tance calculations (search by L2

norm, music data).

6. Application to Music Data

Retrieval of music data is a hot topic 13). We have proposed features for retrieval
of music data 14),15).

In this section we describe search experiment on music data set. We prepared
1, 023 pieces of music from 89 CDs and then applied TwinVQ encoder to each
piece of music. In the encoding step of TwinVQ, we extracted an autocorrela-
tion coefficient vector ru,m = (ru,m,1, . . . , ru,m,20) of the m-th frame of the u-th
piece of music. Out of the extracted autocorrelation coefficient vectors, 100,000
autocorrelation coefficient vectors were randomly selected. We call the set of the
selected vectors “DB4” in Table 1. We computed the number of distance calcu-
lations for ε-similarity search by the same method applied to artificial data. The
results are shown for L1-based, L2-based and L∞-based mm-GNATs in Fig. 10,
Fig. 11 and Fig. 12, respectively. Axes of figures are the same as those of Fig. 4.
The graph of L1-based mm-GNAT overlaps that of L2-based in Fig. 10, Fig. 11
and Fig. 12. All graphs in Fig. 12 except for Yi’s method overlap each other.

The results of search experiments are similar to those for DB1 (see Fig. 4, Fig. 5
and Fig. 6). Principal component analysis for DB4 showed that the cumulative
contribution ratio is 99.07% (up to 4th axis) and 99.52% (up to 5th axis). This
implies that the music data (DB4) can be regarded as 4 dimensional data. This
experiment suggests that mm-GNAT works well for high dimensional data if the
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Fig. 12 Selectivity versus number of dis-
tance calculations (search by L∞
norm, music data).

Fig. 13 Relation between search norm and
the maximum increase ratio for
music data.

data are highly correlated, as is often the case with real data.
To investigate a relation between search norm and the increase ratio, we

also computed the maximum of increase ratio for search by Lp norm (p =
1, 2, . . . , 10,∞) on Lq-based mm-GNAT (q = 1, 2,∞) and on Yi’s method and
search norm on music data. Figure 13 shows a graph of the maximum of in-
crease ratio. Note that the shape of the graph is similar to that in Fig. 8. The
search costs of mm-GNATs for music data are smaller than Yi’s method when
p = 1, 6, . . . , 10,∞ in Fig. 13.

7. Conclusion

In this paper we proposed a new multi-modaility support index structure, mm-
GNAT, for ε-similarity search by arbitarary Lp norm. mm-GNAT is realized with
mm-range on GNAT and without extending search radius. The index structure
is designed using the following inequalities

dist∞(x,y) ≤ distp(x,y) ≤ dist1(x,y) ∀x,y, p = 1, 2, . . . ,∞.

From this relation the existence range for any search norm is always included
in the mm-range. Therefore, search of arbitrary Lp norm is realized by using
mm-range.

We implemented index structures GNATs, mm-GNATs for several search
norms Lp norm (p = 1, 2, . . . , 10,∞) and executed experiments of ε-similarity
search on the index structures. We confirmed that ε-similarity search is correctly

executed on the mm-GNATs. We compared mm-GNAT with Yi’s method. mm-
GNAT has better performance on retrieval by Lp norm (p = 1, 3, . . . ,∞), while
Yi’s method has better performance on retrieval by L2 norm in our experiments.

The number of distance calculations was reduced by using mm-GNAT as in-
dex structure rather than exhaustive search for uniform 4 dimensional data set
DB1. The numbers of distance calculation on GNAT and mm-GNAT increase
rapidly for the data sets DB2,DB3 (uniform 8, 16 dimensional data, respec-
tively). GNAT and mm-GNAT need to be improved for high dimensional uni-
form data set. When we executed search experiments on Lq-based mm-GNATs
by Lp norm (p = 1, 2, . . . , 10,∞), the search by Lq norm (i.e., Lp = Lq) has the
best performance.

Moreover, we executed experiments on large scale data set, which has 1,000,000
data points. The search performance is about 1.1 times on the data set while the
size of the data set is 10 times.

We also performed search experiment on music data. The search performance
was similar to that for 4 dimensional artificial data. mm-GNAT was useful for
efficient retrieval of music data in MPEG-4/TwinVQ domain.

Acknowledgments This research was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research,
22500097, 2010.

References

1) Guttman, A.: R-trees: A dynamic index structure for spatial searching, SIGMOD
’84: Proc. 1984 ACM SIGMOD International Conference on Management of Data,
New York, NY, USA, pp.47–57, ACM (1984).

2) White, D. A. and Jain, R.: Similarity Indexing with the SS-tree, ICDE ’96:
Proc. 12th International Conference on Data Engineering, Washington, DC, USA,
pp.516–523, IEEE Computer Society (1996).

3) Katayama, N. and Satoh, S.: The SR-tree: An index structure for high-dimensional
nearest neighbor queries, SIGMOD ’97: Proc. 1997 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, pp.369–380, ACM
(1997).

4) Yianilos, P. N.: Data structures and algorithms for nearest neighbor search in
general metric spaces, SODA ’93: Proc. 4th Annual ACM-SIAM Symposium on
Discrete Algorithms, Philadelphia, PA, USA, pp.311–321, Society for Industrial

IPSJ Transactions on Databases Vol. 3 No. 3 88–98 (Sep. 2010) c© 2010 Information Processing Society of Japan



98 mm-GNAT: Index Structure for Arbitrary Lp Norm

and Applied Mathematics (1993).
5) Ciaccia, P., Patella, M. and Zezula, P.: M-tree: An Efficient Access Method for

Similarity Search in Metric Spaces, VLDB, Jarke, M., Carey, M.J., Dittrich, K.R.,
Lochovsky, F.H., Loucopoulos, P. and Jeusfeld, M.A. (Eds.), pp.426–435, Morgan
Kaufmann (1997).

6) Brin, S.: Near Neighbor Search in Large Metric Spaces, VLDB, Dayal, U., Gray,
P.M.D. and Nishio, S. (Eds.), pp.574–584, Morgan Kaufmann (1995).
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