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計算理論から見たゲーデルとチューリング

田 中 榮 一

本論文は述語とその長さの関係を調べ，帰納的述語は有限長で，帰納的ではない述
語は本質的に無限長であることについて述べている．ゲーデルの不完全性定理の証明
に用いられた証明可能性述語とチューリング機械の停止問題を表す述語は帰納的では
ないから，共に本質的に無限長論理式である．前者から不完全性定理の証明が誤って
いることが分る．後者からチューリング機械の停止問題が決定不能であることが直感
的に理解できる．

Gödel and Turing from the Viewpoint of
the Theory of Computation

Eiichi Tanaka †1

This paper discusses the relation between a predicate and its length, and
reports that the length of a recursive predicate is finitely long and that of a
non recursive predicate is essentially infinitely long. It is well known that the
provability predicate and the predicate for the halting problem of a Turing
machine are not recursive. Therefore both predicates are essentially infinitely
long. The former means that the proof of the first incompleteness theorem is
incorrect. From the latter, it is intuitively understood that the halting problem
of a Turing machine is undecidable.

1. Introduction

This paper is a sequel of the another paper 1) and discusses computability, provability

and decidability from the viewpoint of the theory of computation. Kleene 2),3) explains

the first incompleteness theorem 4) using the predicate to express the computation of a
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Turing machine 5). Kashima 6) states that any formula obtained by a recursively enu-

merable but not recursive relation is unprovable. We show that the length of a recursive

predicate is finitely long, and that of a non recursive predicate is essentially infinitely

long. It is well known that the provability predicate 4),7) and the predicate to express

the halting problem of a Turing machine 8) are not recursive. So the lengths of both

predicates are essentially infinitely long. This means that the proof of the first incom-

pleteness theorem is incorrect. Therefore it is natural that the provability predicate is

neither proved nor refuted. Furthermore the undecidability of the halting problem of a

Turing machine is intuitively understood.

2. Preliminaries

We shall review a primitive recursive function and a recursive function. Let x denote

x1, x2, · · · , xn.

(b1) Initial functions

The initial functions are defined for natural numbers.

(a) The zero function: Z(x) = 0 for all x.

(b) The successor function: S(x) = x′ for all x, where x′ is the successor of x.

(c) The projection functions: U i
n(x) = xi for all x1, x2, · · · , xn .

(b2) Composition

Let h1, · · · , hr be r functions of n variables (r ≥ 1, n ≥ 0). Let g and f be a

function of r variables and that of n variables, respectively. Define f as follows.

f(x) = g(h1(x), · · · , hr(x)) (1)

(b3) Primitive recursion

Let g and h be a function of n variables (n ≥ 0) and that of (n + 2) variables,

respectively. Define function f of (n + 1) variables as follows.

f(x, 0) = g(x) (2)

f(x, y′) = h(x, y, f(x, y)) (3)

Definition 1.

A function is primitive recursive, if it can be obtained by a finite applications of the

operations of composition and primitive recursion beginning with initial functions (b1).
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Definition 2.

A subset of the set of n-tuples in a set A is called an n-ary predicate in A. If P is an n-ary

predicate, we define an n-ary function RP such that RP (a) = 0, if P (a), and RP (a) = 1

, if ¬P (a). We call RP the representing function of P . P is primitive recursive, if RP

is primitive recursive 9).

(b4) µ operator

Function g(x, y) is called regular, if there is a natural number y such that g(x, y) = 0

for any x. µ operator is to find the least y for a regular function. Asume that g is

a regular function of (n + 1) variables. Define function f of n variables as follows.

f(x) = µy(g(x, y) = 0) (4)

Definition 3.

A function is recursive, if it can be obtained by finite applications of the operations of

composition, primitive recursion and a µ operator beginning with initial functions (b1).

Similarly a recursive predicate can be defined.

The predicate logic for computing theory is defined using the following symbols.

(c1) individual constants (a, b, c, · · · ), (c2) variables(x, y, z, · · · ), (c3) function symbols

(Z, S, U, +, ∗, µ), (c4) predicate symbols (=), (c5) logical symbols 1 ( ¬,∨), (c6) logical

symbols 2 (∃), (c7) subsidiary symbols ((,), comma ).

The predicate logic is basically after Shoenfield 9), but is slightly modified. In this

paper the symbols of (c1) ∼ (c5) and (c7) are called the basic symbols for the theory

of computation. Assume that defined function symbols and defined predicate symbols

are rewritten using the basic symbols. A term and a formula are defined in the similar

way as the predicate logic for the arithmetic 1).

Consider a predicate with an infinite existential quantifier ∃xC(x). This predicate

includes infinite number of formulas such as C(0), C(1), · · ·. This means that the compu-

tation of ∃xC(x) does not end in finite operations. Therefore we exclude an existential

quantifier from the basic symbols.

The lengths of a function, a formula and a predicate are similarly defined as defined

in 1). An essentially infinite length predicate is also the same in 1).　

3. From the Viewpoint of the Thory of Computation

In this section we shall study the lengths of a function and a predicate.

(1) A recursive function (predicate) is finite length

We shall confirm that the computation of a primitive recursive function and that of a

recursive function terminate in finite operations.

The initial functions Z(x) = 0 and S(x) = x′ are determined, if x is given. U i
n(x) = xi

is obtained, if x and i are given. If x, h1, · · · , hr, g are given, a function f(x) defined by

composition can be computed.

Consider a primitive recursion. Assume that x and y are given. f(x, y) is computed

in the following way.

f(x, 0) = g(x)

f(x, 1) = h(x, 0, f(x, 0)) = h(x, 0, g(x))

f(x, 2) = h(x, 1, f(x, 1))

· · ·
f(x, y) = h(x, y − 1, f(x, y − 1))

(5)

The computation of a primitive recursion terminates in finite operations, if x and y are

finite.

A function obtained by finite applications of a composition and a primitive recursion

beginning with initial functions is a function with finite symbols. Therefore a primitive

recursive function is a finite length function. If RP is primitive recursive, P is a finite

length predicate.
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Remark 1.

A primitive recursive function is a finite length function. If RP is primitive recursive,

P is a finite length predicate.

A regular function g(x, y) has y0 such that g(x, y0) = 0, where y0 is a finite value.

Even if y0 is not known, y0 can be obtained by finite times computation of g(x, y) for

y = 0, 1, · · ·. Define p(z) such that if z = 0, p(z) = 1, and otherwise, p(z) = 0. The

computation of µg(x, y0) is expressed in the following way.

µg(x, y0) = 0 ∗ p(g(x, 0)) + 1 ∗ p(g(x, 1)) + . . . + y0 ∗ p(g(x, y0)) (6)

The function µg(x, y0) is a finite length function.

From Remark 1 and (6), a recursive function is finite length. If RP is recursive, P

must be finite length.

Remark 2.

Both a recursive function and a recursive predicate are finite lengths.

(2) A non recursive function (predicate) is infinite length

Recall the following important and widely accepted understanding of a recursive func-

tion.

(c1) A recursive function is a computable function.

(c2) According to Church’s thesis, a computable function is a recursive function.

The following two statements are self-evident.

(c3) From Remark 2, a recursive function is a finite length function.

(c4) From (c2) and (c3), a computable function is a finite length function.

Replacing a function with a predicate, we have similar statements.

(d1) A recursive predicate is a decidable predicate.

(d2) From (c2), a decidable predicate is a recursive predicate.

(d3) A recursive predicate is a finite length predicate.

(d4) A decidable predicate is a finite length predicate.

Consider an essentially infinite length function. It goes without saying that an essen-

tially infinite length function is not computable. Therefore an essentially infinite length

function is not a recursive function. A non recursive function must be an essentially

infinite length function.

An essentially infinite length predicate is undecidable. So an essentially infinite length

predicate is not a recursive predicate. Therefore a non recursive predicate must be an

essentially infinite length predicate.

Lemma 1.

A non recursive predicate is an essentially infinite length predicate.

Gödel 6) states that ”we can not assert that Bew(x) is recursive” (Heijenoort, p.606

in 10)), where Bew(x) is the provability predicate and x is a provable formula. Maehara

(p.182 in 7)) shows the proof that Bew(x) is not a recursive predicate. This fact means

that the provability predicate is an essentially infinite length predicate. Then it can not

be proved nor refuted.

Lemma 2.

The provability predicate is an essentially infinite length predicate. Therefore it can be

neither proved nor refuted.

Predicate ∃zT (x, x, z) is not recursive 8). Therefore ∃zT (x, x, z) is an essentially in-

finite length predicate. Then the halting problem of a Turing machine is undecidable.

It is well known that the halting problem of a Turing machine is undecidable.

Lemma 3.

Predicate ∃zT (x, x, z) is an essentially infinite length predicate. Therefore the halting

problem of a Turing machine is undecidable.
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(3) A finite length predicate is either provable or refutable

In this subsection, assume that T is the arithmetic and formula A is finite length. If

A is valid in T , we write T |= A, otherwise, T |= ¬A. The completeness theorem of

predicate logic is expressed in the following way.

Completeness theorem

T ` A ↔ T |= A (7)

A finite length predicate is a finite length recursive predicate. From (d1), a recursive

predicate is decidable. If A is true (T |= A), it is proved in T (T ` A). If A is false

(T |= ¬A), it is refuted in T (T ` ¬A). The set FT of finite length formulas derived

from T is consistent. Summing up, a finite length predicate is provable or refutable. In

other words, there is no finite length predicate that is neither proved nor refuted.

Remark 3.

There is no finite length predicate that is neither proved nor refuted.

The above observation is very fundamental and simple. Gödel published his paper 6)

80 years ago. We wonder why nobody has noticed this up to now.

4. Concluding Remarks

We can summarize the conclusions just obtained as follows:

(1) A recursive predicate is a finite length predicate and a non recursive predicate is an

essentially infinite length predicate.

(2) The provability predicate is not recursive. Therefore it is an essentially infinite

length predicate. This indicates that Gödel’s proof of the incompleteness theorems is

incorrect. Furthermore there is no finite length predicate that is neither proved nor

refuted.

(3) The predicate to express the halting problem of a Turing machine is not recursive.

Then it is an essentially infinite length predicate. Therefore the undecidability of the

halting problem of a Turing machine is naturally understood.
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