gooooboooag
IPSJ SIG Technical Report

1.

This paper is a sequel of the another paper 1) and discusses computability, provability
and decidability from the viewpoint of the theory of computation. Kleene

the first incompleteness theorem

goboobooobogobuooboon

goboooooooOoooOoOoOoO0oOoO0OO0oOO0OO00bOOO0OO0OOOOO0bOoO
gdoooooooooOoboOoOo0oOoooooboooooooOooOoOoboOoOoOoOoOooo
gooooooooooobooooooooooooooooOOObObOOobooooo
goooooooooooboOoooo0ooooooooooooOOobbobooooo
gooooooooooooOoboOoOo0ooooooooooooobobooOoOoOoog
gooooooo

Godel and Turing from the Viewpoint of
the Theory of Computation

Eticar TaNnaka 1

This paper discusses the relation between a predicate and its length, and
reports that the length of a recursive predicate is finitely long and that of a
non recursive predicate is essentially infinitely long. It is well known that the
provability predicate and the predicate for the halting problem of a Turing
machine are not recursive. Therefore both predicates are essentially infinitely
long. The former means that the proof of the first incompleteness theorem is
incorrect. From the latter, it is intuitively understood that the halting problem
of a Turing machine is undecidable.

Introduction

2),3)

4)

explains

using the predicate to express the computation of a

11 Kobe University

Vol.2010-AL-131 No.13
2010/9/22

Turing machine . Kashima © states that any formula obtained by a recursively enu-
merable but not recursive relation is unprovable. We show that the length of a recursive
predicate is finitely long, and that of a non recursive predicate is essentially infinitely

47 and the predicate to express

long. It is well known that the provability predicate
the halting problem of a Turing machine ® are not recursive. So the lengths of both
predicates are essentially infinitely long. This means that the proof of the first incom-
pleteness theorem is incorrect. Therefore it is natural that the provability predicate is
neither proved nor refuted. Furthermore the undecidability of the halting problem of a

Turing machine is intuitively understood.
2. Preliminaries

We shall review a primitive recursive function and a recursive function. Let T denote
T1,X2," ", Tn-
(b1l) Initial functions
The initial functions are defined for natural numbers.
(a) The zero function: Z(z) = 0 for all z.

(b) The successor function: S(z) = «’ for all z, where z’ is the successor of x.

(c) The projection functions: U:(Z) = x; for all z1,x2, -, Zn .
(b2) Composition
Let hi,---,h, be r functions of n variables (r > 1, n > 0). Let g and f be a

function of r variables and that of n variables, respectively. Define f as follows.
@) = g (@), -+, ho () (1)
(b3) Primitive recursion
Let g and h be a function of n variables (n > 0) and that of (n + 2) variables,
respectively. Define function f of (n + 1) variables as follows.
1(z,0) = 9() (2)
1@ y) = by, £) 3)

Definition 1.

A function is primitive recursive, if it can be obtained by a finite applications of the

operations of composition and primitive recursion beginning with initial functions (b1).

(© 2010 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

Definition 2.

A subset of the set of n-tuples in a set A is called an n-ary predicate in A. If P is an n-ary
predicate, we define an n-ary function Rp such that Rp(,) =0, if P(a), and Rp(,) =1
, if =P(a). We call Rp the representing function of P. P is primitive recursive, if Rp

is primitive recursive 9,

(b4) p operator
Function g(Z, y) is called regular, if there is a natural number y such that g(Z,y) =0
for any . p operator is to find the least y for a regular function. Asume that g is

a regular function of (n + 1) variables. Define function f of n variables as follows.
f@) = py(g(z,y) = 0) (4)

Definition 3.
A function is recursive, if it can be obtained by finite applications of the operations of
composition, primitive recursion and a p operator beginning with initial functions (b1).

Similarly a recursive predicate can be defined.

The predicate logic for computing theory is defined using the following symbols.

(c1) individual constants (a,b,c,--), (c2) variables(x,y, z,- - -), (c3) function symbols
(Z,S,U,+,*, 1), (c4) predicate symbols (=), (c5) logical symbols 1 (=, V), (c6) logical

symbols 2 (3), (c7) subsidiary symbols ((,), comma).

The predicate logic is basically after Shoenfield ?, but is slightly modified. In this
paper the symbols of (c1) ~ (c5) and (c7) are called the basic symbols for the theory
of computation. Assume that defined function symbols and defined predicate symbols
are rewritten using the basic symbols. A term and a formula are defined in the similar

way as the predicate logic for the arithmetic D,

Consider a predicate with an infinite existential quantifier 3xC(x). This predicate

includes infinite number of formulas such as C'(0), C(1), - - -. This means that the compu-

Vol.2010-AL-131 No.13
2010/9/22

tation of 3zC(x) does not end in finite operations. Therefore we exclude an existential

quantifier from the basic symbols.

The lengths of a function, a formula and a predicate are similarly defined as defined

in 1). An essentially infinite length predicate is also the same in 1). O

3. From the Viewpoint of the Thory of Computation

In this section we shall study the lengths of a function and a predicate.
(1) A recursive function (predicate) is finite length
We shall confirm that the computation of a primitive recursive function and that of a

recursive function terminate in finite operations.

The initial functions Z(z) = 0 and S(z) = 2 are determined, if = is given. U} (Z) = ;
is obtained, if Z and i are given. If T, h1,- - -, hr, g are given, a function f(T) defined by
composition can be computed.

Consider a primitive recursion. Assume that z and y are given. f(z,y) is computed
in the following way.

f(z,0) =g(x)
[z, 1) = h(z,0, f(x,0)) = h(z,0,g(x))
f(x,2) = h(z,1, f(z,1))

f(l’,y) = h(.T,y— 17f(x,y - 1))
(%)
The computation of a primitive recursion terminates in finite operations, if x and y are

finite.

A function obtained by finite applications of a composition and a primitive recursion
beginning with initial functions is a function with finite symbols. Therefore a primitive
recursive function is a finite length function. If Rp is primitive recursive, P is a finite

length predicate.

(© 2010 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

Remark 1.
A primitive recursive function is a finite length function. If Rp is primitive recursive,

P is a finite length predicate.

A regular function ¢(Z,y) has yo such that ¢g(Z,yo) = 0, where yo is a finite value.

Even if yo is not known, yo can be obtained by finite times computation of ¢(Z,y) for

y = 0,1,---. Define p(z) such that if z = 0,p(z) = 1, and otherwise, p(z) = 0. The
computation of pug(T,yo) is expressed in the following way.
1g(@,yo) = 0 p(g(7,0)) + 1+ p(g(z, 1)) + ... + yo * p(9(Z, yo)) (6)

The function pg(T,yo) is a finite length function.
From Remark 1 and (6), a recursive function is finite length. If Rp is recursive, P

must be finite length.

Remark 2.

Both a recursive function and a recursive predicate are finite lengths.

(2) A non recursive function (predicate) is infinite length

Recall the following important and widely accepted understanding of a recursive func-
tion.

(c1) A recursive function is a computable function.

(c2) According to Church’s thesis, a computable function is a recursive function.

The following two statements are self-evident.
(c3) From Remark 2, a recursive function is a finite length function.

(c4) From (c2) and (c3), a computable function is a finite length function.

Replacing a function with a predicate, we have similar statements.
(d1) A recursive predicate is a decidable predicate.
(d2) From (c2), a decidable predicate is a recursive predicate.

(d3) A recursive predicate is a finite length predicate.

Vol.2010-AL-131 No.13
2010/9/22

(d4) A decidable predicate is a finite length predicate.

Consider an essentially infinite length function. It goes without saying that an essen-
tially infinite length function is not computable. Therefore an essentially infinite length
function is not a recursive function. A non recursive function must be an essentially

infinite length function.

An essentially infinite length predicate is undecidable. So an essentially infinite length
predicate is not a recursive predicate. Therefore a non recursive predicate must be an

essentially infinite length predicate.

Lemma 1.

A non recursive predicate is an essentially infinite length predicate.

Godel @ states that ”we can not assert that Bew(x) is recursive” (Heijenoort, p.606
in 10)), where Bew(z) is the provability predicate and x is a provable formula. Maehara
(p-182 in 7)) shows the proof that Bew(x) is not a recursive predicate. This fact means
that the provability predicate is an essentially infinite length predicate. Then it can not

be proved nor refuted.

Lemma 2.
The provability predicate is an essentially infinite length predicate. Therefore it can be

neither proved nor refuted.

Predicate 32T'(x, x, z) is not recursive ®. Therefore 32T (z, z, z) is an essentially in-
finite length predicate. Then the halting problem of a Turing machine is undecidable.

It is well known that the halting problem of a Turing machine is undecidable.
Lemma 3.

Predicate 32T (x, z, z) is an essentially infinite length predicate. Therefore the halting

problem of a Turing machine is undecidable.

(© 2010 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

(3) A finite length predicate is either provable or refutable
In this subsection, assume that 7" is the arithmetic and formula A is finite length. If
A is valid in T, we write T' |= A, otherwise, T' = =A. The completeness theorem of

predicate logic is expressed in the following way.

Completeness theorem
THFA-TEA (M)

A finite length predicate is a finite length recursive predicate. From (d1), a recursive
predicate is decidable. If A is true (T = A), it is proved in T' (T' + A). If A is false
(T = —A), it is refuted in T (T F —A). The set Fr of finite length formulas derived
from T is consistent. Summing up, a finite length predicate is provable or refutable. In

other words, there is no finite length predicate that is neither proved nor refuted.

Remark 3.

There is no finite length predicate that is neither proved nor refuted.

The above observation is very fundamental and simple. Gédel published his paper ¢

80 years ago. We wonder why nobody has noticed this up to now.

4. Concluding Remarks

We can summarize the conclusions just obtained as follows:
(1) A recursive predicate is a finite length predicate and a non recursive predicate is an
essentially infinite length predicate.
(2) The provability predicate is not recursive. Therefore it is an essentially infinite
length predicate. This indicates that Godel’s proof of the incompleteness theorems is
incorrect. Furthermore there is no finite length predicate that is neither proved nor
refuted.

(3) The predicate to express the halting problem of a Turing machine is not recursive.

Vol.2010-AL-131 No.13
2010/9/22

Then it is an essentially infinite length predicate. Therefore the undecidability of the

halting problem of a Turing machine is naturally understood.

Acknowledgment
We would like to express our thanks to sincere metamathematicians for their comments.

Both constructive and critical comments were very stimulative.

References

1) Tanaka, E.; Reflections on Godel and Turing, IPSJ SIG Technical Report, Vol.
2010-AL-131, No. 12, pp.1-6, (2010)

2) Kleene, S. C.; Recursive predicates and quantifiers, Transaction of the American
Mathematical Society, 53, pp.41-74, (1936)

3) Kleene, S. C.; Mathematical Logic, John Wiley and Sons, NY (1967)

4) Godel, K; Uber Formal Unentscheidbare Sétze der Principia Mathematica und
Verwandter Systeme, Monatshefte fiir Mathematik und Physik, 38, pp.173-198,
(1931)

5) Turing, T.; On Computable Numbers, with an Application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society, ser.2, 42, pp.230-
265, (1936)

6) Tanaka, K., Kashima, R.,Kadota,N., Kikuchi, M.; Lectures on Foundations of
Mathematics - The Incompleteness Theorems and the Development (in Japanese),
Nihonhyouronsha, Tokyo, (1997)

7) Maehara, S; Introduction to Metamathematics (in Japanese), Asakura-shoten,
Tokyo, (1977)

8) Davis, M.; Computability and Unsolvability, McGraw-Hill, NY, (1958)

9) Shoenfield, J. R.; Mathematical Logic, Addison-Wesley, Massachusets, (1967)

10) Heijenoort, J.; From Frege to Gddel, Harvard University Press, Massachusetts,
(1967)

(© 2010 Information Processing Society of Japan

