
IPSJ SIG Technical Report

Enumerating All Rooted Trees Including k Leaves

Masanobu Ishikawa,†1 Katsuhisa Yamanaka,†2

Yota Otachi†3 and Shin-ichi Nakano†1

This paper presents an efficient algorithm to generate all (unordered) rooted
trees with exactly n vertices including exactly k leaves. We design a simple tree
structure among such trees, then by traversing the tree structure we generate all
such trees in constant time per tree in the worst case. By repeatedly applying
the algorithm for each k = 1, 2, . . . , n− 1, we can also generate all rooted trees
with exactly n vertices.

1. Introduction

It is useful to have a complete list of objects for a particular class. Such a list can

be used to search a counter-example for a hypothesis; to obtain the best object,

among all the candidates, with respect to some criterion; or to experimentally

measure the average performance of an algorithm for all possible inputs.

Several algorithms are known to generate all objects for a particular class with-

out repetition [1, 2, 4, 8–16, 18–21]; Several textbooks have been published on the

subject [3, 5–7, 17].

In this paper, we focus on (unordered) trees. Trees are fundamental models,

frequently used in various fields such as searching for keys, modeling computa-

tions, and parsing a program, etc. Several enumeration algorithms for trees are

already proposed [2, 4, 8, 10, 12, 13, 16, 18, 20].

A rooted tree refers to a tree with one designated “root” vertex. Note that no

ordering is defined among the children of each vertex. Fig. 1(a) shows all (un-

†1 Department of Computer Science, Gunma University.
ishikawa@nakano-lab.cs.gunma-u.ac.jp, nakano@cs.gunma-u.ac.jp

†2 Graduate School of Information Systems, University of Electro-communications.
yamanaka@is.uec.ac.jp

†3 Graduate School of Information Sciences, Tohoku University.
otachi@dais.is.tohoku.ac.jp

ordered) rooted trees with 5 vertices including 3 leaves. If we define an ordering

among the children of each vertex, then the resulting tree is called an ordered

tree. Fig. 1(b) shows all ordered trees with 5 vertices including 3 leaves.

Some results for enumerating all trees are already known. Beyer and Hedet-

niemi [2] gave an algorithm to generate all rooted trees with n vertices. Their

algorithm is the first one to generate all rooted trees in constant time per tree

on an average. Li and Ruskey [8] also gave an algorithm to generate all rooted

trees, and claimed that it was easily modified to generate restricted classes of

rooted trees. The possible restrictions include (1) upper bound on the number

of children and (2) lower and upper bounds on the height of a rooted tree.

Due to the absence of a root vertex, the generation of nonisomorphic free trees

is a more difficult problem. Wright et al. [18] and Li and Ruskey [8] presented

algorithms to generate all free trees in O(1) time per tree on an average. Nakano

and Uno [12] improved the running time to O(1) time in the worst case. Also,

they generalized the algorithm to generate all “colored” trees [13], where a colored

tree refers to a tree whose each vertex has a color.

An ordered tree is a rooted tree with a left-to-right ordering specified for the

children of each vertex. An algorithm to generate all ordered trees has been

proposed by Nakano [10]. He also provided a method to generate nonrooted

ordered trees in [10]. Sawada [16] handled the enumeration problem for a similar

but another class of trees, called circular-ordered trees. A circular-ordered tree

refers to a rooted tree with a circular ordering specified for the children of each

vertex. Sawada [16] presented algorithms to generate circular-ordered trees and

nonrooted ones in O(1) time per tree on an average.

Pallo [14] as well as Nakano [10] presented an algorithm to generate all ordered

trees with n vertices including k leaves in O(n− k) time per tree on an average.

Yamanaka et al. [20] improved the running time to constant per tree in the worst

case.

In this paper, we design a simple algorithm to generate all rooted trees with

exactly n vertices including k leaves. Due to the absence of orderings of chil-

dren, this problem is more difficult than the one with orderings. Our algorithm

generates each such tree in constant time in the worst case.

If we modify the algorithm in [20] so that it outputs only “left-heavy” trees

1 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

(a)

(b)
Fig. 1 All (a) (unordered) rooted trees and (b) ordered rooted trees with 5 vertices

including 3 leaves.

(which will be defined in Section 2), then we can generate all rooted trees with

exactly n vertices including exactly k leaves. However it may take much time to

check whether each generated tree is left-heavy or not, and resulting algorithm

enumerates all such trees in O(nk) time for each. We will explain the detail in

Section 3.

The concept of our algorithms is as follows. We first define a tree structure

among trees, called family tree, in which each vertex corresponds to each tree

to be enumerated. By traversing the tree structure we can enumerate all trees.

Based on this concept several enumerating algorithms are designed [11, 19, 20].

However to enumerate all rooted trees with exactly n vertices including k leaves,

we have to carefully design a new tree structure among them, and it is not so

easy.

The rest of the paper is organized as follows. Section 2 provides some defi-

nitions; Section 3 introduces a left-heavy embedding of a rooted tree; Section

4 defines a family tree among rooted trees with n vertices including k leaves;

and Section 5 presents an algorithm to generate all such trees. Finally Section 6

concludes the study.

2. Definitions

Let G be a connected graph with n vertices. A path is a sequence of distinct

vertices (v1, v2, . . . , vp) such that (vi−1, vi) is an edge for i = 2, 3, . . . , p. The

(a) (b)

(0,1,2,3,3,2,2,1,2,3,1,2)

0

1
1 1

2

2 2
2 2

3
3 3

(c)

(0,1,2,2,3,3,2,1,2,3,1,2)

0

1
1 1

2

2
2

2 2

3
3 3

(0,1,2,3,1,2,3,3,2,2,1,2)

0

1 1 1

2

2 2
2 2

3

3 3

3

Fig. 2 Examples of the depth sequences.

length of a path is the number of edges in the path.

A tree is a connected graph with no cycle. A rooted tree is a tree with a vertex

r chosen as its root. For each vertex v in a rooted tree, let UP(v) be the unique

path from v to r. If UP(v) has exactly p edges then we say that the depth of v

is p and write dep(v) = p. The parent of v ̸= r is its neighbor on UP(v), and the

ancestors of v ̸= r are the vertices on UP(v) except v. The parent of r and the

ancestors of r are not defined. We say if v is the parent of u, then u is a child of

v, and if v is an ancestor of u, then u is a descendant of v. The height of a vertex

v, denoted by height(v), is the number of edges on the longest path from v to a

descendant of v. A leaf is a vertex having no child. If a vertex is not a leaf, then

it is called an inner vertex.

An ordered tree is a rooted tree in which a left-to-right ordering is specified

for the children of each vertex. Let C(v) = (c1, c2, . . . , cd(v)) be the left-to-right

ordering of the children of v from left to right, where d(v) is the number of

children of v. We call it the child sequence of v. A vertex ci is the next sibling of

ci−1.

Let T be an ordered tree with n vertices, and (v1, v2, . . . , vn) be the list

of the vertices of T in preorder. Then, the sequence of the depth L(T) =

(dep(v1), dep(v2), . . . , dep(vn)) is called the depth sequence of T . See Fig. 2

for examples. The three trees in Fig. 2 are isomorphic as rooted trees, but

non-isomorphic as ordered trees. Let T1 and T2 be two ordered trees, and

L(T1) = (a1, a2, . . . , an) and L(T2) = (b1, b2, . . . , bm) be their depth sequences.

If either (1) ai = bi for each i = 1, 2, . . . , j − 1 and aj > bj , or (2) ai = bi for

each i = 1, 2, . . . ,m and n > m, then we say that L(T1) is heavier than L(T2),

and write L(T1) > L(T2).

2 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

3. Left-heavy Embedding of Rooted Trees

In this section we define the left-heavy embedding [12, 13] of a rooted tree.

Given a rooted tree T , by choosing some left-to-right ordering among the chil-

dren of each vertex we can generate many ordered trees. The heaviest ordered

tree among them is called the left-heavy embedding of T , and if ordered tree is

the left-heavy embedding of some rooted tree then it is called a left-heavy ordered

tree. We can observe there is a one-to-one mapping between the set of rooted

trees and the set of left-heavy ordered trees. Thus if an algorithm can generate

all left-heavy ordered trees then it also generates all rooted trees.

Let Sn,k be a set of all left-heavy ordered trees with exactly n vertices including

exactly k leaves. If we generate all ordered trees in Sn,k, then by ignoring the

left-to-right orderings we can also generate all rooted trees with exactly n vertices

including exactly k leaves.

We denote by T (v) the subtree of an ordered tree T rooted at v. We have the

following lemma.

Lemma 3.1 ([12]) An ordered tree T is a left-heavy ordered tree if and only if

L(T (ci−1)) ≥ L(T (ci)) holds for every pair of a vertex ci−1 and its next sibling

ci.

From Lemma 3.1, we can check whether T is a left-heavy ordered tree or not, as

follows. For every pair of a vertex ci−1 and its next sibling ci, we traverse T (ci−1)

and T (ci) with depth first manner, then we check whether L(T (ci−1)) ≥ L(T (ci))

holds. Observe that for any ci−1 and its next sibling ci, L(T (ci−1)) ≥ L(T (ci))

can be checked in O(n) time. Furthermore, it is not difficult to see that the

number of pairs (ci−1, ci) is O(k). Thus, this naive method can be done in O(nk)

time.

Combining this method and Yamanaka’s enumeration [20], one can enumerate

all left-heavy ordered trees with n vertices including k leaves in O(nk) time for

each. Therefore it seems to be difficult to accomplish efficient, say O(1) time,

enumeration following this approach.

In this paper, we define a new tree structure among left-heavy ordered trees

with n vertices including k leaves, then propose an efficient algorithm to enumer-

ate such trees.

Fig. 3 Examples for non-branching paths and root leaves.

Fig. 4 Root tree R8,4

4. Family Tree

In this section, we define a tree structure among the trees in Sn,k, in which

each vertex corresponds to a tree in Sn,k and each edge corresponds to a relation

between two trees in Sn,k.

If either k = 1 or k = n− 1, then |Sn,k| = 1 and its enumeration is trivial. So

we assume 1 < k < n− 1.

We need some definitions.

Let T be an ordered tree, and r its root. If a leaf v is a child of the root then v

is called a root leaf. A path P in T is called a non-branching path if (1) P starts

at a child of r, (2) P ends at a leaf of T , and (3) all internal vertices of P has

exactly one child in T . Note that P may be a root leaf. If T has a non-branching

path, then the rightmost path among the longest non-branching paths is denoted

by PL(T). See Fig. 3. The root leaves are depicted by gray circles and PL(T) is

drawn as gray lines.

Rn,k is the ordered tree consisting of a path with n− k edges and k − 1 leaves

attaching at the root so that those leaves appear on the right of the path. See

Fig. 4 for an example. Rn,k ∈ Sn,k holds.

We now define the parent tree P (T) for each T ∈ Sn,k \{Rn,k} by the following

two cases. Let T ′ be the tree obtained from T by removing (1) all root leaves and

3 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

T P(T)

T

x

P'

(a) Case 1

(b) Case 2(a)

T P(T)

(c) Case 2(b)

P(T)

x

x

Fig. 5 Illustration for the parents.

(2) PL(T) if T has one or more non-branching paths. Let x be the last vertex of

T ′ in preorder. Since T ̸= Rn,k such x always exists.

Case 1: x has one or more siblings.

P (T) is the tree obtained from T by (1) removing x, then (2) attaching a new

root leaf as the rightmost child of r. See Fig. 5(a).

Case 2: x has no sibling.

We have the following two subcases

Case 2(a): T has PL(T).

P (T) is the tree obtained from T by (1) removing x, (2) attaching a new leaf

to the end vertex of PL(T), then (3) re-embedding the resulting tree to be left-

heavy. See Fig. 5(b). The extended non-branching path may move to the left.

Note that PL(P (T)) has one or more edges, although PL(T) may be a root leaf.

Case 2(b): T has no PL(T). Thus T has no non-branching path.

Let P = (v0 = r, v1, . . . , vq = x) be the path in T starting at r and ending

at x. Let P ′ = (vp, vp+1, . . . , vq) be the subpath of P such that d(vp−1) ≥ 2,

d(vp) = d(vp+1) = · · · = d(vq−1) = 1. P (T) is the tree obtained from T by

(1) removing P ′, then (2) appending P ′ to r so that P ′ becomes the rightmost

non-branching path. See Fig. 5(c). Note that P (T) has exactly one or two non-

branching paths. If P (T) has exactly one non-branching path P , then P has one

or more edges, and the starting vertex of P is the rightmost child of the root.

Otherwise P (T) has exactly two non-branching path P1, P2, then P1 and P2 have

one or more edges respectively, and the starting vertices of P1 and P2 are the

rightmost and the second rightmost child of the root.

We say T is a child tree of P (T). If P (T) is derived in Case 1 then T is called

a Type 1 child. Similarly if P (T) is derived in Case 2(a) or 2(b) then it is called

a Type 2(a) or 2(b) child, respectively.

We have the following lemma.

Lemma 4.1 For any T ∈ Sn,k \ {Rn,k}, P (T) ∈ Sn,k holds.

Proof. In each case P (T) has n vertices including k leaves, and P (T) is the

left-heavy embedding. �
By repeatedly finding the parent tree of the derived tree, we can have the

unique sequence T, P (T), P (P (T)), . . . of trees in Sn,k. We have the following

lemma.

Lemma 4.2 For any T ∈ Sn,k the sequence T, P (T), P (P (T)), . . . always ends

up with Rn,k.

Proof. Let T be a tree in Sn,k, and nb(T) be the number of edges in non-

branching paths in T . We can observe nb(P (T)) > nb(T) always holds, and for

any T ∈ Sn,k \ {Rn,k}, nb(Rn,k) > nb(T) holds.

Therefore by repeatedly finding the parent tree of derived tree, we eventually

obtain Rn,k on which nb(T) is maximized. �
By merging those sequences of trees in Sn,k, we can have the family tree, de-

noted by Tn,k, of Sn,k, in which each vertex corresponds to a tree in Sn,k and

4 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

Fig. 6 Family tree T8,4

each edge connects a tree T and its parent P (T). See Fig. 6.

5. Enumerating All Child Trees

If we can enumerate all child trees of a given tree in the family tree Tn,k, then

by applying the algorithm recursively we can enumerate all trees in Sn,k. We

now give an algorithm to enumerate all child trees of a given tree in Sn,k.

For an ordered tree T with root r and its vertex v, we define trees T1(v), T2a(v),

T2b(v) for some v. Every child tree of T ∈ Sn,k is either T1(v), T2a(v), T2b(v),

however the reverse is not always true. Later we classify those trees into the child

trees and others.

Let T ′ be the tree obtained from T by removing (1) all root leaves and (2)

PL(T) if T has PL(T). The active path AP(T) = (a1, a2, . . . , ap) of T is the path

in T ′ such that a1 is the rightmost child of the root, and ai is the rightmost child

of ai−1 for each i = 2, 3, . . . , p.

If T has a root leaf, then for each i = 1, 2, . . . , p− 1, T1(ai) is the tree obtained

from T by (1) removing the rightmost root leaf, then (2) attaching a new leaf to

ai as the rightmost child. See Fig. 7(a).

If T has a root leaf and PL(T), where PL(T) = (b1, b2, . . . , bq), then for each

i = 1, 2, . . . , q−1, T1(bi) is the tree obtained from T by (1) removing the rightmost

root leaf, then (2) attaching a new leaf to bi as the rightmost child. See Fig. 7(a).

If T has PL(T) and PL(T) has one or more edges, where PL(T) =

(b1, b2, . . . , bq), then T2a(ap) is the tree obtained from T by (1) removing bq,

(2) attaching a new leaf to ap, then (3) re-embedding the resulting tree to be

left-heavy. See Fig. 7(b).

If (1) T has exactly one non-branching path, say PL(T) = (b1, b2, . . . , bq), (2)

PL(T) has one or more edges, and (3) b1 is the rightmost child of the root, then

for each i = 1, 2, . . . , p − 1, T2b(ai) is the tree obtained from T by (1) removing

the PL(T) = (b1, b2, . . . , bq), then (2) attaching the PL(T) to ai so that b1 is the

rightmost child of ai. See Fig. 7(c).

We assume that T has exactly two non-branching paths such that they contain

the rightmost child of the root and the second rightmost child, respectively.

Thus the two non-branching path are AP (T) = (a1, a2, . . . , ap) and PL(T) =

(b1, b2, . . . , bq). Then, for each i = 1, 2, . . . , q−1 T2b(bi) is the tree obtained from

T by (1) removing the AP (T), then (2) attaching the AP (T) to bi so that a1 is

the rightmost child of bi. See Fig. 7(c).

Now we classify those trees into the child trees of T and others.

Type 1 child tree:

If T has no root leaf, T1(v) is not defined. Assume otherwise. For each i =

2, 3, . . . , p − 1, T1(ai) is a Type 1 child of T if and only if T1(ai) is a left-heavy

ordered tree. For each i = 1, 2, . . . , q− 1, T1(bi) is a Type 1 child tree of T if and

only if (1) PL(T) has one or more edges, (2) b1 is the rightmost child of the root

vertex excluding root leaves, and (3) T1(bi) is the left-heavy ordered tree.

Type 2(a) child tree:

If T has no PL(T) or PL(T) is a root leaf then T2a(ap) is not defined. Assume

5 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

(a) Type 1

(c) Type 2(b)

(b) Type 2(a)

T

T

T (a)
21

T (a)

2a 2

2
T (a)

2b

T (b)
21

a2

a1

a4

a3

a2

b2

b1

b3

a
5

a2

a1

a3

a2

a1

a3

a4

T 2
T (b)

2b

b
5

b2

b1

b3

b2

b1

b3

b4

T

a1

Fig. 7 Examples of child trees.

otherwise. T2a(ap) is a Type 2(a) child of T if and only if T2a(ap) is a left-heavy

ordered tree.

Type 2(b) child tree:

We assume that T has no root leaf. If T has exactly one non-branching path

such that it has one or more edges and b1 on PL(T) is the rightmost child of the

root, then for each i = 1, 2, . . . , p− q, T2b(ai) is a Type 2(b) child tree, since they

are left-heavy. On the other hand, for each i = p− q+1, p− q+2, . . . , q, T2b(ai)

is not left-heavy, so it is not a child tree of T .

If T has exactly two non-branching paths such that they respectively contain

the rightmost child of the root and the second rightmost child, then for each

i = 1, 2, . . . , q − b, T2b(bi) is a Type 2(b) child tree. Note that PL(T) is longer

than AP (T).

Based on the case analysis above we can enumerate all child trees of T by

Algorithm 1. By recursively applying Algorithm 1 from the root tree Rn,k,

we can enumerate all trees in Sn,k.

Now we analyze running time of Algorithm 1.

With a help of suitable data structure in [12] we can check whether each of

T1(ai), T1(bi) and T2a(ap) is left-heavy or not in lines 4, 9 and 20, respectively

in constant time.

We also maintain PL(T) and AP (T) as a list.

To construct T2a(ap) we need to re-embed the resulting tree to be left-heavy,

in which PL(T) may move to right to a suitable place. To accomplish this in

constant time we store the current tree T as the subtrees of T rooted at the

children of the root as follows. We store the subtrees having the same height in

a list, in which each subtree Tc appear in the order of L(Tc). Also, we prepare

an array A[1..n] of pointers, in which A[i] is a pointer to the list of the subtrees

with height i. Thus in constant time we can move PL(T) to the end of the list

having one less height. Also, we can check whether T has a root leaf or not in

constant time.

We can compute each T2b(ai) in constant time for each tree.

Thus we can enumerate all child trees in constant time for each tree.

Theorem 5.1 After constructing and outputting the root tree Rn,k in Sn,k, one

can enumerate all trees in Sn,k in constant time per tree on an average.

By Theorem 5.1, our algorithm generates each tree in Sn,k in constant time

“on an average.” However it may have to return from the deep recursive calls

6 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

Algorithm 1: find-all-children(T)

1 Let AP (T) = (a1, a2, . . . , ap) be the active path of T and

PL(T) = (b1, b2, . . . , bq) if T has PL(T).

2 if T has one or more root leaves then

3 for each i = 1, 2, . . . , p− 1 do

4 if T1(ai) is a left-heavy ordered tree then

5 find-all-children(T1(ai))

6 else break

7 if (1) PL(T) has one or more edges, (2) b1 is the rightmost child of the

root excluding root leaves then

8 for each i = 1, 2, . . . , q − 1 do

9 if T1(bi) is a left-heavy embedding then

find-all-children(T1(bi))

10 else break

11 else

12 if T has exactly one non-branching path, that is PL(T), such that PL(T)

has one or more edges, and b1 on PL(T) is the rightmost child of the root

then

13 for each i = 1, 2, . . . , (p− q) do

14 find-all-children(T2b(ai))

15 else

16 if T has exactly two non-branching paths, each of them has one or

more edges, and a1 and b1 are the rightmost and the second rightmost

child of the root then

17 for each i = 1, 2, . . . , (q − p) do

18 find-all-children(T2b(bi))

19 if T has PL(T) and PL(T) has one or more edges then

20 if T2a(ap) is a left-heavy ordered tree then

21 find-all-children(T2a(ap))

without outputting any tree in Sn,k after generating a tree corresponding to the

rightmost leaf of a large subtree in the family tree. Therefore the next tree in

Sn,k cannot be generated in constant time.

This delay can be canceled [6, 12] by outputting each tree before its children if

the tree corresponds to a vertex at odd depth, and after its children otherwise.

Now we have the following corollary.

Corollary 5.2 After constructing and outputting the root tree Rn,k, one can

enumerate all trees in Sn,k in constant time per tree in the worst case.

For each k = 1, 2, . . . , n− 1, Rn,k is constructed from Rn,k−1 in constant time

by (1) removing the leaf on the longest non-branching path, then (2) attaching

a new leaf as the rightmost child of the root. Thus by repeatedly applying the

algorithm in Corollary 5.2 for each k = 1, 2, . . . , n − 1, we can enumerate all

rooted trees with exactly n vertices. We have the following theorem.

Theorem 5.3 After constructing and outputting the root tree Rn,1, one can

enumerate all rooted trees with exactly n vertices in constant time for each in

the worst case.

6. Conclusion

In this paper we have given an efficient algorithm to generate all (unordered)

rooted trees with exactly n vertices including exactly k leaves. Our algorithm

generates each such tree in O(1) time, while a modified version of known algo-

rithms generates each such tree in O(nk) time.

By repeatedly applying our algorithm for k = 1, 2, . . . , n − 1, we can also

generate all rooted trees with exactly n vertices in constant time for each.

References

[1] D.Avis and K.Fukuda. Reverse search for enumeration. Discrete Appl. Math.,
65(1-3):21–46, 1996.

[2] T.Beyer and S.M. Hedetniemi. Constant time generation of rooted trees. SIAM
J. Comput., 9(4):706–712, 1980.

[3] L.A. Goldberg. Efficient algorithms for listing combinatorial structures. Cam-
bridge University Press, New York, 1993.

[4] Y.Kikuchi, H.Tanaka, S.Nakano, and Y.Shibata. How to obtain the complete list
of caterpillars. Proc. The 9th Annual International Computing and Combinatorics

7 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

IPSJ SIG Technical Report

Conference, (COCOON 2003), LNCS 2697:329–338, 2003.
[5] D.E. Knuth. The art of computer programming, volume 4, fascicle 2, generating

all tuples and permutations. Addison-Wesley, 2005.
[6] D.E. Knuth. The art of computer programming, volume 4, fascicle 4, generating

all trees, history of combinatorial generation. Addison-Wesley, 2006.
[7] D.L. Kreher and D.R. Stinson. Combinatorial algorithms. CRC Press, Boca Raton,

1998.
[8] G.Li and F.Ruskey. The advantages of forward thinking in generating rooted

and free trees. Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms,
(SODA1999), 939–940, 1999.

[9] B.D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–324,
1998.

[10] S.Nakano. Efficient generation of plane trees. Inf. Process. Lett., 84(3):167–172,
2002.

[11] S.Nakano. Efficient generation of triconnected plane triangulations. Comput.
Geom. Theory and Appl., 27(2):109–122, 2004.

[12] S.Nakano and T.Uno. Constant time generation of trees with specified diameter.
Proc. the 30th Workshop on Graph-Theoretic Concepts in Computer Science, (WG
2004), LNCS 3353:33–45, 2004.

[13] S.Nakano and T.Uno. Generating colored trees. Proc. the 31th Workshop on
Graph-Theoretic Concepts in Computer Science, (WG 2005), LNCS 3787:249–260,
2005.

[14] J.Pallo. Generating trees with n nodes and m leaves. International Journal of
Computer Mathematics,, 21(2):133–144, 1987.

[15] R.C. Read. Every one a winner or how to avoid isomorphism search. Annuals of
Discrete Mathematics, 2:107–120, 1978.

[16] J.Sawada. Generating rooted and free plane trees. ACM Transactions on Algo-
rithms, 2(1):1–13, 2006.

[17] H.S. Wilf. Combinatorial algorithms: An update. SIAM, 1989.
[18] R.A. Wright, B.Richmond, A.Odlyzko, and B.D. McKay. Constant time generation

of free trees. SIAM J. Comput., 15(2):540–548, 1986.
[19] K.Yamanaka and S.Nakano. Listing all plane graphs. Journal of Graph Algorithms

and Its Applications, 13(1):5–18, 2009.
[20] K.Yamanaka, Y.Otachi, and S.Nakano. Efficient enumeration of ordered trees

with k leaves. The 3rd International Workshop on Algorithms and Computation,
(WALCOM 2009), LNCS 5431:141–150, 2009.

[21] S.Zaks and D.Richards. Generating trees and other combinatorial objects lexico-
graphically. SIAM J. Comput., 8(1):73–81, 1979.

8 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.6
2010/9/22

