適応的な粒子径を持つ粒子を用いたスキニング

山本正幸^{†1} 床井浩平^{†2}

3DCG アニメーションにおいて,オブジェクトを骨格に沿って変形する技術をスキ ニングと呼ぶ.このとき,オブジェクトの表面にある頂点座標は頂点ブレンディング により決定する.しかし,この手法では関節部において形状の収縮や陥没が起こる場 合がある.これを避けるために粒子を用いる手法が提案されているが,オブジェクト の変形を精度良く行おうとすればすれば粒子の数を増やす必要があり,計算時間が増 大してしまう.そこで本研究では,この粒子径を適応的に変化させ,精度を保ちなが ら少ない粒子数で変形を行うことにより,計算を高速化する手法を開発した.

Skinning that used particle with adaptive particle diameter

MASAYUKI YAMAMOTO^{$\dagger 1$} and KOHE TOKOI^{$\dagger 2$}

Skinning is a technique for deforming an object shape along the skeleton used in 3DCG animations. This technique sometimes cause unexpected results such as surface collapse and shape shrinkage when it is using linear blending of vertices positions. A particle based technique had been proposed in order to avoid this problem. However, this technique takes longer time to deform more precisely because it needs to increase the number of the particles. This paper proposes an acceleration method of this particle based skinning technique by changing particle diameter adaptively.

1. はじめに

3DCG アニメーションの制作において,オブジェクトの変形にスキニングという手法が

†1 和歌山大学大学院

Graduate School of Wakayama University

†2 和歌山大学

Wakayama University

用いられる.スキニングとはオブジェクトに骨格を設定し,その骨格の操作によって,表面 形状を変形する技術である.スキニングにおいて骨格形状を表面形状に反映するには頂点プ レンディングと呼ばれる手法を用いるのが一般的である.これはボーンの影響範囲が重なら ないところはボーンと同じ座標変換を行い,複数のボーンの影響範囲が重なる部分は各ボー ンによる座標変換の結果のボーンの影響力を重みに用いた重み付け和で求めることにより, 表面形状を変形させる手法である.この手法は高速で実装も容易だが,線形的なプレンディ ングでは関節部において陥没や収縮が発生することがある.

陥没や収縮の起こらないブレンディング手法としては,双対クォータニオンを用いたもの¹⁾がある.しかし,線型的なブレンディングやデュアルクォータニオンによるブレンディ ングでは,変形結果から内部が空洞のオブジェクトを変形させたような印象を受けること がある.内部が詰まったような変形結果を得られる手法としては,Tao ju らのキャラクタ を囲うケージを作成し,それに基づき変形を行う手法²⁾や例示ベースのレンダリング手法³⁾ が挙げられる.しかしこれらの手法はユーザの作業量が増える,最適化に変形量のデータが 必要であるといった問題点がある.ユーザの作業量を増やさず,最適化用のデータ等も必要 ない手法として,粒子ベースのスキニング⁴⁾が挙げられる.粒子ベースのスキニング法で はオブジェクトの内部に粒子が充填されたものとして変形を行うため,変形にともなうオ ブジェクトの内部の体積の移動が反映され,中身の詰まったオブジェクトの変形結果を得る ことができる.しかし,この手法では精度よく変形しようとすると粒子を小さくしなけれ ばならず,それに伴う粒子数の増加により,粒子の充填や変形に時間がかかるようになる. また,この手法を形状の一部が細くなっているようなオブジェクトに対して適用する場合, 細くなっている部分に合わせて粒子径を決める必要があるため,精度が必要ない部分も小さ な粒子で近似されてしまい,全体の粒子数が増えてしまう.

そこで本研究では表面形状に与える影響が少ないモデル内部の粒子には大きな粒子を用い,影響が大きい表面部には小さな粒子を用いてスキニングを行う.これにより一定の大き さの粒子を用いた場合と同程度の精度のスキニングを高速に行うことを目的とする.

提案手法の概略は以下のようになる.オブジェクトとボーンのデータを読み込み,オブ ジェクトに適応的に粒子径を変化させた粒子を充填する.次に充填した粒子とボーンの対応 付けを行い,ボーンを操作した際に粒子に加わる力を計算,粒子を移動する.最後に粒子 の位置から変形後の頂点の位置を移動し,移動後の粒子の位置をもとに表面形状を求める. 以上により,表面形状を変形することで体積を維持したまま精度良くスキニングを行うこと ができる.

情報処理学会研究報告 IPSJ SIG Technical Report

図 2 粒子の多面体近似 Fig. 2 polyhedral approximation of particle

Fig. 3 matching of particles and a bone

2. 粒子の充填

任意のモデルに対してスキニングを行うために,読み込んだオブジェクトに対して粒子の 充填を行う(図1).通常,オブジェクトに粒子を充填する際にはボクセライゼーションを用 いる.しかしボクセライゼーションによる充填では粒子が最密に配置されないため,粒子を 少し動かした際に隙間に粒子が入り込んでオブジェクトの収縮が発生する.これを防ぐため に,本研究では粒子を最密に配置する手法を採用する.

まずモデルの x 座標, y 座標, z 座標のそれぞれの最大値と最小値を探し,その値から立 方体を作成する.そして立方体の中に,最密になるように粒子をつめる (図 1(a)).次に空 間に配置した粒子がモデルの内部に入るかを判定する.モデルを構成する三角形のポリゴン と空間に配置した粒子を y - z 平面に投影する.投影した三角形の中に,粒子の中心が入っ ているか内外判定を行う (図 1(b)).粒子が内部にある三角形を x 座標の小さい順にソート することで,x 座標に平行な直線と面との交差回数を得ることができる (図 1(c)).交差し た面の数が奇数の部分に粒子を詰める (図 1(d)).

その後表面付近の粒子を削除し,小さい粒子を詰めるスペースをつくる.残った粒子を球 を多面体で近似した球で表現し,粒子を小さく設定し直して空間に図1(a)のように粒子を 配置する.新たに配置いた粒子に対し,最初に粒子を詰めたときと同様の処理を行うことに より異る大きさの粒子を充填することができる.粒子を配置した場合,接している粒子の最 大数は12個となる.表面付近の粒子は接している粒子数は少なくなるので,接している粒 子数が12個未満のものを表面付近に存在する粒子とし削除する.

残った粒子を多面体の球に近似するには正二十面体の面を分割していく手法をとる.球上 にすべての頂点が存在する正二十面体を生成する.その後,その正二十面体の稜線の中点を 球面上に押し出し,中点同士を線で結び,三角形を分割する.これを繰り返すことにより, 球を多面体で近似することができる.ただし,分割回数を増やすと面の数が増えてしまうた め,粒子径に応じて分割回数を変える必要がある.

粒子がどのボーンに追従して動くかを決定する為に,ボーンと粒子の対応付けを行う(図3). 対応するボーンは粒子との距離が最も小さいボーンとする.ボーンに垂線を下ろせる場合は 垂線を距離とし,垂線を下ろせない場合はボーンの端点の近い方との距離をボーンと粒子の 距離とする.次に力を計算する際に用いるボーン上の基準点を求める.粒子から対応する ボーンに下ろした垂線とボーンとの交点を基準点とし,これを用いて,粒子に作用する力を 計算する.垂線を下ろせない場合は,ボーンを延長して交点を求め,その点を基準点とする.

IPSJ SIG Technical Report

3. 粒子に働く力

粒子に働く力をとして,粒子間の距離に応じた力,粒子の相対速度に応じた力,ボーンの 操作量に応じた力,およびボーンとの相対速度に応じた力の4種類の力を定義する.このう ちの粒子間の距離に応じた力と粒子の相対速度に応じた力を相互作用力と呼び,ボーンの操 作量に応じた力,ボーンとの相対速度に応じた力をボーンから受ける力と呼ぶ.

3.1 相互作用力の働く範囲

相互作用力の働く範囲を,大きい粒子の径を R,小さい粒子の径を r とし,距離は最初に粒子が配置された際に間に粒子が入らない距離をもとに定義する (図 5).この範囲外にある粒子との間には相互作用力は働かないものとする.

3.2 力の定義

(1) 粒子間の距離に応じた力 *f*_{di}

2つの粒子が接している場合,その粒子の中心点の距離はそれぞれの半径の和となる.粒 子間の距離がその値のときを安定状態とし,近いときは斥力,離れているときは引力を働か せ,安定状態に近づくように力を発生させる.発生させる力はフックの法則に従う.

$$\boldsymbol{f}_{di} = k_d \left(|| \boldsymbol{x}_j - \boldsymbol{x}_i || - (r_i + r_j) \right) \frac{\boldsymbol{x}_j - \boldsymbol{x}_i}{|| \boldsymbol{x}_j - \boldsymbol{x}_i ||} \tag{1}$$

 k_d はバネ定数, x_i , x_j は粒子の座標, r_i , r_j は粒子の半径である.ただし, 粒子が重なり 合うのを防ぐために, 斥力が働く場合には k_d を引力が働く場合より大きくする.

(2) 粒子の相対速度に応じた力 *f*_{vi}

距離に応じた力だけでは粒子の運動は収束しない.そこで,周囲の粒子との相対速度を減

少させるように力を発生させることで粒子の運動を収束させる.

$$\boldsymbol{f}_{vi} = -C\left(\boldsymbol{v}_i - \frac{1}{n}\sum_{j=1}^n \boldsymbol{v}_j\right) \tag{2}$$

C は減衰定数,n は周囲の粒子数, v_i , v_j は粒子の速度である.

(3) ボーンの操作量に応じた力 f_{bi}

変形前に対応するボーンの基準点から粒子へのベクトルを保存する.そのベクトルに対し て対応するボーンと同様の座標変換を行い,ボーンの変形に完全に追従した粒子の座標を求 める.現在の座標を求めた座標に近づけるように力を発生させることで,ユーザによるボー ンの操作量を粒子の移動に反映する.操作量に応じた力はフックの法則に従い決定する.

$$\boldsymbol{f}_{bi} = k_b \left(\boldsymbol{x}_i - \boldsymbol{x}_{0i} \right) \tag{3}$$

 k_b はバネ定数, x_i は粒子の現在の位置, x_{0i} は粒子の初期位置にボーンと同様の座標変換 を行った位置である.

(4) ボーンとの相対速度に応じた力 f_{bvi}

粒子間の距離に応じた力と同様に,ボーンの操作量に応じた力だけでは粒子の運動は収束 しない.そのため粒子の運動を減衰させる力を発生させる必要がある.ボーンからの操作量 を減衰は対応するボーン上の基準点との相対速度を減少させるように力を発生させること で実現する.

 $f_{bvi} = -C_b (v_i - v_{bi})$ (4) C_b は減衰係数, v_i は粒子の速度, v_{bi} は基準点の速度である.ただし,ボーンが動いてい るのは操作中のみであり,操作中のみ基準点の速度が発生する.しかし,操作中も力の計算

IPSJ SIG Technical Report

Fig. 7 Conversion to polygons

を行い続けているため、1 ステップあたりの基準点の速度は非常に小さくなる.また、操作 していない場合も基準点の速度は0 である.そこで基準点の速度 v_{bi} は0 として扱う.す ると、ボーンとの相対速度に応じた力は以下のように表すことができる.

$$\boldsymbol{f}_{bvi} = -C_b \boldsymbol{v}_i \tag{5}$$

4. 粒子の移動

粒子の粒子に働く力 f_i は 4 種類の力の総和で求めることができる.

 $f_{i} = f_{di} + f_{vi} + f_{bi} + f_{bvi}$ (6) 粒子の運動は運動方程式に従うものとする.

 $\boldsymbol{a}_{i} = \boldsymbol{f}_{i} \left(\boldsymbol{x}_{i} \left(t \right), \boldsymbol{v}_{i} \left(t \right) \right) / m_{i}$

(7)

*a*_i は加速度,*x*_i は粒子の位置,*v*_i は粒子の速度,*m*_i は粒子の質量である.それぞれの粒子の質量には体積を用いる.式(7)を数値積分することにより,粒子の移動量を求める.数 値積分法には陽解法と陰解法がある.陽解法は次のステップの値を代入操作のみで求めるこ とができるが,タイムステップを大きくとると計算が発散してしまう.陰解法は次のステッ プの値を求める際に方程式を解く必要があり,1ステップあたりの時間が長くかかってしま うが,陽解法と比較するとタイムステップを大きくとれるという利点がある.先行研究⁴⁾で は陽解法のほうが高速にスキニングを行えたことから,本研究では粒子の移動量の算出に陽 解法の改良オイラー法を用いた.

5. ポリゴンへの変換

粒子の充填時に各頂点に対応する粒子を 4 つを決め,その粒子の位置をもとに変形後の 頂点の位置を決定する.Debunne 6^{5} は,粒子の位置から表面形状を計算するには,少な い粒子数で十分であると述べている.Debunne 6^{5} ,先行研究⁴ では 4 つの粒子から表面

Fig. 8 the model used for verification of the number of particles(a)rectangular parallelepiped(b)boad(c)cow

表1 粒子の充填結果の比較

Table 1 Comparison of the result of filling particles

モデル	(a)	(a)(提案手法)	(b)	(b)(提案手法)	(c)	(c)(提案手法)
粒子径 (大きい粒子径)	0.05	0.05(0.15)	0.05	0.05(0.15)	0.04	0.04(0.12)
粒子数	4641	3452	4257	4757	7090	5933

形状を計算していることから,本研究でも4つの粒子を用いて頂点座標の計算を行う.対応 する粒子は頂点に近いものから順に4つを選ぶ.頂点の決定方法は,粒子を充填した時点で の対応する粒子から頂点へのベクトルを求めておく.そのベクトルに対し,対応するボーン と同様の座標変換を行う.座標変換により求めたベクトルと移動後の粒子の位置から,移動 後の頂点の位置を求め,4つの平均をとり,頂点の位置を決定する.

6. 実験結果

6.1 粒子の充填結果

粒子を充填した際にどの程度粒子数をが減少するか3種類のオブジェクトを用いて検証 した(図8).オブジェクトに対して粒子径を変化させて充填した場合と,変化させずに充填 した場合の結果を表1に示す.図8(a)(c)のように太い部分があり,その部分に大きい粒子 が十分に詰まるスペースがあるようなモデルでは粒子数が減少する.しかし図8(b)のよう に薄く,大きい粒子が詰まるスペースが少ない場合,12個の粒子と接する粒子が存在しな くなり,大きい粒子が全て削除されてしまい,粒子数の減少は見られなかった.

IPSJ SIG Technical Report

衣 4 支形に使用したパノメータ							
Table 2 parameters for deform							
タイムステ	ップ Δt	0.003					
	d	0.300					
減衰係数 С	1	0.030					
バネ定数 k	b	0.030					
減衰係数 C	б.	0.030					

まっ 赤形に侍田」たパラメーク

deformation(b)execution result of bend deformation(c)execution result of twist deformation

6.2 変形結果

提案手法を用いて形状の変形を行った結果を図 9 に示す. 変形を行う際に力の計算に用 いたパラメータは表 2 の通りである.なお,実験に用いた PC は OS は Mac OSX 10.5, CPU Intel Core 2 Duo 2GHz,メモリ 4GB である.

図 9(a)のモデルに対し,内部には表面形状の3倍の粒子径を持つ粒子を充填した.大き

図 10 複雑なモデルの変形 Fig. 10 deformation of a complicated model

い粒子の隙間には小さい粒子が詰まっている.これは変形を行った際に小さい粒子が大きい 粒子の隙間に入り込んでしまい,モデルが収縮するのを防ぐためである.

図 9(b) はモデルに対して中心から折り曲げる変形を行った結果である.関節部では頂点 ブレンディングのような陥没は起こっていない.先行研究⁴⁾ で発生していたボーンの端点 付近で形状が変形前と大きく変化してしまうという問題も発生していない.しかし,表面に は凹凸が現れてしまった.これは粒子を詰めた際に,大きい粒子と小さい粒子の重なりや, 粒子間の隙間があり,それらにより発生した相互作用力によって発生すると考えられる.そ れらを減らすために,小さい粒子の粒子径を小さくすることで凹凸は改善された.

図 9(c) はモデルを中心でねじる変形を行った結果である.ねじっている部分でも体積は 維持され,頂点プレンディングでモデルをねじった際に発生するキャンディラップ現象は起 こっていない.

図 10 は面の数が多く表面に細かい凹凸のあるモデルを変形したものである. 変形を行った際に細かい凹凸がなくなってしまったり, 変形前は存在しなかったエイリアスのようなものが発生してしまっている.大きめの粒子でオブジェクトを近似すると, あらかじめ粒子に対応する頂点を決めていたため, 頂点の密度が高いところでは1つの頂点に対応づけられている粒子が多く, 1つの粒子が少し移動しただけで多くの頂点座標が一度に移動してしまい, 表面形状が大きく変わってしまったと考えられる.

次に先行研究⁴⁾ との1ステップあたりの処理時間の比較を行った結果を表3に示す.な お実行時間の比較を行うため,同様のモデルを用い,粒子径は一定にして比較を行った.粒 子数が増大するにつれ,時間の開きが大きくなっている.これは本研究では空間分割を実装 しておらず,相互作用力を計算する際に全ての粒子と距離など計算しているため,このよう

IPSJ SIG Technical Report

表 3 実行時間の比較 Table 3 comparison of execution time

粒子数 [個]	238	711
先行研究 ⁴⁾ [ms]	2.20	3.91
提案手法 [ms]	5.74	52.1

な結果になったと考えられる.空間分割を行っていない状態では1ステップあたりの相互作 用力を求める際に要する時間は全体の粒子数をNとすると $O(N^2)$ を要する.それに対し, 空間分割を行った場合,周囲の空間に存在する粒子数をnとすると $O(N \times n)$ となる.nはNより小さいため,空間分割により処理時間を大きく短縮できると考えられる.その他 の要因としてはボーンから受ける力を新たに定義し直したことにより,計算量が増大したこ とが挙げられる.

7. おわりに

本研究ではオブジェクトの形状を適応的な粒子径の粒子で近似し,粒子に加わる力を計算 してスキニングを行う手法をした.またボーンから受ける力の定義を変えたことで,ボー ンの端点付近で変形前と形状が大きく変化してしまうという現象を防ぐことができた.し かし,先行研究⁴⁾と同様の粒子数でスキニングを行うと時間がかかってしまうということ がわかった.これは本研究では空間分割を行っていないことが大きな要因であると考えら れる.先行研究⁴⁾では等分分割を実装しているが,提案手法のように粒子径が異なる場合, 大きい粒子の周りでは計算を行う空間数が増えてしまう.そこで今後の課題としては BVH 等の空間分割手法を実装し,粒子の移動の高速化が挙げられる.また,複雑なオブジェクト を変形した際に細かい部分の形状が崩れてしまうのを防ぐために,粒子からポリゴンへの変 換方法の検討が必要である.

参考文献

- Kavan, L., Collins, S., Žára, J. and O'Sullivan, C.: Skinning with dual quaternions, Proceedings of the 2007 symposium on Interactive 3D graphics and games (2007).
- Ju, T., Zhou, Q.-Y., vande Panne, M., Cohen-Or, D. and Neumann, U.: Reusable Skinning Templates Using Cage-based Deformations, acm Transactions on Graphics, Vol.27, No.5 (2008).
- Yamanaka, K., Yano, A. and Morishima, S.: Example Based Skinning with Progressively Optimized Support Joints, acm SIGGRAPH ASIA 2009 Posters (2009).

- 4) 小宮信吾:粒子ベースのスキニング法,修士論文,和歌山大学大学院 (2008).
- 5) Debunne, G., Desbrun, M., Barr, A. and Cani, M.-P.: Interactive multiresolution animation of deformable models, *In Eurographics Workshop on Computer Animation and Simulation*, pp.133–144.