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Robust Speech Recognition using Optimized
Wavelet-based Dereverberation

RANDY GoMEZ ! and TATSUYA KAwAHARA L

This paper presents an improved wavelet-based dereverberation method for
automatic speech recognition (ASR). Dereverberation is based on filtering re-
verberant wavelet coefficients with the Wiener gains to suppress the effect of the
late reflections. Optimization of the wavelet parameters using acoustic model
enables the system to estimate the clean speech and late reflections effectively.
This results to a better estimate of the Wiener gains for dereverberation in the
ASR application. Additional tuning of the parameters of the Wiener gain in
relation with the acoustic model further improves the dereverberation process
for ASR. In the experiment with real reverberant data, we have achieved a
significant improvement in ASR accuracy.

1. Introduction

Acoustic degradation of the speech signal caused by reverberation poses a problem
in distant-talking speech recognition applications. The observed signal in the micro-
phone is smeared with both the effects of early and late reflections. We have proposed
a dereverberation approachlﬂ) that suppresses the late reflection of the reverberant
signal by means of multi-band spectral subtraction. This method is analogous to the
multi-band spectral subtraction steered by multi-step linear prediction3). In1)2>, the
power estimate of the late reflection is crucial in the dereverberation process. However,
there is no straightforward means of accurately estimating it, as its characteristics vary
accordingly as a function of the room characteristics and the energy of the preceding
speech-frame segments.

In this paper, we propose a wavelet-based dereverberation approach optimized for
ASR as shown in Fig. 1. First, we estimate the room reverberation time Tgo to ob-
tain the room impulse response (RIR). Then, we reproduce the reverberant data set
and optimize separate wavelet parameters (i.e. scale and shift) for speech and late
reflection, respectively. The optimization process is based on improving the model like-
lihood of the speech recognizer through offline training. In the actual dereverberation
process, wavelet filtering is employed by weighting the reverberant wavelet coefficients
with multi-band Wiener gains. In calculating the Wiener gains, we estimate the clean
speech and the late reflection power using the optimized wavelet parameters. Then, we
tune the parameter of the Wiener gain based on the acoustic model likelihood. During

testing, the optimized wavelet parameters and the tuned parameter of the Wiener gain
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0 1 Block diagram of the proposed method.
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are used for dereverberation through wavelet filtering.

The paper is organized as follows; Section 2 gives an overview of the reverberant
model and the concept of the dereverberation approach we adopt. Section 3 presents
the proposed method of wavelet-based dereverberation. Experimental conditions and

results are given in Section 4, and we will conclude this paper in Section 5.
2. Reverberant Speech Model

2.1 Early and Late Reflection

The spectrum of the reverberant signal (frequency f, time ¢) is given as,

X(f) ~ S(HH(F) (1)
where X(f), S(f) and H(f) are the frequency components of the reverberant signal,
clean speech signal and the room impulse response (RIR), respectively. The reverbera-
tion effect can be decomposed into early and late reflections. The early reflection is due
to the direct signal and some reflections that occur at earlier time and can be treated as
short-period noise. The late reflection, whose effect spans over frames can be treated as

long-period noise. The RIR h can be expressed with early hg and late h;, components

as follows,
h(t t < T
he(t) = " | @)
0 otherwise
h(t+T t>T
p—{ M =T 3)
0 otherwise

where T denotes the frame length. Eq. (2) and (3) characterize both the short and
long-period effects of the reverberant signal. The short term fourier transform (STFT)

of the reverberant signal can be expressed in terms of early and late reflections as,

X(f,1) = S(.OH(£,0) + 375" S(f,t — d)H(f,d) @
= Xe(f,t) + Xe(f1)
where H(f,0) is the RIR in-frame effect to the speech signal S(f,t) due to hg(t). We

denote this as early reflection Xg(f,t). The second term X,(f,t) referred to as the late
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reflection can be viewed as smearing of the clean speech by H(f,d) which corresponds
to the d frame-shift effect of the RIR due to hy(t). D is the number of frames over which
the reverberation (smearing) has an effect and is related with the reverberation time
Teo. The early reflection is mostly addressed through Cepstral Mean Normalization
(CMN) in the ASR system as it falls within the frame. Thus, we focus on suppressing
only the effect of the late reflection.

2.2 Tso Estimation

The HMM representation of a speech signal is of low resolution compared to the
actual RIR. Thus, in HMM-based ASR applications, it may be sufficient to use Tso
estimate in describing the RIR characteristics of a room®. The multiple reflections of

sound can be described by a decaying acoustical energy given as

(1) ~ el In (10)/To0) 1 5)
where [ is the discrete time sample, and Tgo is the reverberation time. Fig. 2 illustrates
the process of Teo estimation. First, we generate reverberant data xz7601 ... gT60x
based on Eq. (5) and train GMM with 64 mixtures for each: firev;, ... frevy. In the
actual Tgo estimation, the likelihood scores are evaluated against pire,, and the sub-
sequent Tgo that results in the highest likelihood score is selected. Although this can
be more accurately measured through physical measurement®, it may be impractical
and inconvenient whenever the room characteristics change. By using the Tso estimate,
we can synthetically generate the RIR using Eq. (5). With the RIR, hy is identified

experimentally in our previous work %),
3. Wavelet Filtering for Dereverberation

3.1 Wavelet Parameter Optimization
The advantage of wavelet over the short-time fourier transform (STFT) is its flexi-
bility to analyze the spectral component and detect changes across the spectrum®. A

wavelet is generally expressed as

‘II(U,T,t):%\I/ (t;T), (6)

where t denotes time, v and 7 are the scaling and shifting parameters respectively.
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(a) Training GMMs with different Tso values. We optimize the wavelet to detect clean speech and late reflection separately based
on the acoustic model likelihood as shown in Fig. 3. In ASR, we assume that the speech
fe"?nfsa’am max T does not vary for a certain time-frame. Thus, optimizing a single wavelet template for
estimate

(b) Teo estimation based on acoustic likelihood.

0 2 Room impulse response approximation

v (t_TT) is often referred to as the mother wavelet. Assuming that we deal with real-

valued signal, the wavelet transform (WT) is defined as

F(uv,7)= [ f(t)¥(v,T,t)dt, (7)
where F(v,7) is the wavelet coefficients and f(t) is the time-domain function. Unlike
the constant window analysis in STFT, WT offers the flexibility of shifting and scaling
the mother wavelet shown in Eq. (6). Shifting the wavelet may delay or hasten its
offset. The scale parameter controls the degree of representation of the feature param-
eters of the signal of interest. Thus, with an appropriate training algorithm we can

optimize 7 and v so that the wavelet captures specific characteristics of a certain signal

speech will be sufficient. In Fig. 3 (top) we illustrate the optimization of the wavelet
for clean speech. Wavelet coefficients S(v, 7), extracted through Eq. (7), are converted
back to time domain s,,-. Likelihood scores are computed using the clean speech acous-
tic model As. The process is iterated, adjusting v and 7. The corresponding v=a and
T=a that result to the highest score are selected. In the case of the late reflection in
Fig. 3 (bottom), D templates are to be optimized for both scale (vi,...vp) and shift
(71,...,70). These correspond to D frames that cause smearing as depicted in Eq. (4).
We note that the effect of smearing is not constant, thus D templates are created. As
discussed in Section 2.2, we can avail of the late reflection coeflicients hr from Eq. (5)

DY) Then, late reflection observations xj are generated by con-

after estimating Tgo
volving the clean speech with hr. Next, wavelet coefficients X (v,7) are extracted
through WT (Eq. (7)). To make sure that X (v, 7) is void of speech characteristics,
thresholding is applied to X1 (v, 7). Speech energy is characterized with high coefficient

9)10)

values and thresholding sets these coefficients to zero,
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0 | X | > thresh
X | X1 | < thresh

where thresh is calculated similar to that of”) using

thresh = o+/ 2 log(L), (9)

where L is the length of the late reflection with variance o2 over the span of D. The

X =

thresholded signal is converted back to time domain Z, ., and evaluated against a
thresholded late reflection model Az, . The parameters v and 7 are adjusted and the
corresponding v={b1,...bp } and 7={f1,...0p } that results to the highest likelihood score
is selected. We note that the acoustic model A; is trained with clean speech data, while
Az, uses the synthetically generated late reflection data with thresholding applied.

3.2 Wavelet Filtering

We have expanded the multi-band wavelet domain ﬁltering7) to address the dere-
verberation problem'?. The general expression of the Wiener gain at band m!'? is

expressed as

S, m)m
S(v, T2 + 6 Xr(v,7)2
where S(v,7)2, and X (’U7T)$n are wavelet power estimates for the clean speech and

(10)

Km =

the late reflection, respectively. By using the optimized values for v and 7 discussed in
Section 3.1, we can estimate these parameters directly from observed reverberant signal

X (v, 7). Thus, the speech power estimate becomes

S(U,T)?n zX(a,a)2 (11)

m?

and the late reflection power X (v,7)?, estimate

X(bhﬁl)Z ) d=1

3 X (br, Br)?
d—1

otherwise

where d is the d-th frame template (for k:1,...,D). We note that the contribution of the

X1 (ba, Ba)?, ~ + X (ba, Ba)zn (12)
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Methods 200 msec 600 msec
(A) No processing; clean model 68.6 % 21.4 %
(B) No processing; reverb model 75.4 % 32.1 %
(C) Improved thresholding®) 77.3 % 50.6 %
(D) Improved thresholdinglo) + wavelet optimization 79.1 % 54.0 %
(E) Extrema clusteringu) 78.4 % 59.7 %
(F) Extrema clustering ") + wavelet optimization 80.8 % 62.9 %
(G) Wavelet Filtering 81.5 % 64.5 %
(H) Wavelet Filtering + wavelet optimization 83.2 % 68.6 %

0O 1 ASR results in Word Accuracy

preceding frames is also considered in Eq. (12). If the late reflection power estimate is
greater than the estimate of the speech power, then k,, for that band may be set to

zero or a small value. Due to the non-stationary characteristics of the late reflection,

a tuning parameter d,, is introduced to compensate the estimation error of Xz, (v, T)fn
Wavelet filtering is carried out by weighting the reverberant wavelet coefficients with

the Wiener gains as,

X(v,7)(enhanced) = X (0, T)m . Km.- (13)
The Wiener weighting k,, dictates the degree of suppression of the late reflection to
the observed signal. We note that the optimized v and 7 are only used in calculating
the Wiener gains. The enhanced wavelet coefficients are converted back to the time
domain through IWT. In our previous work'?, the wavelet parameters are not opti-
mized to track the clean speech and the late reflection given a reverberant observation.
The method'? relies solely in tuning of d,, to compensate the estimation error, which
is reviewed in the next subsection.
3.3 Tuning Parameter of Wiener Gain
We also introduce a multi-band parameter 6, (for band m: 1,..,M) to tune the
Wiener gain in Eq. (10). These values are adjusted and selected in relation to the
acoustic model likelihood. Thus, a set {d1, ..., om, ..., Oa1 }opt 1S Optimized through maxi-

12)

mum likelihood criterion as described in*“’. This will minimize the error estimate of the

late reflection power and further improve the Wiener gain for effective wavelet filtering.
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4. Experimental Evaluation

The training database is from the Japanese Newspaper Article Sentence (JNAS) cor-
pus. The open test set is composed of 200 utterances. ASR experiments are carried out
on the Japanese dictation task with 20K vocabulary. The language model is a standard
word trigram model. The acoustic model is a phonetically tied mixture (PTM) HMMs
with 8256 Gaussians in total. We experimented in the condition of reverberation time:
Ts0=200 msec and 600 msec. Reverberant training data are synthetically produced
with the automatically generated RIR discussed in Section 3.1. The test data were
recorded in a room with known reverberation time: T50=200 msec and 600 msec. Thus,
we used actual reverberant data for evaluation. In the experiments we used a total

D2 The wavelet used here is

number of bands M = 5 which was found to be effective
the Daubechies wavelet which was also used in'?.

In Table 1, we show the ASR performance in word accuracy for different methods.
(A) and (B) are the results when the reverberant data are not processed and matched
against clean and reverberant acoustic models, respectively. We show the result of an
approach based on improved wavelet thresholdingm) in (C). This method is an im-
provement of the simple thresholding in?. By incorporating additional information
such as VAD and statistical profile of the contaminant data (i.e. reverberation), an im-

proved thresholding is achieved. In (D), we show an improvement of the performance
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from (C) when the wavelet parameters are optimized as proposed in Section 3.1. An-
other wavelet-based dereverberation method based on extrema clustering'?) is shown
in (E). This method adopts the speech production model to detect the reverberant
coefficients. It applies wavelet extrema clustering to the linear prediction coefficients
to separate the clean and reverberant components. When the wavelet parameters are
optimized, the recognition performance is further improved in (F). The result of our
previous dereverberation approachm) is shown in (G) and the result of incorporating
wavelet optimization is given in (H). The results in Table 1 show the effect of optimizing
the wavelet parameters in the recognition performance. The consistent improvement is
observed across the different wavelet-based methods.

In Fig. 4, we show the power plot of the late reflection, estimated for both optimized
and un-optimized wavelet parameters. We also show the exact power by reproduc-
ing the exact late reflection using the measured RIR. In this plot, the power envelope
when using the optimized wavelet parameters closely resembles that of the exact late
reflection power (using measured RIR). This suggests, that the optimized wavelet is
able to track the existence of late reflection power in a reverberant signal. We note
that the reverberant signal contains speech energy as well. The estimation when using
un-optimized wavelet is not good as it cannot discriminate properly between the clean

speech and the late reflection in the reverberant signal.
5. Conclusion

We have proposed an improved dereverberation approach based on wavelet filtering.
By optimizing the wavelet parameters, the system can effectively estimate the power
of the clean speech and the late reflection in a reverberant signal. This results to an
effective Wiener gain for dereverberation. Most of the processes in the dereverbera-
tion scheme are closely linked to the acoustic model likelihood. Thus, the proposed

dereverberation method is effective in achieving robustness in the ASR application.
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