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Modified Balanced Assignment Problem
— 2 Dimensional Case —

Yuusaku KAMURAT! and MARIO NAKAMORIT?

We extend the well known balanced assignment problem to the case where
costs are expressed by m-dimensional vectors. If m = 1, the problem is the
balanced assignment problem. The formal description of our problem is as fol-
lows: given two sets A and B of vectors, find the one to one correspondence 7
between A and B such that the difference of the maximum and the minimum
components of the sum of vectors under 7 is the minimum. Such a type of
problem often occurs in combining lenses of semiconductor exposure systems.
In the present paper we propose two approximate algorithms for quasi optimal
solution with results of numerical experiments.
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1. Introduction

Suppose we have n suppliers ui,us,...,u, (to be denoted by a set A) and n cus-
tomers v1,v2,...,, (to be denoted by B). If supplier u; and customer v; are chosen,
the cost is ¢;;. We are going to determine a one to one correspondence 7 : A — B
under an appropriate objective function. This is the well known assignment problem.

Since making a one to one correspondence 7 : A — B is equivalent to permutating
the set {1,2,...,n}, we hereafter call one to one correspondence as permutation.

The assignment problem has various versions with respect to the objectives'). If we
are going to minimize the total sum of the cost Z;zl Cix(i), the problem is called the lin-
ear sum assignment problem, and there have been proposed many efficient algorithmsz).

If we are going to minimize the maximum cost of the corresponded pair, the problem
is called the bottleneck assignment pmblem3). The objective is miny maxi<i<n Cir(i) -
Also, polynomial time algorithms have been proposed for the bottleneck assignment
problem.

If we are going to minimize the difference of the maximum cost and the minimum cost
of the corresponded pair, the problem is called balanced assignment problem®. The ob-
jective is miny {maxi<i<n Cir(;) — MiN1<i<n Cin(;)} - Again, polynomial time algorithms
have been proposed for the balanced assignment problem. In the following we abbre-
viate the balanced assignment problem as BOP. In the present paper we extend the
balanced assignment problem to the case that costs are multidimensional, i.e., vectors.
Also, we assume that cost vector c¢;; is represented as a sum of the supplier vector a;
and the customer vector b;.

A formal description of our problem is as follows. Let A and B be sets of m dimen-
sional vectors. We denote each element of A by a; = (agl),az(?), .. ,,agm)) and each
clement of B by b; = (b, b ... 5™,

We assume that agl), al@), ey al(.m) and bgl), bl(.2), . ,bgm) are nonnegative.
We define sum of vectors a; + b; as

a; + bj = (az(.l) + b§.1>7 aEZ) + b§2)’ ey agm) + b§m>)

t1oooooo Let us consider the following problem: find a permutaion 7 of a set {1,2,...,n} such
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that
T () = max { bgrk())} — miin {agk) b;k(z }
is the minimum.

Such a problem appears when we combine lenses for a semiconductor manufacturing
system. This system includes many lenses (about 30) for exposing the circuit pattern on
a silicon wafer. Although, these lenses are manufactured very precisely, each individual
has its own error expressed by a vector. This error vector is high dimensional (more
than 300), and it is required to minimize the maximum component of the combined er-
ror vector. In the present paper we simplify the problem such that the system includes
only 2 lenses. Thus, we have n individuals for lens position A and n individuals for
lens position B. The above vectors a; and b; are the error vector of the individual ¢ for
position A and that of the individual j for position B. The sum vector a; + b; is the
combined error. In our former research®,®.” we considered the problem of making n
sets of lenses such that the worst combined error is the minimum. The above one to
one correspondence 7 stands for the combination.

It is sometimes required to minimize the dispersion of the errors. Thus in the present
paper we are going to extend the balanced assignment problem to multidimensional

case.
2. Formulation as an integer programming problem

Let Cij — ai—i—bj = (agl) -‘y—bg.l), G,EQ) +b§2), o, a
to the following 0-1 integer programming problem. Here M is a sufficient big number.
Problem 1

Minimize f =u — 1

{m) +b§m)). Our problem is formulated

subject to

o) (i,j=1,2,...,m

k=1,2,...,m),

Ti; <u
l S cgj)a:ij + M(l — .Tij)
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1>0, u>0,

z;; € {0,1} (i, =1,2,...,n).
Unlike the classical assignment problem (scalar case), no polynomial time algorithm

of obtaining the integer solution of this problem, and unfortunately, the relaxation
method is not effective for this type of integer programming problems®. So instead
of trying to solve Problem 1 directly, we propose approximate algorithms give a quasi

optimal solution.
3. Property of the problem

Before describing our algorithm for Problem 1, let us consider the property of our
problem.

At first, let us consider the case that m = 1, i.e., a; and b; are scalars. It is trivial
that the total sum of Cix(i) does not depend on 7r i.e.,

Zciw(i) = Zaz + Zbﬂ(z) = Zal + Zb = const.

i=1
Next, let us consider the case that m = 2. In thls case again the total sum of !

and that of c( ) do not depend on w. We denote = Z"

1
n

7,71'(7,)

(1) —+ b(l)) by w1 and
:L 1(a; al? + b(2)) by p2. For general case of m, the situation is unchanged.

Thus, we have the following Property 1.

Property 1 For each k, the total sum of cgf) does not depend on the selection of

permutation 7 and it is constant. O

Hereafter, we consider only the case that m = 2, and also assume that p1 = po.
4. Algorithm for the scalar balanced assignment problem

Since our algorithm for the 2 dimensional balanced assignment problem is based on

the scalar BOP, we restate the algorithm shown in®.

Algorithm_BOP
C = (¢ij)ij=1,2,...,n
(4,7) : the 4, j element of C.

: the cost matrix for an n x n assignment problem.

v1 < wvg < --- < wg : the values appearing in C.
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C(i,7) == {(i,J) v < cij S wu}
q is the number that satisfies
vg = max{max(min ¢;; ), max(min ¢;;)}.
Step 0 (Initialization) S Y
Let | := 1,u := q,T := co. T is the minimum difference of the maximum value and
minimum one so far.

If the edges in C(I,u) can make a complete matching, then go to Step 1 . Otherwise
go to Step 2 .

Step 1 ( C(l,u) contains an assignment)
Remove all ¢;; that equal to v; from C(,w). After this operation C(l,u) changes to
C(l+1,u).
Check whether a complete matching exists or not.
(i) If a complete matching exits.
l+1=u = T:=0,1":=u" := u and stop.
l+1#u = [: =141 and go to Step 2.
(ii) If a complete matching does not exist.

vy — <T = T:=v, —v,l" :=1,u" :=u. Thenl:=1+ 1 and go to Step 2.

Step 2 ( C(l,u) does not contain an assignment,)

If u = k, stop.

u# k = add all ¢;; that’s weight are v,q1 to C(l,u). This is C(l,u 4+ 1). Check
C(l,u + 1) contains the complete matching. Let u:=u + 1.
(i) If a complete matching exits, go to Step 1.

(ii) If a complete matching does not exist, go to Step 2.

The complexity of checking a complete matching exists is O(n2'5)9), and the above
Step 1 is iterated n? times in the worst case, so it is easy to see that the total time
complexity of Algorithm BOP is O(n*%). Furthermore, there has been proposed an
O(n*) algorithm®.

5. Algorithm for 2 dimensional balanced assignment problem

In this section we propose two algorithms. Both use Algorithm BOP’s searching
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method. That is, narrow step by step the range of edges’ weight that edges in it are
allowed to use to construct a complete matching between A and B.

In Algorithm 1 we take bigger element for the representation in each 2-dimensional
vector, and deal with the scalar case balanced assignment problem.

In Algorithm 2 we transform each element of the vector to normal form and calculate
the decination from the mean value. Then we solve the problem to minimize the total
decinations.

5.1 Algorithm 1

First, we extend Algorithm_BOP to 2-dimensional vector case simple way. For each

(1) (2

vector a; = (a; ', a;’), we take max{ail), az(.Q)} to decide the representative value. We

max bI_nax
7

describe it a; is also defined in the same way. Namely

;"™ = max{az(.l), a£2>}, b = max{bg.D, b§2>}.

max

Then let ¢;; = a; + b;?“ax and we solve the scalar case’s balanced optimization

problem that edges’ weight are given by c¢;; .

Algorithm 1

(2
For ai"** = max{ag ),ag s b =

max{b\"”,b}; (4,5 = 1,2,...,n), define the
scalar c¢;; as follows: ci; = a;"** + b;"*™.

C = (¢ij)i,j=1,2,...,n : the cost matrix for an n X n assignment problem.

v1 < w2 < --- < v : the values appearing in C.

C(l,u) : the set of ¢;; satisfy vy < ¢;; < vy.
Step 0 (Initialization)

Let l:=1,u:=1,T := 0.

Step 1 (Set edges’ weight w;;)
Cij < UL OF Cjj > Uy = Wij 1= OQ.

v < Cij < Uy = Wij 1= Cij.

Solve the linear sum assignment problem for w;;. We write the objective function g;

n
g1 = E WijTij-

i=1
If g1 # oo, then go to Step 2. Otherwise go to Step 3.

and it is defined as follows :
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Step 2 ( C(l,u) contains a complete matching)
Define the permutation 7(¢) that 7 (i) := j if z;; = 1.
(i) Case | = u.
Let T :=0,1" := u* := u and stop.
(ii) Case I # u.
If T > Ty(m) then set T := To(m), 7" :=m, " :=[,u" :=u. Set | :=1+1 and go to
Step 1.

Step 3 ( C(l,u) does not contain a complete matching)
(i) If w = k then stop.
(ii) If w # k, then set u := u + 1 and go to Step 1.

When Algorithm 1 terminate, 7 gives the solution of Problem 1.

From Property 1, the total value of n weights is constant. We can say that the opti-
mal matching is to make each weight as near to the mean value as possible. So if the
matching minimizes the maximum value, we expect that it also makes the minimum
one maximum. The idea of Algorithm 1 depends on this expectation.

However there is an obvious defect in the matching constructed by Algorithm 1. When

a® @

we take aj"** from (a;’,a;”’), only selected one has relation to make a maching. For

example, let 7(ig) = jo, the representations, aj,™* = a§(1)> and b3 = b;?. It happens

(2 (2) (1) (1) . .
the case that [(a; " +b;") — u| > [(a;,” +b;.") — p|. Especially it occurs Corq or/and
Cory is negative cases. Here Cor, is the correlation coefficient of al(.1> and a52), similary
Cory is that of b{") and b{>).

5.2 Algorithm 2

In Algorithm 1, we have taken only one component from a; = (aﬁl),agm) and

max

b, = (b;l),bf)) to make the representations a;"** and b7"** respectively. Algorithm
2 is an improved method on this weakness.

Define the mean value of agl), (1 =1,2,...,n) as uq, and the variance of them 021.
Now we normalize agl) and denote by &Z(-l) :
1
at) = 0~ oy
Oa,

(1) is converted to the probablistic variable that the mean and

i

By this normalization a
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the variance is 0 and 1, respectively. Similary we define pia,, fio, ; hos; Tas,s Oby, by and

dl(-z), Bgl),l;f) . Then agl) + b;l) = [la; + Ma, is equivalent to &Z(-l) + 5;1) = 0. It is also
(2) (2)

for a; +bj .

So now we can consider the mapping between normlized vectors (dz(.l)ﬁf)) and

(E;U, 5§.2)), instead of between (al(l),agz)) and (b;l)7 b;2>). Then our problem is changed

{1,2,...,n} — {1,2,...,n} that the all 2n values
ELEI) + I;Erl()i), dl@ + 5572()1) are as near to origin as possible (Fig. 2).

to find the permutation =

For the problem between (&El), d?)) and (553()1.), l;frz()z)), we consider an assignment prob-

lem whose objective function is
(1) |, 7(1 ~(2) | 7(2
g2 =Y _{(@” +80)* + @ +53,)%.

i=1
The closer each agl) + bfrl()l.> and az(.Q) + bf()i) are fiq; + o, and fia, + py, respectively, the
nearer &51) + l;frl()i) and d§2) + Ef()l) are 0. So we can say that the permutation minimizes
g2 gives the approximate solution for our problem. This problem is the linear sum

assignment problem.

~(1 ~(2
@, a)

~(1) =(2
(0/7(;1),@1(-1))

(b(_l) B(_Q))

Jo ?7Jo

(b, 557)°

17701

AONEAC)

Fig 2: Find a permutation m that the center of (cigl), &52)) and ( ()2 O (2

) as near to

origin as possible.
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Problem 2
Minimize
g2 =20 4@ +857)? + (@ +b57)}ay

subject to

wy=1 (G=12...,n),
=1

n
inj =1 (i=12,...,n),
j=1
Ti; € {0, 1}.
It is obvious that g2 gives the total sum of difference’s squares from 0. Threfore for

each permutation 7 introduced by the solution of Problem 2, we check T%(7) and adopt

7" minimizes T>(7) as the solution of Problem 1.

Algorithm 2
Gy = (@Y + )2 + (@ + )2,
C = (€ij)i,j=1,2,...n : the cost matrix for an n X n assignment problem.
v1 < vy < --+ < v : the values appearing in C.
C(l,u) : the set of &; satisfy v; < &j < vy.
Step 0 (Initialization)
Let l:=1,u:=1,T := 0.

Step 1 (Solve the linear sum assignment problem)
Cij < UL OF Cijj > Uy = W;5 1= O0.
v < CGij S vy = Wij 1= Cij.
Solve the linear sum assignment problem for w;;. Then if the objective function g2 # oo,

go to Step 2. Otherwise go to Step 3.

Step 2 ( C(l,u) contains a complete matching)
Define the permutation 7 (z) that 7 (i) := j if 2;; = 1.
(i) Case | = u.
Let T := 0,0 := u* := u and stop.
(ii) Case I # u.
If T > T, then set T :=To, 7" :=m, 1" :=1,u” :=wu. Set [ := [+ 1 and go to Step 1.
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Step 3 ( C(l,u) does not contain a complete matching)
(i) If w = k then stop.
(i) If w # k, then set u := u + 1 and go to Step 1.

The linear sum assignment problem is solved O(n3) time complexity in the worst
case'?. In Algorithm 1 and Algorithm 2, it is solved at most n? times. Initialization
and the checking process’s time is constant. So we conclude the time complexity of
Algorithm 1 and 2 is O(n®).

6. Numerical experiments

For vectors a; = (a§1>,a§2)) and b; = (b;”,a;z)), (4,5 = 1,2,...,n), let
(1)

a; ,aEQ), b;l), a§2) follow the normal distribution that the mean is 10 and the variance
1, respectively.

We show the results of numerical experiments for n = 100. Each Cor, and Cory,
we make two different data sets. For the same data set, we solved by Algorithm 1 and
Algorithm 2. Table 1 and 2 show the results for n = 100 solved by Algorithm 1 and
Algorithm 2, respectively.

For all data sets, Algorithm 2 gives better results than that of Algorithm 1 on the
whole. However when the sign of Cor, and Cory, is same, Algorithm 1 shows a good
performance. So taking the overhead of creating objective function g2 and the numer-
ical error into consideration, we can say that the after checking the sign of C'or, and

Cory, then decide which algorithms use.
7. Conclusions

In this paper, we considered a permutation that minimizes the difference of the max-
imum value and the minimum one in 2n sums made by the permuation. We first
formulated this problem as an integer programming problem. Then we proposed two
O(n®) approximate algorithms for the problem based on Algorithm,BOP‘l). And we
presented the results from computational experiments using our two algorithms.

Create the exact solution in some way and compare the quasi optimal solution by our

proposed algorithms to it is left to further research.
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Table 1 : n = 100, Algorithm 1

Vol.2010-MPS-79 No.2

Data 1 Data 2
Corg Cory Max Min diff Max Min diff
-1.0 -1.0 20.6277  19.3723  1.2554 | 20.4162 19.5838  0.8324
-1.0 -0.5 21.1062 18.5528 2.5534 21.1474 18.4862 2.6612
-1.0 0.0 21.6211 17.4032 4.2179 21.4141 17.5529 3.8612
-1.0 0.5 21.5460  16.6397  4.9063 | 21.9223  17.3766  4.5457
-1.0 1.0 22.5844 15.7712 6.8132 21.9210 14.3053 7.6157
-0.5 -0.5 20.8955  17.6405  3.2550 | 20.9763  18.6864  2.2899
-0.5 0.0 21.5077  17.3642  4.1435 | 20.8298  18.2061  2.6237
-0.5 0.5 21.7811 16.6792  5.1019 | 21.0596  17.2530  3.8066
-0.5 1.0 22.0696 16.8683  5.2013 | 21.9174 17.0144  4.9030
0.0 0.0 21.0863  18.6364  2.4499 | 20.9735 17.6820  3.2915
0.0 0.5 21.1613 18.3384 2.8229 21.5932 18.8291 2.7641
0.0 1.0 20.9331 17.1424  3.7907 | 22.5109 17.1620  5.3489
0.5 0.5 20.9191 19.0730  1.8461 | 21.2065  18.4932  2.7133
0.5 1.0 20.8593  17.6928  3.1665 | 21.2709 17.3914  3.8795
1.0 1.0 20.3449  18.9761 1.3688 | 20.3802 19.6933  0.6869
Table 2 : n = 100, Algorithm 2
Data 1 Data 2
Corg Cory Max Min diff Max Min diff
-1.0 -1.0 20.6277  19.3723  1.2554 | 20.4162 19.5838  0.8324
-1.0 -0.5 21.1062 18.6009 2.5053 21.3284 18.8522 2.4762
-1.0 0.0 21.6211 18.1571 3.4640 21.5892 17.4137 4.1755
-1.0 0.5 21.6832  17.9907  3.6925 | 22.1686  17.5900 4.5786
-1.0 1.0 23.1470 17.2507 5.8963 23.1036 16.5707 6.5329
-0.5 -0.5 21.1391 18.1347  3.0044 | 21.1575 19.1685  1.9890
-0.5 0.0 21.7274  17.8041  3.9233 | 20.9602  18.4671  2.4931
-0.5 0.5 22.3257 18.2207 4.1050 21.3936 17.8851 3.5085
-0.5 1.0 22.3949  17.8192  4.5757 | 22.0393  18.0347  4.0046
0.0 0.0 21.2206  18.8002  2.4204 | 21.0204 18.6712  2.3492
0.0 0.5 21.1755 18.8423 2.3332 21.5932 19.4143 2.1789
0.0 1.0 21.6214  18.0310  3.5904 | 22.5547  17.9871  4.5676
0.5 0.5 20.9677  19.3208  1.6469 | 21.2763  19.2066  2.0697
0.5 1.0 21.0103  18.4634  2.5469 | 21.3980 17.8165  3.5815
1.0 1.0 20.3449  18.9761 1.3688 | 20.3802 19.6933  0.6869
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