
情報処理学会研究報告
IPSJ SIG Technical Report

変形均衡割当て問題
— 2次元ベクトルの場合 —

嘉 村 友 作†1 中森 眞理雄†1

辺の重みが m 次元ベクトルの場合の均衡割当て問題を考える．n 個のベクトルを
元とする 2つの集合を A,B とする．A の元と B の元とを対応づける 1 : 1 対応の中
で，対応づけられるベクトルの成分の和の最大値と最小値の差が最小になる 1 : 1 対
応 π を見つける問題を考える．このような問題は，半導体露光装置の最適なレンズ組
合せ法を考えるときに生じる．2 つの近似アルゴリズムを提案し，提案するアルゴリ
ズムによる数値実験の結果を示す．

Modified Balanced Assignment Problem
— 2 Dimensional Case —

Yuusaku Kamura†1 and Mario Nakamori†1

We extend the well known balanced assignment problem to the case where
costs are expressed by m-dimensional vectors. If m = 1, the problem is the
balanced assignment problem. The formal description of our problem is as fol-
lows: given two sets A and B of vectors, find the one to one correspondence π
between A and B such that the difference of the maximum and the minimum
components of the sum of vectors under π is the minimum. Such a type of
problem often occurs in combining lenses of semiconductor exposure systems.
In the present paper we propose two approximate algorithms for quasi optimal
solution with results of numerical experiments.

Keywords: Assignment problem, Balanced assignment problem, Optimal combination

†1 東京農工大学
Tokyo A&T University

1. Introduction

Suppose we have n suppliers u1, u2, . . . , un (to be denoted by a set A) and n cus-

tomers v1, v2, . . . , vn (to be denoted by B). If supplier ui and customer vj are chosen,

the cost is cij . We are going to determine a one to one correspondence π : A → B

under an appropriate objective function. This is the well known assignment problem.

Since making a one to one correspondence π : A → B is equivalent to permutating

the set {1, 2, . . . , n}, we hereafter call one to one correspondence as permutation.

The assignment problem has various versions with respect to the objectives1). If we

are going to minimize the total sum of the cost
∑n

i=1
ciπ(i), the problem is called the lin-

ear sum assignment problem, and there have been proposed many efficient algorithms2).

If we are going to minimize the maximum cost of the corresponded pair, the problem

is called the bottleneck assignment problem3). The objective is minπ max1≤i≤n ciπ(i) .

Also, polynomial time algorithms have been proposed for the bottleneck assignment

problem.

If we are going to minimize the difference of the maximum cost and the minimum cost

of the corresponded pair, the problem is called balanced assignment problem4). The ob-

jective is minπ{max1≤i≤n ciπ(i) −min1≤i≤n ciπ(i)} . Again, polynomial time algorithms

have been proposed for the balanced assignment problem. In the following we abbre-

viate the balanced assignment problem as BOP. In the present paper we extend the

balanced assignment problem to the case that costs are multidimensional, i.e., vectors.

Also, we assume that cost vector cij is represented as a sum of the supplier vector ai

and the customer vector bj .

A formal description of our problem is as follows. Let A and B be sets of m dimen-

sional vectors. We denote each element of A by ai = (a
(1)
i , a

(2)
i , . . . , a

(m)
i ) and each

element of B by bi = (b
(1)
i , b

(2)
i , . . . , b

(m)
i ).

We assume that a
(1)
i , a

(2)
i , . . . , a

(m)
i and b

(1)
i , b

(2)
i , . . . , b

(m)
i are nonnegative.

We define sum of vectors ai + bj as

ai + bj = (a
(1)
i + b

(1)
j , a

(2)
i + b

(2)
j , . . . , a

(m)
i + b

(m)
j ).

Let us consider the following problem: find a permutaion π of a set {1, 2, . . . , n} such

1 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.2
2010/7/12



情報処理学会研究報告
IPSJ SIG Technical Report

that

Tm(π) = max
i

{
a
(k)
i + b

(k)

π(i)

}
−min

i

{
a
(k)
i + b

(k)

π(i)

}
is the minimum.

Such a problem appears when we combine lenses for a semiconductor manufacturing

system. This system includes many lenses (about 30) for exposing the circuit pattern on

a silicon wafer. Although, these lenses are manufactured very precisely, each individual

has its own error expressed by a vector. This error vector is high dimensional (more

than 300), and it is required to minimize the maximum component of the combined er-

ror vector. In the present paper we simplify the problem such that the system includes

only 2 lenses. Thus, we have n individuals for lens position A and n individuals for

lens position B. The above vectors ai and bj are the error vector of the individual i for

position A and that of the individual j for position B. The sum vector ai + bj is the

combined error. In our former research5),6),7) we considered the problem of making n

sets of lenses such that the worst combined error is the minimum. The above one to

one correspondence π stands for the combination.

It is sometimes required to minimize the dispersion of the errors. Thus in the present

paper we are going to extend the balanced assignment problem to multidimensional

case.

2. Formulation as an integer programming problem

Let cij = ai+bj = (a
(1)
i +b

(1)
j , a

(2)
i +b

(2)
j , . . . , a

(m)
i +b

(m)
j ). Our problem is formulated

to the following 0-1 integer programming problem. Here M is a sufficient big number.

Problem 1

Minimize f = u− l

subject to

c
(k)
ij xij ≤ u (i, j = 1, 2, . . . , n;

l ≤ c
(k)
ij xij +M(1− xij) k = 1, 2, . . . ,m),

n∑
i=1

xij = 1 (j = 1, 2, . . . , n),

n∑
j=1

xij = 1 (i = 1, 2, . . . , n),

l ≥ 0, u ≥ 0,

xij ∈ {0, 1} (i, j = 1, 2, . . . , n).
Unlike the classical assignment problem (scalar case), no polynomial time algorithm

of obtaining the integer solution of this problem, and unfortunately, the relaxation

method is not effective for this type of integer programming problems8). So instead

of trying to solve Problem 1 directly, we propose approximate algorithms give a quasi

optimal solution.

3. Property of the problem

Before describing our algorithm for Problem 1, let us consider the property of our

problem.

At first, let us consider the case that m = 1, i.e., ai and bj are scalars. It is trivial

that the total sum of ciπ(i) does not depend on π, i.e.,
n∑

i=1

ciπ(i) =

n∑
i=1

ai +

n∑
i=1

bπ(i) =

n∑
i=1

ai +

n∑
j=1

bj = const .

Next, let us consider the case that m = 2. In this case again the total sum of c
(1)

iπ(i)

and that of c
(2)

iπ(i)
do not depend on π. We denote 1

n

∑n

i=1
(a

(1)
i + b

(1)
i ) by µ1 and

1
n

∑n

i=1
(a

(2)
i + b

(2)
i ) by µ2. For general case of m, the situation is unchanged.

Thus, we have the following Property 1.

Property 1 For each k, the total sum of c
(k)
ij does not depend on the selection of

permutation π and it is constant. �
Hereafter, we consider only the case that m = 2, and also assume that µ1 = µ2.

4. Algorithm for the scalar balanced assignment problem

Since our algorithm for the 2 dimensional balanced assignment problem is based on

the scalar BOP, we restate the algorithm shown in4).

Algorithm BOP

C = (cij)i,j=1,2,...,n : the cost matrix for an n× n assignment problem.

(i, j) : the i, j element of C.

v1 < v2 < · · · < vk : the values appearing in C.

2 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.2
2010/7/12



情報処理学会研究報告
IPSJ SIG Technical Report

C(i, j) := {(i, j) : vl ≤ cij ≤ vu}.
q is the number that satisfies

vq = max{max
j

(min
i

cij),max
i

(min
j

cij)}.
Step 0 (Initialization)

Let l := 1, u := q, T := ∞. T is the minimum difference of the maximum value and

minimum one so far.

If the edges in C(l, u) can make a complete matching, then go to Step 1 . Otherwise

go to Step 2 .

Step 1 ( C(l, u) contains an assignment)

Remove all cij that equal to vl from C(l, u). After this operation C(l, u) changes to

C(l + 1, u).

Check whether a complete matching exists or not.

(i) If a complete matching exits.

l + 1 = u ⇒ T := 0, l∗ := u∗ := u and stop.

l + 1 ̸= u ⇒ l := l + 1 and go to Step 2.

(ii) If a complete matching does not exist.

vu − vl < T ⇒ T := vu − vl, l
∗ := l, u∗ := u. Then l := l + 1 and go to Step 2.

Step 2 ( C(l, u) does not contain an assignment)

If u = k, stop.

u ̸= k ⇒ add all cij that’s weight are vu+1 to C(l, u). This is C(l, u + 1). Check

C(l, u+ 1) contains the complete matching. Let u := u+ 1.

(i) If a complete matching exits, go to Step 1.

(ii) If a complete matching does not exist, go to Step 2.

The complexity of checking a complete matching exists is O(n2.5)9), and the above

Step 1 is iterated n2 times in the worst case, so it is easy to see that the total time

complexity of Algorithm BOP is O(n4.5). Furthermore, there has been proposed an

O(n4) algorithm4).

5. Algorithm for 2 dimensional balanced assignment problem

In this section we propose two algorithms. Both use Algorithm BOP’s searching

method. That is, narrow step by step the range of edges’ weight that edges in it are

allowed to use to construct a complete matching between A and B.

In Algorithm 1 we take bigger element for the representation in each 2-dimensional

vector, and deal with the scalar case balanced assignment problem.

In Algorithm 2 we transform each element of the vector to normal form and calculate

the decination from the mean value. Then we solve the problem to minimize the total

decinations.

5.1 Algorithm 1

First, we extend Algorithm BOP to 2-dimensional vector case simple way. For each

vector ai = (a
(1)
i , a

(2)
i ), we take max{a(1)

i , a
(2)
i } to decide the representative value. We

describe it amax
i . bmax

j is also defined in the same way. Namely

amax
i = max{a(1)

i , a
(2)
i }, bmax

j = max{b(1)j , b
(2)
j }.

Then let cij = amax
i + bmax

j and we solve the scalar case’s balanced optimization

problem that edges’ weight are given by cij .

Algorithm 1

For amax
i = max{a(1)

i , a
(2)
i }, bmax

j = max{b(1)j , b
(2)
j }; (i, j = 1, 2, . . . , n), define the

scalar cij as follows: cij = amax
i + bmax

j .

C = (cij)i,j=1,2,...,n : the cost matrix for an n× n assignment problem.

v1 < v2 < · · · < vk : the values appearing in C.

C(l, u) : the set of cij satisfy vl ≤ cij ≤ vu.

Step 0 (Initialization)

Let l := 1, u := 1, T := ∞.

Step 1 (Set edges’ weight wij)

cij < vl or cij > vu ⇒ wij := ∞.

vl ≤ cij ≤ vu ⇒ wij := cij .

Solve the linear sum assignment problem for wij . We write the objective function g1

and it is defined as follows :

g1 =

n∑
i=1

wijxij .

If g1 ̸= ∞, then go to Step 2. Otherwise go to Step 3.

3 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.2
2010/7/12



情報処理学会研究報告
IPSJ SIG Technical Report

Step 2 ( C(l, u) contains a complete matching)

Define the permutation π(i) that π(i) := j if xij = 1.

(i) Case l = u.

Let T := 0, l∗ := u∗ := u and stop.

(ii) Case l ̸= u.

If T > T2(π) then set T := T2(π), π
∗ := π, l∗ := l, u∗ := u. Set l := l + 1 and go to

Step 1.

Step 3 ( C(l, u) does not contain a complete matching)

(i) If u = k then stop.

(ii) If u ̸= k, then set u := u+ 1 and go to Step 1.

When Algorithm 1 terminate, π∗ gives the solution of Problem 1.

From Property 1, the total value of n weights is constant. We can say that the opti-

mal matching is to make each weight as near to the mean value as possible. So if the

matching minimizes the maximum value, we expect that it also makes the minimum

one maximum. The idea of Algorithm 1 depends on this expectation.

However there is an obvious defect in the matching constructed by Algorithm 1. When

we take amax
i from (a

(1)
i , a

(2)
i ), only selected one has relation to make a maching. For

example, let π(i0) = j0, the representations, amax
i0 = a

(1)
i0

and bmax
j0 = b

(1)
j0

. It happens

the case that |(a(2)
i0

+ b
(2)
j0

) − µ| > |(a(1)
i0

+ b
(1)
j0

) − µ|. Especially it occurs Cora or/and

Corb is negative cases. Here Cora is the correlation coefficient of a
(1)
i and a

(2)
i , similary

Corb is that of b
(1)
j and b

(2)
j .

5.2 Algorithm 2

In Algorithm 1, we have taken only one component from ai = (a
(1)
i , a

(2)
i ) and

bj = (b
(1)
j , b

(2)
j ) to make the representations amax

i and bmax
j respectively. Algorithm

2 is an improved method on this weakness.

Define the mean value of a
(1)
i , (i = 1, 2, . . . , n) as µa1 and the variance of them σ2

a1
.

Now we normalize a
(1)
i and denote by ã

(1)
i :

ã
(1)
i =

a
(1)
i − µa1

σa1

.

By this normalization a
(1)
i is converted to the probablistic variable that the mean and

the variance is 0 and 1, respectively. Similary we define µa2 , µb1 , µb2 ; σa2 , σb1 , σb2 and

ã
(2)
i , b̃

(1)
j , b̃

(2)
j . Then a

(1)
i + b

(1)
j = µa1 + µa2 is equivalent to ã

(1)
i + b̃

(1)
j = 0. It is also

for a
(2)
i + b

(2)
j .

So now we can consider the mapping between normlized vectors (ã
(1)
i , ã

(2)
i ) and

(b̃
(1)
j , b̃

(2)
j ), instead of between (a

(1)
i , a

(2)
i ) and (b

(1)
j , b

(2)
j ). Then our problem is changed

to find the permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} that the all 2n values

ã
(1)
i + b̃

(1)

π(i), ã
(2)
i + b̃

(2)

π(i) are as near to origin as possible (Fig. 2).

For the problem between (ã
(1)
i , ã

(2)
i ) and (b̃

(1)

π(i)
, b̃

(2)

π(i)
), we consider an assignment prob-

lem whose objective function is

g2 =

n∑
i=1

{(ã(1)
i + b̃

(1)

π(i)
)2 + (ã

(2)
i + b̃

(2)

π(i)
)2}.

The closer each a
(1)
i + b

(1)

π(i)
and a

(2)
i + b

(2)

π(i)
are µa1 +µb1 and µa2 +µb2 respectively, the

nearer ã
(1)
i + b̃

(1)

π(i)
and ã

(2)
i + b̃

(2)

π(i)
are 0. So we can say that the permutation minimizes

g2 gives the approximate solution for our problem. This problem is the linear sum

assignment problem.

x̃

ỹ

(ã
(1)
i0

, ã
(2)
i0

)

(b̃
(1)
j0

, b̃
(2)
j0

)

(ã
(1)
i1

, ã
(2)
i1

)

(b̃
(1)
j1

, b̃
(2)
j1

)

O

Fig 2: Find a permutation π that the center of (ã
(1)
i , ã

(2)
i ) and (b̃

(1)

π(i)
, b̃

(2)

π(i)
) as near to

origin as possible.

4 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.2
2010/7/12



情報処理学会研究報告
IPSJ SIG Technical Report

Problem 2

Minimize

g2 =
∑n

i,j=1
{(ã(1)

i + b̃
(1)
j )2 + (ã

(2)
i + b̃

(2)
j )2}xij

subject to
n∑

i=1

xij = 1 (j = 1, 2, . . . , n),

n∑
j=1

xij = 1 (i = 1, 2, . . . , n),

xij ∈ {0, 1}.

It is obvious that g2 gives the total sum of difference’s squares from 0. Threfore for

each permutation π introduced by the solution of Problem 2, we check T2(π) and adopt

π∗ minimizes T2(π) as the solution of Problem 1.

Algorithm 2

c̃ij := (ã
(1)
i + b̃

(1)
j )2 + (ã

(2)
i + b̃

(2)
j )2.

C̃ = (c̃ij)i,j=1,2,...,n : the cost matrix for an n× n assignment problem.

v1 < v2 < · · · < vk : the values appearing in C̃.

C̃(l, u) : the set of c̃ij satisfy vl ≤ c̃ij ≤ vu.

Step 0 (Initialization)

Let l := 1, u := 1, T := ∞.

Step 1 (Solve the linear sum assignment problem)

c̃ij < vl or c̃ij > vu ⇒ wij := ∞.

vl ≤ c̃ij ≤ vu ⇒ wij := c̃ij .

Solve the linear sum assignment problem for wij . Then if the objective function g2 ̸= ∞,

go to Step 2. Otherwise go to Step 3.

Step 2 ( C̃(l, u) contains a complete matching)

Define the permutation π(i) that π(i) := j if xij = 1.

(i) Case l = u.

Let T := 0, l∗ := u∗ := u and stop.

(ii) Case l ̸= u.

If T > T2 then set T := T2, π
∗ := π, l∗ := l, u∗ := u. Set l := l + 1 and go to Step 1.

Step 3 ( C̃(l, u) does not contain a complete matching)

(i) If u = k then stop.

(ii) If u ̸= k, then set u := u+ 1 and go to Step 1.

The linear sum assignment problem is solved O(n3) time complexity in the worst

case10). In Algorithm 1 and Algorithm 2, it is solved at most n2 times. Initialization

and the checking process’s time is constant. So we conclude the time complexity of

Algorithm 1 and 2 is O(n5).

6. Numerical experiments

For vectors ai = (a
(1)
i , a

(2)
i ) and bj = (b

(1)
j , a

(2)
j ), (i, j = 1, 2, . . . , n), let

a
(1)
i , a

(2)
i , b

(1)
j , a

(2)
j follow the normal distribution that the mean is 10 and the variance

1, respectively.

We show the results of numerical experiments for n = 100. Each Cora and Corb,

we make two different data sets. For the same data set, we solved by Algorithm 1 and

Algorithm 2. Table 1 and 2 show the results for n = 100 solved by Algorithm 1 and

Algorithm 2, respectively.

For all data sets, Algorithm 2 gives better results than that of Algorithm 1 on the

whole. However when the sign of Cora and Corb is same, Algorithm 1 shows a good

performance. So taking the overhead of creating objective function g2 and the numer-

ical error into consideration, we can say that the after checking the sign of Cora and

Corb, then decide which algorithms use.

7. Conclusions

In this paper, we considered a permutation that minimizes the difference of the max-

imum value and the minimum one in 2n sums made by the permuation. We first

formulated this problem as an integer programming problem. Then we proposed two

O(n5) approximate algorithms for the problem based on Algorithm BOP4). And we

presented the results from computational experiments using our two algorithms.

Create the exact solution in some way and compare the quasi optimal solution by our

proposed algorithms to it is left to further research.

5 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.2
2010/7/12



情報処理学会研究報告
IPSJ SIG Technical Report

参 考 文 献

1) D.W.Pentico, Assignment problems: A golden anniversary survey, European J.

Oper. Res. 176, pp.774-793, 2007.

2) D.-Z.Du and P.M.Pardalos(Eds.), Handbook of Combinatorial Optimization,

Kluwer, 1999.

3) H.N.Gabow and R.E.Tarjan, Algorithms for Two Bottleneck Optimization Prob-

lems, J. of Algorithms, Vol.9, pp.411-417, 1988.

4) S.Martello,W.R.Pulleyblank,P.Toth and D.de Werra, Balanced Optimization Prob-

lems, Operations Reserch letters Vol.3, No.5, pp.275-278, 1984.

5) Y.Kamura and M.Nakamori, Combining Imperfect Components to Minimize the

System’s Error, Proc. PDPTA’01, pp.1277-1283, 2001.

6) Y.Kamura, M.Nakamori and Y.Shinano, Combining Imperfect Components (II) —

The Case of Multidimensional Error, Proc. PDPTA’02, pp.228-232, 2002.

7) Y.Kamura and M.Nakamori, Combining Imperfect Components (III) — Minimax

Optimization of Multidimensional Cost Error, Proc. PDPTA’04, pp.311-316, 2004.

8) M.Mori and T.Matsui, Operations Research(in Japanese), Asakura publishing,

2004.

9) J.E.Hopcroft and R.M.Karp, An n5/2 Algorithm for Maximum Matchings in Bi-

partite Graphs, SIAM J. Comput. Vol.2,No.4,pp.225-231, 1973.

10) R.E.Burkard, Selected topics on assignment problems, Discrete App. Math., 123,

pp.257-302, 2002.

Table 1 : n = 100, Algorithm 1

Data 1 Data 2

Cora Corb Max Min diff Max Min diff

-1.0 -1.0 20.6277 19.3723 1.2554 20.4162 19.5838 0.8324

-1.0 -0.5 21.1062 18.5528 2.5534 21.1474 18.4862 2.6612

-1.0 0.0 21.6211 17.4032 4.2179 21.4141 17.5529 3.8612

-1.0 0.5 21.5460 16.6397 4.9063 21.9223 17.3766 4.5457

-1.0 1.0 22.5844 15.7712 6.8132 21.9210 14.3053 7.6157

-0.5 -0.5 20.8955 17.6405 3.2550 20.9763 18.6864 2.2899

-0.5 0.0 21.5077 17.3642 4.1435 20.8298 18.2061 2.6237

-0.5 0.5 21.7811 16.6792 5.1019 21.0596 17.2530 3.8066

-0.5 1.0 22.0696 16.8683 5.2013 21.9174 17.0144 4.9030

0.0 0.0 21.0863 18.6364 2.4499 20.9735 17.6820 3.2915

0.0 0.5 21.1613 18.3384 2.8229 21.5932 18.8291 2.7641

0.0 1.0 20.9331 17.1424 3.7907 22.5109 17.1620 5.3489

0.5 0.5 20.9191 19.0730 1.8461 21.2065 18.4932 2.7133

0.5 1.0 20.8593 17.6928 3.1665 21.2709 17.3914 3.8795

1.0 1.0 20.3449 18.9761 1.3688 20.3802 19.6933 0.6869

Table 2 : n = 100, Algorithm 2

Data 1 Data 2

Cora Corb Max Min diff Max Min diff

-1.0 -1.0 20.6277 19.3723 1.2554 20.4162 19.5838 0.8324

-1.0 -0.5 21.1062 18.6009 2.5053 21.3284 18.8522 2.4762

-1.0 0.0 21.6211 18.1571 3.4640 21.5892 17.4137 4.1755

-1.0 0.5 21.6832 17.9907 3.6925 22.1686 17.5900 4.5786

-1.0 1.0 23.1470 17.2507 5.8963 23.1036 16.5707 6.5329

-0.5 -0.5 21.1391 18.1347 3.0044 21.1575 19.1685 1.9890

-0.5 0.0 21.7274 17.8041 3.9233 20.9602 18.4671 2.4931

-0.5 0.5 22.3257 18.2207 4.1050 21.3936 17.8851 3.5085

-0.5 1.0 22.3949 17.8192 4.5757 22.0393 18.0347 4.0046

0.0 0.0 21.2206 18.8002 2.4204 21.0204 18.6712 2.3492

0.0 0.5 21.1755 18.8423 2.3332 21.5932 19.4143 2.1789

0.0 1.0 21.6214 18.0310 3.5904 22.5547 17.9871 4.5676

0.5 0.5 20.9677 19.3208 1.6469 21.2763 19.2066 2.0697

0.5 1.0 21.0103 18.4634 2.5469 21.3980 17.8165 3.5815

1.0 1.0 20.3449 18.9761 1.3688 20.3802 19.6933 0.6869

6 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.2
2010/7/12


