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Zipf事前分布を用いたマウス核内受容体
遺伝子発現制御ネットワーク予測アルゴリズムの
モンテカルロ法による実装

北 村 悠 輔†1 君和田 友美†2 丸 山 隼†1

鏑 木 崇 史†3 松 本 隆†1 和 田 圭 司†2

本講演では、ベイジアンネットワークモデルを用いてマウス核内受容体の遺伝子発
現ネットワーク構造を予測するアルゴリズムを説明する。これらの遺伝子は複数の疾
患にかかわることが報告されているが、ネットワーク構造は未だに十分解明されてい
ない。提案アルゴリズムではグラフを構成するリンクが Zipf 分布に従うものと考え、
ベイズ的枠組みで定式化し、交換モンテカルロ法により実装した。数値実験で提案ア
ルゴリズムの精度を検証したのち、生物学的観点からも考察を行う。

Monte Carlo-based Mouse Nuclear Receptor Superfamily
Gene Regulatory Network Prediction:
Stochastic Dynamical System on Graph with Zipf Prior
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Jun Maruyama ,†1 Takashi Kaburagi ,†1
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A Monte Carlo based algorithm is proposed to predict gene regulatory net-
work structure of mouse nuclear receptor superfamily, about which little is
known although those genes are believed to be related with several difficult
diseases. The gene expression data is regarded as sample vector trajectories
from a stochastic dynamical system on a graph. The problem is formulated
within a Bayesian framework where the graph prior distribution is assumed
to follow a Zipf distribution. Appropriateness of a graph is evaluated by the
graph posterior mean. The algorithm is implemented with the Exchange Monte
Carlo method. After validation against synthesized data, an attempt is made
to use the algorithm for predicting network structure of the target, the mouse
nuclear receptor superfamily. Several remarks are made on the feasibility of the
predicted network from a biological viewpoint.

1. Introduction

1.1 Introduction

Genes in cells code for one or more proteins, many of which, in turn, regulate expres-

sion of genes through regulatory pathways. Deciphering such regulatory networks from

experimental data is extremely important for understanding biological processes. Since

the behaviors of genes are interrelated in complex ways rather than acting in isolation,

the deciphering method needs to consider experimental data as a whole, which is far

from trivial. This is currently one of the exciting challenges for machine learning. As

such, there is much literature on gene regulatory network prediction1)−18).

This study regards gene expression time-series data as trajectories of stochastic dy-

namical systems on a graph G defined by genes. A gene is represented by a node in the

graph. An arc between nodes is present if a gene influences another gene, and an arc is

not present otherwise.

Let x(t) := (x1(t), · · · , xN (t)) be the expression vector at time t, where N denotes

the number of nodes (genes), and let x := (x(0), · · · , x(T )). The Bayes rule gives

P (G|x) =
P (x|G)P (G)∑

G′∈G
P (x|G′)P (G′)

(1)

where G stands for the set of all possible graph configurations with a given number

of nodes, and P(G) is the prior distribution for the graph. The first factor of the

numerator P(x |G), the marginal likelihood for G, typically comes from

P (x|G) =

∫
P (x|θ, G)P (θ)dθ, (2)

where θ is a parameter vector describing the likelihood function for the data, and P(θ)

is the prior distribution for θ.

Three novel aspects of this study should be noted:

(i) Recent studies on topological structures of a variety of networks, including gene
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regulatory networks, revealed the presence of the Zipf law, that is, a power law.16),17)

This can be thought of as a particular type of sparseness of the network topology.

This study naturally incorporates such findings as prior information within a Bayesian

framework and uses equation (1) for making predictions.

(ii) An important issue to be addressed in general prediction problems within a graph-

ical setting, particularly gene regulatory network prediction, is the computational com-

plexity of evaluating the performance criteria.1)–15) Most of the proposed algorithms,

if not all, evaluate performance criteria to select optimum or good models for making

predictions. Because of the nature of the problem, the performance criterion for gene

regulatory network prediction is naturally a function of the graphical structure of the

underlying model.

To be more specific, first note that both (1) and (2) are exact. Evaluation of (1)

is performed in two steps. The first step is the marginalization (2). Generally, this

is non-trivial; however, if one assumes a conjugate prior P(θ) for θ, then analytical

marginalization in closed form is possible. Evaluation of (1) is harder than it looks.

The computational cost of evaluating the denominator of (1) is often enormous. For

instance, it is known20) that if the number of nodes of a graph is 40, the number of all

possible directed non-cyclic graphs is in the order of 10276. Our formulation presented

in Section 2 does not exclude cyclic graphs. Therefore, exhaustive evaluation will be

even more difficult. This study attempts to make predictions by computing the poste-

rior mean instead of a single graph via a Monte Carlo method which avoids exhaustive

evaluation while automatically searching for regions where probabilities are high.

More precisely, the proposed algorithm draws posterior samples of arcs from (1) via

the Exchange Monte Carlo method without knowing the denominator and computes

the Monte Carlo posterior mean for the graph structure prediction:∑
G∈G

GP (G|x) ≈ 1

S

S∑
k=1

G(k). (3)

where G(k) stands for the k-th sample from the graph posterior (1).

After testing the prediction capabilities of the proposed algorithm, predictions are

made for the target data.

A third novel aspect of this study is the target material:

(iii) Target experimental data used in this study is gene expression time-series data

of nuclear receptors in proliferating neural progenitor cells (NPCs) derived from adult

mouse brain, where little is known about the regulatory network structure. Those

nuclear receptors are understood to be involved in several cancers, diabetes mellitus,

hyperlipidemia, atherosclerosis, and immune system disorders, among others.

2. Algorithm

2.1 Formulation

This study regards gene expression time-series data as trajectories of stochastic dy-

namical systems on a graph G defined by genes. A gene is represented by a node in the

graph. An arc with an arrow directed from node j to node i represents the fact that

gene j influences gene i. No arc means no influence.

Recall that a graph G consists of a set of nodes V := {i}N
i=1, and a set of arcs

B := {bij}N
i,j=1. We regard B, and hence G, as a set of random variables. An arc bij

is regarded as a random variable with three discrete values: bij∈{−1, 0, +1}, where “0”

means no influence, “+” means that gene j influences gene i , and “-” means that gene

i influences gene j.

The expression value at time t of gene i is represented as the state variable xi(t). A

gene i may influence other genes by influencing their expression via proteins, in addi-

tion to influencing gene i itself. Such an influencing mechanism is generally dynamic in

the sense that the past expression values may influence the current expression values.

Thus, xi(t) may depend on xj(t − τ), for some j not equal to i, where τ > 0, and also

on the value xi(t − τ), where τ > 0, the past value of the expression of gene i itself.

An arc between nodes is present if such an influencing mechanism exists, and an arc is

not present otherwise. One of the important distinctions between the dynamic model

assumed here and static models is that the underlying graph structure of the former

can contain loops, whereas the latter does not allow loops. In particular, the dynamic

model allows self loops. A dynamical system without self loops is a very restricted class

of dynamics. Note that the exclusion of loops from static models is necessary for data

consistency for statistical inference.
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There could be at least two uncertainties associated with gene regulatory network

prediction problems. One is the uncertainty incurred from measurement uncertainty in

biological experiments. Another is the possible stochastic nature of the gene expression

itself.19) In order to take into account these uncertainties, transition of the states is

assumed to be stochastic. This study assumes a first-order Markov process where the

current expression value xi(t) depends on the values xj(t−1), as well as on xi(t−1), in

a probabilistic manner, where time is discretized with an appropriate unit length, e.g.

four hours. Generalizations are possible to multiple time delay cases.

The expression values, at least in this study, are discretized into finite discrete val-

ues so that nonlinearity is captured by state transition probabilities associated with

stochastic dynamics. The prediction is formulated as a graph structure prediction prob-

lem within a Bayesian framework, where a score is computed using a graph posterior

distribution.

Under such a graph structure, this study attempts to capture two other possible

structures behind gene expression time-series data. First is the dynamics. We assume

that xi(t) comes from a dynamical system, so that it could be influenced by the past

expression values of other genes as well as its own. One of the important distinctions

of this formulation from a static formulation, is that this formulation allows loops in

the underlying graph, whereas a static formulation excludes loops. In particular, the

current formulation considers self loops.

Second is uncertainty associated with the data. One of the uncertainties is mea-

surement uncertainty of expression values, and another is the stochastic nature of the

expression process itself19).

In this study, we treat the target problem within a Bayesian framework, for which we

need to define a likelihood function and prior distributions.

2.2 Likelihood: stochastic dynamical system on a graph

Recall that we regard each arc bij of a graph G as a ternary random variable

bij ∈ {−1, 0, +1}, where “+” means that gene j influences gene i, “-” means that

gene i influences gene j, and “0” means no influence. This study assumes the likelihood

function of the form

P (x(0), x(1), ..., x(T )|G) :=

T∏
t=1

P (x(t)|x(t − 1), G)P (x(0)|G) (4)

where

P (x(t)|x(t − 1), G) (5)

is the conditional probability of x(t), the set of expression values at time t, given x(t−1),

those at the previous time t-1. Equation (4) amounts to considering the target gene ex-

pression time-series data as a realization of a first-order Markov process with transition

probability (5) and initial state probability P (x(0)|G). To be more precise, we need

to consider the representation of xi(t). Although the gene expression values obtained

from experiments are real valued, we will discretize them, at least in this paper, into K

discrete values:

xi(t) ∈ {1, 2, ..., K}.
If xi(t) is influenced by genes xj(t − 1) for j belonging to some index set, the state

variables associated with such indexes may be called the parent states of xi. Define

pai := {parent states of xi},
let paj

i be the j-th configuration of pai, j = 1, · · · , qi with qi being the number of

configurations31) and set

P (xi(t) = k|paj
i , θi; G) := θi,j,k (6)

where

θi := {(θi,j,k)K
k=1}qi

j=1,

K∑
k=1

θi,j,k = 1 (7)

where G stands for the underlying graph structure.

Remarks

1. Note that this model is not a Hidden Markov Model because state is directly

observable. Note also that, in contrast with static cases, cyclic graphs and self loops

{bii}N
i=1 are allowed. In fact, a dynamical system without self loops is highly restricted.

Even without topological constraints, this class of dynamic models is sometimes called

dynamic Bayesian networks2),3),11).

2. The initial state distribution P (xi(0)|G) in this paper will be uniform over
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{1, 2, ..., K}, where

P (x(0)|G) :=

N∏
i=1

P (xi(0)|G).

2.3 Prior Distributions

There are two unknown quantities of interest: θ := {θi}N
i=1 and G. Due to the formu-

lation of the problem, the prior distribution should be of the form

P (θ, G) = P (θ|G)P (G). (8)

As a prior for a multinomial distribution with parameter θi,j := {θi,j,k}K
k=l, a conju-

gate prior distribution, Dirichlet distribution

Dir(θi,j ; αi,j), (9)

with hyperparameter αi,j := {αi,j,k}K
k=l is used. With this, one can analytically

marginalize our likelihood (5). Because of the conjugacy, one sees that the analyti-

cal marginalization is possible:31)

P (x(t), · · · , x(1)|G) =

N∏
i=1

qi∏
j=1

Γ(Mij)

Γ(Mij + sij)

K∏
k=1

Γ(αijk + sijk)

Γ(αijk)
(10)

where αijk is the hyperparameter associated with the Dirichlet distribution,

sij :=

K∑
k=1

sijk, Mij :=

K∑
k=1

αijk,

and Γ(·) denotes a gamma function.

Note that one does not infer θ since it is integrated out in (10). Note also that (10)

is computable via counting the number of cases that the state variables take.

This study assumes the Zipf prior distribution for G with hyperparameter γ:

P (G) = P (G|γ) =

N∏
i=1

PZipf (k
(G)
i ; γ) =

N∏
i=1

(k
(G)
i )−γ

k
(G)
max∑

z=1

z−γ

, (11)

where k
(G)
i denotes the degree, or the number of arcs with node i, i = 1, · · · , N , and

k
(G)
max is the maximum number of arcs of a single node.

Generally, the Zipf law states that the number of elements with rank order k with

respect to some ordering is proportional to k−γ . This law has been reported in a variety

of disciplines, including biological networks. See, for example,21). Observe that the Zipf

law is a form of sparseness of arcs in a graph. While many of the nodes have small

degrees, there are nodes that have large degrees, although they are few. Fig. 2.3 (a) is

a simple illustration of the Zipf law, and Fig. 2.3 (b) is a schematic diagram showing a

“random” graph, where the degree distribution is centered around a particular value.

図 1 The schematic diagrams demonstrating network structures. The numerals show degrees at

nodes. Self loops are omitted for simplicity. (a) is the Zipf law. While many of the nodes

have small degrees, there are nodes that have large degrees, although they are few. (b) is for a

random graph. The degree distribution is centered around a particular value.

2.4 Posterior Distributions

Given a time-series data set (x(0), x(1), ..., x(T )), x(t) := (x1(t), x2(t), ..., xN (t)),

the posterior distribution of G is given by

P (G|(x(0), x(1), .., x(T )), γ) =
P ((x(0), x(1), ..., x(T ))|G)P (G|γ)∑

G′∈G
P ((x(0), x(1), ..., x(T ))|G′)P (G′|γ)

(12)

where the first factor in the numerator is available from (10), and the second factor

in the numerator is the Zipf prior alluded earlier.

2.5 Implementation

Our goal in this paper is to evaluate (12) for predicting plausible G. In order to achieve

this goal, generally speaking, we need three different quantities: (a) the marginal like-
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lihood for G, which is the denominator of (12); (b) the hyperparameter γ for the Zipf

prior (11); and (c) the hyperparameters αi,j for the Dirichlet prior (9). Each of them is

generally nontrivial to set. Note that θ has been integrated out in (10). In this paper,

we adopted a Markov Chain Monte Carlo (MCMC) method to evaluate (12).

2.6 MCMC Procedure for Graph Posterior Samples

Let

P (G|x, γ) ∝ P (x|G)P (G|γ) (13)

be the target distribution with x := (x(0), ..., x(T )), and consider the parameterized

family of Q different distributions

Pq(G|x, γ) ∝ (P (x|G)P (G|γ))1/Tq , q = 1, ..., Q, 0 < T1 < · · · < TQ = 1. (14)

And set

Pq(x|G, γ) := (P (x|G, γ))1/Tq , q = 1, ..., Q. (15)

Then, implementation follow that reported in34).

Remarks

( 1 ) Our prediction in this paper is performed using the Monte Carlo posterior mean

of the graph:

1

S

τ+S∑
n=τ+1

Gn, (16)

where Gn is the posterior sample obtained by the Monte Carlo method described

above with a burn-in period τ .

( 2 ) It should be noted that the graph posterior consists of

P ({bij}N
i,j=1|(x(0), x(1), ..., x(T )), γ), (17)

where bij ∈ {−1, 0, +1} together with the set of nodes V.

( 3 ) We do not need to know the normalization constants for P (G|x, γ), Pq(G|x, γ),

q = 1, ..., Q, because βq and wq are the ratios.

( 4 ) Hyperparameter for the Dirichlet distribution in principle, may be learned from

the data. Because of the scarcity of the data for learning, we select not to perform

learning, at least in the present paper.

3. Experiment 1: Synthesized Data
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図 2 (a) Target graph for prediction experiment with synthesized data. Self loops are omitted for

simplicity. (b) Predicted network with the proposed algorithm. There is one false negative

indicated by a dotted arrow. The solid arrows indicate that the predictions are correct. Self

loops are omitted for simplicity.

This section examines the prediction performance of the proposed algorithm against

synthesized data. Fig. 2 (a) shows the target graph with the number of nodes N=20;

many of the nodes have small degrees, and some have larger degrees. Time-series data

is generated according to (4)-(6) and the number of discrete values of the state xi(t)

is K=3. Since the purpose of the experiment with simulated data is to validate the

performance of our proposed algorithm, the number of data points is set to emulate the

real data experiment described in Section 4. Generally, the more the number of nodes

the network has, the more difficult it is to estimate its topology. To have equal footing

among the experiments, the ratio of the number of nodes N to the number of time

points T is fixed, i.e. T
N

= const. The number of nodes N is restricted by the selection

of genes one is interested in. There is more flexibility in the selection of time points T ,

as well as the number of experiments. In the biological experiment, N = 35, and three
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sets of T = 19 data points are obtained. Therefore, for our experiment in the synthe-

sized data, given the number of nodes N = 20, we set three sets of T = 19
35

× 20 ; 11 as

the number of data points. To explain the implementation of our prediction algorithm,

first let b
(k)
ij be an arc of a posterior sample graph defined by (17) and note that it has

one of three possible values: 0, +1, and -1. We predict bij according to

bij =



0, if 1
S
{#b

(k)
ij |b(k)

ij 6= 0, k = 1, ...., S} < ξ

+1, if 1
S
{#b

(k)
ij |b(k)

ij 6= 0, k = 1, ...., S} ≥ ξ

and 1
S
{#b

(k)
ij |b(k)

ij = +1, k = 1, ...., S}
< 1

S
{#b

(k)
ij |b(k)

ij = −1, k = 1, ...., S}
−1, else.

(18)

where S is the number of samples and ξ is a certain threshold.

Fig. 2 (b) shows our prediction with

• γ (the Zipf prior hyperparameter) = 2.2

• number of samples: 500000 (burn in 1000000)

• number of replicas: 5 with temperature 1/1.0, 1/0.9, 1/0.8, 1/0.7, 1/0.6

The predicted result has only one error: a false negative indicated by the dashed

arrow. The remaining solid arrows indicate true positives.

4. Experiment 2: Real Data

Nuclear receptors represent a superfamily of ligand-dependent transcription factors

that regulate essential biological processes, including development, reproduction, and

metabolism. The classical endocrine receptors that mediate the actions, such as steroid

hormones, thyroid hormones, vitamins A and D, and orphan receptors whose endoge-

neous ligands are unknown, are included in this superfamily.

In this study, nesural progenitor cells derived from adult mouse brains were applied

as an experimental sample of particular interest and we aimed to investigate the pos-

sible network of nuclear receptors by using a bioinformatics approach. The number of

members in the nuclear receptor superfamily has been shown to be 48 in the human

genome database.32) We selected the 48 genes reported in the human genome database

out of 49 genes in the mouse genome database.33)

図 3 Target time series data for 72 hours with sampling period 4 hours consisting of 19 points. Of

the 48 genes, 13 consistently exhibited very small amplitudes in their expression values so that

they were discarded. The expression values are normalized between 0 and 1 at least in this

study.

4.1 Prediction

There were 48 genes in our target superfamily. Three time-series data sets were mea-

sured, each covering a 72-hour period with a sampling frequency of 4 hours, so that each

data set consisted of 19 points. Of the 48 genes, 13 consistently exhibited very small

amplitudes in their expression values. Those 13 genes were discarded. Each expression

time series was normalized between 0 and 1 and was then discretized into three equally

spaced discrete values, at least in this study. The resulting time-series data is shown

in Fig. 3. We will perform prediction experiments with other types of preprocessing in

our future work.

The parameters were set as in our prediction described in Section 3.

In order to cope with the sparseness of the data, we drew posterior samples from 100

independent MCMC simulations, in which parameters were set as described in Section
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図 4 Prediction of the target network with the proposed algorithm.

3. We ranked ordered arcs bij by

1

S∗ {#b
(k)
ij |b(k)

ij 6= 0, k = 1, ...., S∗}

where S* denotes the total number of posterior samples from the 100 MCMC simula-

tions, namely, 100S. Those arcs ranked less than R were discarded and the remaining

arcs were predicted in a manner similar to that defined in (18). Fig. 4 is our prediction

with R=60.

4.2 Discussion

There is no ground truth for this network. There are, however, several well known

biologically plausible scenarios in the target genes of this study. For instance, a pre-

vious biological study reported synergistic regulation of a cerebellum-specific gene by

ROR alpha and RAR23). The predicted network (Fig. 4) appears to indicate the

functional relationship between ROR alpha and RAR, as indicated by the red arrow.

ROR alpha has been shown to be a key regulator for the cerebellum development24).

Another scenario is the RXR heterodimer arc between PPAR and LXR, as revealed

in25). The green arrow in Fig. 4 appears to indicate this arc. It has also been verified

that RXR with COUP-TF interactions modulates rethinoic acid signaling26). This re-

lationship appears to be indicated by the purple arrow in Fig. 4. It is also known27)

that the orphan nuclear receptor NGFI-B (also called Nur77) can heterodimerize with

RXR. This appears to be indicated by the blue arrow. Finally, COUP-TFII with TH

beta heterodimer is also reported in28). The orange arrow of Fig. 4 appears to indicate

this.

It seems reasonable to conclude that NGFI-B genes are located upstream of the gene

regulation we predicted, since these genes are known to be immediate early genes. Be-

sides NGFI-B genes, our prediction suggests that GR, TLX, and ERR alpha genes are

located upstream of some nuclear receptor genes, including PPAR delta and LXR beta.

Both GR and TLX are suggested to play some role in neurogenesis29),30). Our predic-

tion may provide further clues to identify molecular cascades regulating the fate and

function of neural progenitor cells.

For comparison, we tested the same data set using a greedy search method. The

greedy method could not find any of the relationship biologically verified in the litera-

ture.

5. Conclusion

A Monte Carlo based algorithm was proposed for predicting a gene regulatory net-

work from time-series expression data by formulating the problem as a graph prediction

problem on which a stochastic dynamical system is defined. The prediction was per-

formed by evaluating the graph posterior mean within a Bayesian framework, where

the graph prior distribution is assumed to follow the Zipf prior, which is incorporated

by taking into account several recent biological studies. The algorithm was first tested

against synthesized data for which the ground truth is available, and the prediction

was shown to be reasonable. Based on this, an attempt was made to predict the gene

regulatory network structure of the mouse nuclear receptor superfamily. The prediction

was discussed from a biological perspective.

The graphical representation of gene regulatory networks proposed in this study is

from a bioinformatics view point. Even though further concreteness is not currently

possible, the reported predictions can serve as guidelines for biological experiment de-

7 c© 2010 Information Processing Society of Japan

Vol.2010-BIO-21 No.17
2010/6/19



情報処理学会研究報告
IPSJ SIG Technical Report

sign to verify the predicted interactions, which may lead to new biological findings.It

is a challenging problem to infer γ, the hyperparameter for the Zipf prior, from the

available data.
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