肝臓表面のレジストレーションのための GMDS による 対応点生成に基づく点群統計モデルの構築

山 岡 尚 登^{†1} 渡 辺 $\hat{\mathbf{h}}^{\dagger 1}$ 本 谷 秀 堅^{†1}

臓器表面の点群統計モデルを構築する際には,多くの場合学習用の臓器表面データ 間で対応点を求める必要がある.本稿では,点群統計モデルに必要な対応点を Generalized Multi-Dimentional Scaling(GMDS)により求めることを提案する.GMDS は二つの曲面間の形状に基づいて対応点を決定する.この手法を用いて臓器表面の統 計モデルを構築し,画像とのレジストレーションをおこなう.このレジストレーショ ンには確率伝搬法を用いた手法を採用し,各点の位置だけではなく,位置の確率密度 分布も推定する.肝臓を対象にGMDSによって得られた対応点で点群統計モデルを 構築し,その統計モデルを用いたレジストレーションをおこなったのでその実験結果 を報告する.

GMDS-based Construction of Statistical Point Cloud Model for Registering Liver Surface in Medial 3D Image

NAOTO YAMAOKA,^{†1} WATARU WATANABE^{†1} and Hidekata Hontani^{†1}

Most of the time when we construst statistical point cloud model we need to calculate the correspoding points. This article proposes to calculate the corresponding points to construct statistical point cloud model by 'Generalized Multi-Dimentional Scaling(GMDS)'. GMDS determines the corresponding points by the shapes of two curved surfaces. By this method, we construct the statistical model and using this model we registrate with the medical image. For the estimation, we use non-parametric belief propagation and this method estimates not only the position of the organ but also the probability density of the organ position. The results of this method using medical images of livers are presented by this article. 1. はじめに

臓器表面の点群統計モデルは医用画像中の臓器と位置合わせをおこなうレジストレーションに広く利用されている.臓器レジストレーションは医療診断に必須の機能である.

点群統計モデルを構築する際には,臓器を多数の特徴点の配置により表現する.このとき レジストレーションは各特徴点の画像における座標を推定することによりおこなわれる.こ の特徴点の位置の推定精度は,臓器を表現する特徴点の統計的な性質に依存して変化する.

曲面上の特徴点の決定法は多数存在する.それら手法を大別すると,曲率の極大点などパ ターンに内在する性質に基づき決定するアプローチと曲面の幾何的な性質に依存して曲面 間の対応点を求めることにより決定するアプローチの2種類がある.本稿の著者らは,よ り多数の特徴点を得ることのできる後者のアプローチとして,エントロピーに基づく対応点 生成法1)を曲面上の特徴点決定に採用してきた2).この手法は与えられた多数の曲面を同 時に考慮して,それらのすべてに同時に対応点を生成することが可能である.具体的には, 異なる曲面上の対応点どうしが似た座標を持つことと,曲面上の対応点の配置が似通ってい ることとの双方をエントロピーを基準にバランスさせて対応点を決定する.このとき,統計 モデルの観点からは,各特徴点の事前分布を小さくできることなど幾つかの良い性質を期待 できる.しかし一方,曲面の形状の類似性は一切考慮されずに対応点が生成される.

そこで本稿では対応点の生成法に Generalized Multi Dimensional Scaling(GMDS)3)4) を採用する.GMDS は与えられた2曲面間の距離を,測地距離をできるだけ保存する写像 に基づき定義する.例えば円柱の側面と平面とはいずれもガウス曲率がいたるところでゼ ロであり,測地距離を完全に保存する写像が存在する.このため,円柱側面と平面との「距 離」はゼロとなる.臓器表面についても,例えば同一患者の姿勢の変化などによる形の歪み は測地距離を保存している可能性が大きく,そのような変形については無視できる枠組みが 望ましい.

GMDS に基づき異なる患者の肝臓表面に対応点を生成し,その対応点に基づき構築した 点群統計モデルを画像に対してレジストレーションする実験をおこなったので報告する.

評価は文献 2)の臓器レジストレーション法を用いる.これは,臓器表面に配置した特徴 点群により臓器表面を表現する.まず,各特徴点の位置,画像からの抽出演算子,特徴点間

^{†1} 名古屋工業大学

Nagoya Institute of Technology

IPSJ SIG Technical Report

の相対位置を学習し,臓器表面の位置,画像特徴,形状の統計モデルを構築する.特徴点配 置については自動的に行う.新規画像から臓器抽出を行う際には,構築された統計モデルに 基づき,特徴点の位置を推定することで臓器表面の位置を推定する.推定には,ノンパラメ トリック確率伝搬法が用いられる.この手法はモデル構築と推定方法を統一的かつ統計的な 枠組で扱うため,レジストレーションの精度評価が可能となる.

このように,特徴点に基づいた臓器レジストレーション法は,レジストレーション精度を 自己評価することができる.本稿では GMDS により対応点を生成し,肝臓表面の特徴点統 計モデルを構築する.そして,このモデルに基づいたレジストレーションを行い,精度の評 価をおこなう.確率伝搬法を用いるレジストレーション法はレジストレーションの精度を自 動推定できるため,特徴点の良し悪しをレジストレーションの精度の観点から選択する上で 有用である.

2. 特徴点の統計モデル生成

統計モデルの生成法について説明する. 臓器表面を N 点の特徴点 $\{P_j | j = 1, 2, \dots, N\}$ で表現する.特徴点 P_j の位置を x_j であらわす. x_j は確率変数であり, x_j を節とするグラフィカルモデルは,確率変数間の条件付独立性をグラフ G であらわしたものである.グラフは確率変数に対応したノードを持ち,変数のノードを辺で結ぶことで,確率変数の統計的依存性を表現する.

モデル構築のために,まず,学習用の3次元CT画像をM症例用意する.学習用画像から対象とする臓器表面を抽出し,体型の位置・形・大きさの正規化を行うことで,正規化後の3次元座標系における臓器表面のデータを得る.正規化後の画像の集合を $\mathcal{I} = \{I^i | i = 1, 2, \dots, M\}$ であらわし,画像 I^i 中の対象臓器表面を S^i であらわす.

モデルの構築について説明する.まず,対応点を生成する.GMDS による非剛体レジストレーションを用い,各 S^i 上に対応点 $\{P_j^i | j = 1, 2, \cdots, N\}$ を配置する.

次に,得られた対応点に基づき,グラフィカルモデルの構造を決定する.グラフの各ノードは各特徴点の座標 x_j に対応する.本稿のモデルでは,各特徴点の座標に,次の二つの統計的依存性を仮定する.(a) x_j 周辺の局所画像 $I_j(x_j)$.(b)近接する特徴点 x_k の座標.(a)に関しては, $x_j \ge I_j(x_j)$ を辺で結ぶことで表現する.ここで, $I_j(x_j)$ は x_j に従う観測変数であり,以降 I_j とあらわす.(b)に関しては,近接するノードを辺で結ぶことで表現する.近接するノードは以下の方法で決定する. S^i における対応点間のユークリッド距離を $d_{ik}^i = ||x_i^i - x_k^i||$ であらわす. d_{ik}^i の平均値 $\bar{d}_{jk} = \sum_i d_{ik}^i / N$ が閾値より小さいとき,Gの

節 x_j と x_k を辺 e_{jk} で結ぶ.

以上より, グラフィカルモデル G は以下の三つの確率分布を表現する.

- P_j の事前分布 $p(x_j)$.
- *P_j* 周辺の局所画像の尤度分布 *p*(*I_j*|*x_j*).
- $P_j \ge P_k$ の相対位置関係に関する確率分布 $p(x_j x_k)$.

これらの統計モデルは,配置した対応点に基づき推定する.対応点の配置についてはGMDS による非剛体レジストレーションを用いる.

2.1 統計モデルの生成

まず,GMDS による非剛体レジストレーションを用いて,学習用の臓器表面 S_i 上に対応 点を配置する.次にグラフィカルモデル Gを構築する.隣接する対応点 $x_j \geq x_k$ は,点間 の平均距離 d_{jk} に基づいて決定し,グラフの辺 e_{jk} を結ぶ.

次に,下記三つの確率分布を計算する.

• P_j の事前分布 $p(x_j)$.

• $P_j \ge P_k$ の相対位置関係に関する確率分布 $p(x_j - x_k)$.

P_j 周辺の局所画像の尤度分布 *p*(*I_j*|*x_j*).

 $p(x_j)$ は正規分布で表現する.

$$p(x) = \mathcal{N}(\cdot; \bar{x}_j, \Sigma_j) \tag{1}$$

ただし, \bar{x}_j , Σ_j は,それぞれ N 個の対応点の平均と分散をあらわしている.

 $p(x_j - x_k)$ は,臓器表面の局所的な変形に関する確率分布を表現する.本稿では $p(x_k - x_j)$ も正規分布に従うことを仮定する.

 $p(x_k - x_j) = \mathcal{N}(\cdot; \bar{x}_{kj}, \Sigma_{kj})$ (2) ただし, $\bar{x}_{kj} \ge \Sigma_{kj}$ は N 個のベクトル { $(x_k^i - x_j^i)|i = 1, 2, \dots, N$ } の平均と共分散により 推定する.

 $p(I_j|x_j)$ は画像より点 P_j を抽出するときに利用される . $p(I_j|x_j)$ は点 $\{P_j^i|i=1,2,\cdots,N\}$ の局所画像の集合 $\{I_j^i\}$ の PCA に基づいて表現する.ここで P_j^i の局所画像とは, x_j^i を中心とし,一辺 Lの立方体内部の画像とする.局所画像のサイズ L は実験により適当に定める.まず,局所集合 $\{I_j^i|i=1,2,\cdots,N\}$ の共分散行列 Σ_j を求める. Σ_j の固有値を $\lambda_1 \geq \lambda_2 \geq \cdots$ であらわす.また,対応する固有ベクトルを $v_j^1, v_j^2, \cdots, v_j^{L^3}$ であらわす.このとき,新規画像中に配置された点 P_j の近傍の画像 I_j の確率を次式により評価する.ただし,表現に用いる固有ベクトルの数 L_j は寄与率を参照して決定する.

IPSJ SIG Technical Report

$$p(I_j|x_j) = \frac{1}{Z} \exp\left\{\sum_{d=1}^{L_j} \frac{\Delta_d^2}{\lambda_d}\right\}$$
(3)

ただし, $\Delta_d = (I_j - \bar{I}_j)^\top v_j^d$ であり, $\bar{I}_j = \sum_i I_j^i / N$ である.また Z は正規化の係数である. 2.2 対応点生成法

GMDS による非剛体レジストレーションについて説明する.GMDS は,曲面の内在的 (intrinsic) な測地距離を保存する写像が外在的 (extrinsic) なガウス曲率を保存するという 性質に基づくレジストレーション法である.この GMDS の計算について具体的に述べる.

まず,対応付けを行いたい2曲面を曲面Sと曲面Rであらわす.曲面Sにおける2点s, s'間の測地距離を $d_S(s,s')$ とおく.曲面Qから曲面Sに写像する関数を ψ とすると両曲 面における歪み ϵ は一般的に式(4)で定義される.

$$\operatorname{dis}\psi \equiv \sup_{\mathbf{q},\mathbf{q}' \in \mathbf{Q}} \left| \operatorname{d}_{\mathbf{Q}}(\mathbf{q},\mathbf{q}') - \operatorname{d}_{\mathbf{S}}(\psi(\mathbf{q}),\psi(\mathbf{q}')) \right| = \epsilon$$
(4)

また,曲面 Qを曲面 S に写像するときの歪みを PE(Partial Embedding) 距離として,式 (5) で定義する.

$$d_{PE}(S,Q) \equiv \frac{1}{2} \inf_{\psi \to S} \operatorname{dis}\psi \tag{5}$$

この PE 距離は, Fast Marching 法 5) を用いることで計算できる.

まず,両曲面 *S* と *Q* に対して,三角メッシュを生成する.メッシュの頂点の個数をそれぞれ *N* と *N*' であらわす.また,頂点をそれぞれ $\{s_i\}_{i=1}^N$, $\{q_i\}_{i=1}^{N'}$ であらわし,各曲面上で 任意の 2 頂点間の測地距離 d_S と $d_{S'}$ を求める.このようにして,曲面 *S* における *N* × *N* の測地行列 $\mathbf{D}_{S_N} = (d_{S_N}(s_i, s_j))$ および,曲面 *Q* における *N*' × *N*' の測地行列 $\mathbf{D}_{Q_{N'}}$ を生成する.式(4) において,一つの曲面を他の曲面に写像するときの歪みを定義した.GMDS においては曲面の歪みは式(6) で定義する.

$$\sigma_{p}(\mathbf{U}; \mathbf{D}_{Q_{N'}}, d_{S}, \mathbf{W}) = \left(\frac{1}{\sum_{i>j} w_{ij}} \sum_{i>j} (w_{ij}(d_{S}(\mathbf{u}_{i}, \mathbf{u}_{j}) - d_{Q}(q_{i}, q_{j})))^{p}\right)^{\frac{1}{p}} (1 \le p < \infty$$

$$\sigma_{\infty}(\mathbf{U}; \mathbf{D}_{Q_{N'}}, d_{S}, \mathbf{W}) = \max_{i, j=1, \dots, N'} w_{ij} |d_{S}(\mathbf{u}_{i}, \mathbf{u}_{j}) - d_{Q}(q_{i}, q_{j})| (p = \infty)$$
(6)

 $p = \infty$ のとき, Uは, N'を曲面 S に写像したときの座標を局所的または,大域的なパラ メータ座標 u_i で表したものである.よって,対応点はこのパラメータ u_i を式 (6) が最小 になるように定めることにより求めることができる.また, $\mathbf{W} = (w_{ij})$ は非負の重み対称 行列である.以上より, GMDS における評価関数は式 (7) で表される.

$$d_{PE}(S, Q_{N'}) = \frac{1}{2} \min_{\mathbf{U}} \sigma_{\infty}(\mathbf{U}; \mathbf{D}_{Q_{N'}}, d_S, \mathbf{W})$$
(7)

3. 新規画像とのレジストレーション

画像と臓器モデルのレジストレーションには前節で説明した手法を用い配置した特徴点群 をランドマークとし、その位置により対象臓器の位置と形状をノンパラメトリックに表現す る手法を用いる.得られる統計モデルの各点は位置・形状・画像特徴に関する確率分布を保 持しており、それら確率分布は統計により推定された.ここで、レジストレーションを行う 際には、確率分布にしたがい、ベイズ推定の枠組である確率伝搬法を用いる.これは、臓器 の位置と形状の多様性の表現、画像特徴の抽出、モデルと新規画像の適合度の最適化の全て を、統計的に統一の枠組で扱うことができる.

体型の正規化の済んだ新規画像 I が与えられたとする.このレジストレーション法では, I 上での特徴点の位置を推定することにより,モデルと新規画像中の臓器表面をレジスト レーションする.臓器表面の位置は,事後確率 $p(x_i|I)$ の推定により確率分布として得るこ とができる.まず,特徴点の位置 x_i とその周辺の画像 I_i の同時分布について,次式が成り 立つ.

$$p(\lbrace x_i \rbrace, \lbrace I_i \rbrace) = \prod_i \psi_i(x_i, I_i) \prod_{e_{ij} \in \mathcal{E}} \psi_{i,j}(x_i, x_j)$$
(8)

ただし, $\psi_{i,j}(\cdot,\cdot)$, $\psi_{i,j}(\cdot,\cdot)$ は,それぞれ,各特徴点ごとの配置のポテンシャル,および, 隣接する特徴点どうしの相対位置のポテンシャルを表している.これら各ポテンシャルは, それぞれ式 (1),(2) および,式 (3) により既にあらわされている.

$$\psi_{i}(x_{i}, I_{i}) = p(x_{i})p(I_{i}|x_{i})$$

$$\psi_{i,j}(x_{i}, x_{j}) = p(x_{i} - x_{j})$$
(10)

レジストレーションは以下の手順で行う.

(1) 推定するノード x_i に隣接するノード v_k が x_i の推定位置メッセージ m_{ki}^n を計算.

- (2) $m_{ki}^n \mathbf{c} x_i$ に送信.
- (3) 推定位置 $\hat{p}^n(x_i|I)$ を更新.
- (4) 以上の更新を全点において行う.

ここで,提案法におけるレジストレーション法の概略を説明する.まず,式 (9) にしたがい,与えられた画像 I における各特徴点の位置分布のポテンシャル $\psi_i(x_i, I_i)$ を計算する.

IPSJ SIG Technical Report

 $\psi_i(x_i, I_i)$ は,各特徴点の事前分布 $p(x_i)$ と,画像 Iに対する各特徴点の尤度分布 $p(I_i|x_i)$ との積である.ここで,ポテンシャル $\psi_i(x_i, I_i)$ の計算には臓器の形状変化を表現する $p(x_i - x_j)$ の情報を利用していないことに注意する.次に,式(10)も利用して,各特徴点の分布を推定する.推定には Non-parametric Belief Propagation(NBP)を用いる.

以下,推定法を説明する.NBPでは、グラフィカルモデルにおける節と節の間でメッセージを交換しながら、確率変数の推定分布を更新していく.以下,Gにおいて x_i に対応する節を v_i であらわす.また,n回目の更新時における特徴点の確率分布を $\hat{p}^n(x_i|I)$ とあらわす. $\hat{p}^n(x_i|I)$ は、ポテンシャル $\psi_i(x_i, I_i)$ と、隣接するノード v_k から送信されるメッセージ $m_{k_i}^{k_i}$ を用いて、次式のように計算する.

$$\hat{p}^n(x_i|I) \propto \psi_i(x_i, I_i) \prod_{e_{ki} \in \mathcal{E}} m_{ki}^n(x_i)$$
(11)

ここでメッセージ m_{ki}^n は次式のとおりである.

$$m_{ki}^{n}(x_{i}) \propto \int_{x_{k}} \psi_{k}(x_{k}, Iq_{k})\psi_{i,k}(x_{i}, x_{k}) \times \prod_{e_{tk} \in \mathcal{E}, t \neq i} m_{tk}^{n-1}(x_{k})dx_{k}$$

$$\propto \int_{x_{k}} \psi_{k}(x_{k}, I_{k}) \frac{\hat{p}^{n-1}(x_{k}|I)}{m_{ik}^{n-1}(x_{k})}dx_{k}$$
(12)

NBP では,上記メッセージをノンパラメトリックに表現する.このレジストレーション 法では,混合ガウスモデルを用いた表現を採用している.メッセージ *m_{ki}* は次式のように あらわすことが出来る.

$$m_{ki} = \sum_{\alpha=1}^{W} w_{ki}^{(\alpha)} \mathcal{N}(x_i; \mu_{ki}^{(\alpha)}, \Sigma_{ij})$$

$$\tag{13}$$

ここで, 共分散行列 Σ_i に基づき, 各特徴点の分布ごとに求める.

$$\Sigma_{i} = \frac{1}{W-1} \sum_{i=1}^{W} (\mu_{i} - \bar{\mu}) (\mu_{i} - \bar{\mu})^{T}$$
(14)

各メッセージ m_{ij} は、パーティクル $\{w_{ij}^{(\alpha)}, \mu_{ij}^{(\alpha)}, \Sigma_{ij}\}$ と式 (2) を用いて計算する.まず、 パーティクルの平均 $\mu_{ij}^{(\alpha)}$ は次式のように計算する.

$$\mu_{ij}^{(\alpha)} = \mu_i^{(\alpha)} + \nu_{ij} \tag{15}$$

図1 元画像 Fig.1 Original Image

ここで, ν_{ij} は式 (2) にしたがうランダムノイズをあらわす.また,重み $w_{ij}^{(\alpha)}$ は式 (12) にしたがい,次式で計算する.

$$w_{ij}^{(\alpha)} = \frac{w_i^{(\alpha)}}{m_{ji}(\mu_i^{(\alpha)})}$$
(16)

4. 実験結果

本稿では,肝臓を対象臓器として,実験を行った.学習用のデータとして,9 患者分の X-CT 画像を用意した.画像の空間分解能は [0.625mm×0.625mm×1mm] の非造影画像 で,心臓の下部から腎臓上部までの部分を対象とした.まず,用意した画像の体型の正規化 を行う必要がある.本稿では肋骨を囲う直方体を生成し,その直方体が一致するように正規 化をおこなった.変形を行う上で対象とする直方体は9 患者から得られた直方体の平均と した.体型の正規化をおこなう前の原画像を図1,正規化後の画像を図2に示す.肝臓の大 きさが正規化されていることが分かる.

4.1 統計モデルの生成

まず, 2.2 で述べた, GMDS による非剛体レジストレーションによって対応点を生成する. 各面に配置した対応点数は N = 1000 点である. GMDS では対応点をとるために, 初

IPSJ SIG Technical Report

図2 体型正規化後の画像 Fig.2 Normalized Images

期点を与える必要がある.この初期点は,対応点付けの結果を大きく左右するので,注意して決定する必要がある.今回は以下のような方法で,初期点配置をおこなった.ここで, 一人の患者を選ぶ.以下,一人選択した患者の臓器をテンプレート臓器とし,対応付けを行うその他の8患者分の臓器をターゲット臓器と呼ぶ.

GMDS に基づく対応点配置結果を図3に示す.図の(A)は,対応付けするために選択した一人の患者のテンプレート臓器である.その他は対応付けをおこなった患者のターゲット 臓器の一例である.結果画像においてボロノイ分割された同じ色の領域は対応付いており, その中心の黒い点が対応点を示している.

図4には,8人分の肝臓に分布した P_j^i の例を8点選んで示す.結果は,対応点の番号 j ごとに色分けして表示している.各点が局在していることが確認できた.

4.2 新規画像とのレジストレーション

上記のモデルを用いて,臓器のレジストレーションを行った.今回,レジストレーションの結果を比較するために,モデル構築に使ったデータ(closed data)を用いて実験を行った. まず,構築したモデルにしたがい事後確率 $p(x_j)p(I_j|x_j)$ を求めた.結果を以下に示す.図 5がモデル作成に使用した2つの異なる点の位置を異なる視点から示す.図5(A)はCT画 像をコロナルで見たときの点の一例で,図5(B)はサジタルで見たときの点の一例である. これ以降図の(A)および(B)は対応しているものとする.また,各特徴点の事前確率を図 6に示す.対応する特徴点が局在しているため,事前分布も局在化していることがわかる.

Fig. 3 Examples fo corresponding points generated by GMDS

しかし,(A)に関しては局在化しているものの分布の分散が大きいことが確認できる.

また, $p(I_j|x_j)$ を図7に示す.図5に示した点の周辺画像と, 似通った部分が高い値を 持っていることがわかる.この手法では,各特徴点 P_j の配置を定めるときに曲面の幾何学 情報(位置と大きさと形)のみを参照し,画像パターンは参照していない.このため,各特 徴点近傍の局所画像のパターンは,位置を画像中で特定できるほど限定されておらず,図に 示すとおり,画像中の広い範囲において高い値を示している.事後確率 $p(x_j)p(I_j|x_j)$ を図 8に示す.事前確率が局在化しているため, $p(x_j|I_j)$ と比べると,局在化した分布を推定で きている.いずれの事後分布も単一のガウス分布では表現しにくいことに注意する.

上記統計を用いて,ノンパラメトリック確率伝搬法の枠組で,特徴点の位置を推定した. まず,初期推定位置として,N = 1000点を $\psi_i(x_i, I_i)$ にしたがって配置した.結果を図9 に示す. $\psi_i(x_i, I_i)$ にしたがって,パーティクルが分布している.次に,NBPにより得られ たパーティクルの分布を図10に示す.各パーティクルが収束し,特徴点の位置推定の分散

IPSJ SIG Technical Report

図 4 対応点の分布 Fig. 4 The distribution of the corresponding points

が減少したことがわかる.これは,各特徴点の位置の推定誤差分散が小さくなっていること をあらわしている. 特徴点の推定結果の詳細な結果を以下に示す.図11にNBPを用い た推定をする前のモデルによる推定位置を示す.推定された分布の分散は大きく確信度が低 いことが分かる.次に,図12にNBPを用いた推定結果を示す.特徴点を含むスライス画 像内における,パーティクルの分布を示している.いずれの場合においても,正しい特徴点 の位置周りで,分布の分散を小さくすることに成功していることが分かる.ここで,各特 徴点の推定位置の分散の推移を評価するために,各パーティクルの共分散行列を求め,その traceを計算した.面*Sⁱ* ごとにtraceの合計を求め,その値がNBPにおける繰り返し仮定 でどのように変化したかを図13に示す.NBPにおける更新にしたがって,確率分布の分 散が減少していることがわかる.これは,各特徴点の位置の推定誤差分散が小さくなってい ることをあらわしている.

5. おわりに

本稿では,医用画像中の臓器中出を想定し,曲面の統計モデルとそのレジストレーション 結果を報告した.モデルは,点群により臓器表面を表現するものであり,各点の画像中の事 前分布,画像からの抽出演算子,臓器表面の形状,画像とモデルとの距離,ならびに画像と モデルの位置合わせのそれぞれの統計モデルを統一的に表現する.上記の統計モデルを構築

(A)
 図5 モデル生成に使用した点
 Fig.5 Two examples of corresponding points

するために,学習用の臓器表面に GMDS により対応点を配置した.この手法は臓器の曲面 形状の類似性を考慮している手法である.配置された各点の位置に基づき,画像中の事前分 布と相対位置関係の確率分布を推定し,また各点近傍の画像の集合に基づき,各点を画像よ り抽出する演算子を構築した.新規画像が与えられ,その画像中の臓器とモデルとをレジス トレーションする場合は,上記の統計モデルに基づき,周辺分布を計算する.この確率の計 算には NBP を採用した.

第4節で結果を示したとおり,提案した手法での統計モデルでは,レジストレーションした曲面上での各位置における確度の推定も行うことができる.このことは今後,異なる手法により対応点を生成し,対応点が統計モデルにどのような影響を与えるのかを考える上で重要なことである.

参考文献

- 1) J.Cates, M., T.Fletcher and R.Whitaker: Entropy-Based Particle System for Shape Correspondence, Proceedings of the Workshop on Mathematical Foundations of Computational Anatomy, *MICCAI*, pp.90–99 (2006).
- 2) 渡辺 航,本谷秀堅,渡邉順久:確率伝搬法を利用する臓器レジストレーション法と その性能評価,電気情報通信学会 (2010).
- 3) Bronstein, A.M., Bronstein, M.M. and Kimmel, R.: NUMERICAL GEOMETRY

Vol.2010-CVIM-172 No.20 2010/5/27

情報処理学会研究報告

IPSJ SIG Technical Report

Vol.2010-CVIM-172 No.20 2010/5/27

情報処理学会研究報告

IPSJ SIG Technical Report

図 10 肝臓のレジストレーション結果(NBP後) Fig. 10 Result of liver registeration(After NBP)

(A)

(B)

図 12 NBP による推定後 Fig. 12 Estimated distribution

図 13 NBP による分布の分散の変化 Fig. 13 The change of the variances of the feature point distributions

(A)

(B)

© 2010 Information Processing Society of Japan