
IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010)

Regular Paper

Interactive Application Scheduling with GridRPC

Hao Sun†1 and Kento Aida†1,†2

GridRPC is known as an effective programming model to develop Grid appli-
cations. However, it is still difficult for non-expert users to apply it efficiently.
For example, a GridRPC application user needs to select computational re-
sources, monitor the resources and estimate the application performance on
the resources. In this paper, we propose InterS, an interactive scheduling sys-
tem for GridRPC applications. First, the automatic scheduling mechanism
provides resource allocation plans, from which the user can choose the most
suitable one. Second, the execution advice mechanism helps the user to im-
prove the performance of the application at run time while overload or failure
on the resource(s) is(are) detected. Third, the scheduling policy mechanism
provides the user with an interface in ClassAd format to define the scheduling
policy applied in InterS. This paper also presents experimental results to show
the advantage of interactive scheduling and how they can be performed at run
time.

1. Introduction

GridRPC 7) is known as an effective programming model for developing Grid
applications. However, it is still difficult for non-expert users to apply it effi-
ciently. The current implementation of GridRPC assumes that a user selects
remote computational resources before run time; thus, it forces the user to do
hard work requiring expert knowledge, e.g., monitoring remote computational
resources and estimating the application performance on the selected computa-
tional resources. Additionally, computational resources on the grid are unstable.
Loads of the resources fluctuate and some resources may fail. GridRPC users
need to make their applications robust enough, so that they can accommodate
the fluctuation and failure of remote computational resources.

Several mechanisms to reduce the complexity of running Grid applications have

†1 Tokyo Institution of Technology
†2 National Institute of Informatics

been proposed, and some of them focus on GridRPC applications. Condor 4)

and Nimrod/G 5) focus on the high throughput and economic feature of Grid
applications, respectively. Task Farming 3) and F-Omega 6) help GridRPC users
by providing advanced mechanisms in terms of task scheduling and dynamic
resource allocation at application run time. GridWay 1) meta-scheduler provides
users with adaptive scheduling features such as automatic rescheduling when a
task fails or a better resource is found. Some of the above mechanisms perform
automatic scheduling, where the resource allocation algorithm is implemented
in the scheduling software or is provided by the user through APIs. Although
there are many successes in automatic scheduling, it sometimes fails to obtain a
satisfying performance due to the fluctuation of resources or a complicated user
requirement to run the application. Some scheduling software enables the user to
configure the resource allocation algorithm before run time. However, it is still
hard for non-expert users to completely configure the algorithm. In this case,
interactions such as selection of execution plans and changing resource allocation
with the user’s decisions contributes to improving the efficiency and robustness
of the application run and user’s satisfaction.

In this paper, we propose InterS, an interactive scheduling system for GridRPC
applications. Advantages of the proposed InterS are presented by the following
scenarios: Some scheduling software enables the user to configure the resource
allocation algorithm before run time. An expert user may give a complete con-
figuration, which includes job migration when failure on computing resources
happens. However, it is complex and hard work for a non-expert user to give the
complete configuration before run time. InterS provides the user with multiple
candidates of scheduling configurations (or plans) and enables the user to choose
a suitable one. It particularly helps the non-expert user to run the application
with a suitable resource allocation algorithm.

Another scenario is the situation that the scheduling system needs a user’s
decision to change the resource allocation at run time. For example, when a
user runs an application (or jobs) with the limited budget, a computing resource
executing the job fails. A sophisticated automatic scheduling system may move
the job to another computing resource if the cost of running the application
does not exceed the budget declared by the user before run time. However, when

88 c© 2010 Information Processing Society of Japan

89 Interactive Application Scheduling with GridRPC

Table 1 Comparison of scheduling techniques in scheduling software.

Condor Nimrod/G Task Farming F-Omega GridWay InterS

automatic scheduling Y Y Y N Y Y
RAA1 customization N N N N Y Y
execution advice runtime selection2 N N N N N Y

1. RAA: short for resources allocation algorithm
2. Execution advice includes execution plans

moving the job increases the cost beyond the user’s budget, the scheduling system
needs the user’s decision if it is to migrate the job at run time. InterS enables
the user to give such a decision during application run time.

The interactive scheduling proposed in this paper is enabled by the cooperation
of three mechanisms. The automatic scheduling mechanism provides resource
allocation plans, from which the user can choose the most suitable one. The
execution advice mechanism helps the user to improve the performance of the
application at run time while overload or failure on the resource(s) is(are) de-
tected. Some expert users may want to customize resource allocation algorithms
for their applications. The scheduling policy mechanism provides the user with
an interface in ClassAd format to define the resource allocation algorithms ap-
plied in InterS. It also enables users to change the currently running resource
allocation algorithms to others during the run time.

The rest of this paper is organized as follows: in Section 2, comparison between
InterS and related works are presented. In Section 3, design and implementation
issues are discussed. Section 4 shows the experimental study, and Section 5 gives
the conclusions.

2. Related Works

Condor and Nimrod/G are resource brokers, which dispatch user tasks to suit-
able computational resources. Both requirements from user applications and
those from resources providers are specified in the ClassAds, and the match-
making mechanism dispatches tasks to resources so as to satisfy both the re-
quirements in Condor. Nimrod/G has a similar mechanism and it also enables
task scheduling with budget constraints. Both Condor and Nimrod/G perform
fully automatic scheduling. The user cannot change resource allocation during

application run time.
Task Farming middleware provides a user APIs for task scheduling and a fault

tolerant mechanism. F-Omega is a programming framework, which enables flex-
ible grid application development and its execution. Although Task Farming
performs automatic scheduling, the implemented allocation algorithm is a sim-
ple one and the user cannot change resource allocation algorithm at run time.
F-Omega enables a user to change the resource allocation during application run
time, however, the user needs to select an initial set of computational resources.

GridWay is a job submission framework on the Globus toolkit. It performs
automatic scheduling and enables a user to change resource allocation during
application run time.

The proposed InterS performs automatic scheduling and enables a user to
change resources allocation during application run time. Generally, changing
resource allocation requires the user to have expert knowledge about both the
applications and resources on the grid. InterS helps the user by giving advice for
changing resource allocation during application run time to solve this problem.
Furthermore, InterS enables the user to change the resource allocation algorithm
currently running during application run time. Table 1 summarizes techniques
enabled in scheduling software. To the best of our knowledge, there is no software
that enables “interactive scheduling” mechanisms as InterS does.

3. Design and Implementation

Figure 1 shows the flow of interactive scheduling implemented in InterS. In-
teractive scheduling proposed in this paper is enabled by the cooperation of three
mechanisms: the automatic scheduling mechanism, the execution advice mecha-
nism and the scheduling policy mechanism. The automatic scheduling mechanism

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

90 Interactive Application Scheduling with GridRPC

Fig. 1 Interactive scheduling flow.

Fig. 2 InterS architecture overview.

provides initial resource allocation plans, and the user can change the plans and
control the scheduling behavior at run time through execution advice and/or
scheduling policy files.

Figure 2 illustrates the software architecture of InterS. A user of InterS first
writes a GridRPC client program using the InterS client APIs. For example
“addJob” method (in Table 2) creates GridRPC tasks first then stores them
into the job pool through the job pool manager. Three ways of adding resources
to InterS are supported: the API, the web interface and the policy file. GridRPC
executables, or tasks, are executed on remote computational resources selected
by InterS. At run time, the user starts the application and performs interactive
scheduling through the web or policy file interface.

3.1 Client Interface
A user of InterS first writes a GridRPC client program using the InterS client

APIs. The user gives information about the application, or remote GridRPC exe-
cutables, through the APIs. Currently, APIs for Java & Groovy 11) are available.
Table 2 summarizes the InterS Client APIs. Figure 3 presents an example of the
InterS client program in Groovy language. First, the user needs to decide which
resource allocation algorithm to use for automatic scheduling, and then binds
the remote executables with the scheduling agent by creating a RemoteFunction
instance. This time “MasterWorker” is adopted for utilizing local clusters. It
allocates every cluster once for task execution, and then it chooses the resources
that finish task execution for the remaining tasks earlier. When the tasks finish
their execution, the results are stored into “results”, which is an array of String
arrays (defined at line 3). After submitting the tasks to InterS, the user can call
the waitAll method to block the client program until all tasks are finished. In
this example the user decides to add a commercial resource later, which shows
better performance. So the user changed the “MasterWorker” scheduling agent
to “CostPrior” for the cost management, after waiting for the end of tasks spec-
ified in waitAnd. Finally, after all tasks finish execution, the user can access
values stored in the “results” list.

3.2 Automatic Scheduling
The automatic scheduling mechanism selects computational resources that sat-

isfy the requirements of the user application. Multiple resource allocation algo-
rithms are implemented in InterS. Currently, the MasterWorker algorithm, the
RoundRobin algorithm, the PerformancePrior and the CostPrior algorithm are
available in InterS. The MasterWorker and RoundRobin are the simple heuris-
tics, which allocate resources without any cost concern. On the other hand, the
PerformancePrior and the CostPrior algorithm offer budget constraints resource
allocation plans to the user. Various allocations as well as the cost and per-
formance estimation are given in a plan produced by the automatic scheduling
mechanism. The user then chooses the one suitable for his/her preference. Also,
the user can define the customized resource allocation algorithm(s) through the
scheduling policy mechanism (e.g., last three lines in Fig. 15). For example, the
algorithm to generate PerformancePrior plans is shown in Fig. 5. First, InterS

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

91 Interactive Application Scheduling with GridRPC

Table 2 The list of APIs in InterS.

Task initiation APIs

ScheduleAgent A Java class implementing the scheduling agent(s) in InterS. It takes the agent type as
argument in terms of MasterWorker, RoundRobin, PerformacePrior and CostPrior

RemoteFunction A Java class implementing the GridRPC remote executable(s) in InterS. It takes the name
of the executable and a scheduling agent, a default agent setting for this executable, as argu-
ments.

Cluster A java class, which stores the resource information(s).

Task submission APIs

addJob() Submitting user tasks to InterS. Tasks are stored in the job pool and InterS decides the
resource allocation. A task id will be returned for further job handling.

addJobWith() Same as addJob except that resources are selected by users.
waitAll() Blocking until all tasks are finished.
waitFor() Blocking until a certain task are finished. The only argument is the task id.
waitAnd() Blocking until all tasks in a group are finished. The arguments are a list of task ids.
waitOr() Blocking until one of the tasks in a group are finished. The arguments are a list of task ids.

Execution control APIs

reschedule() Rescheduling tasks, which do not start

0. // INITIALIZE CLIENT PROGRAM
1. def schedulingAgent =

new ScheduleAgent(type:"MasterWorker");
2. def remoteFunc = new RemoteFunction(

name:"NPB/EP", agent:schedulingAgent);
3. def scheduler, results = [], taskids = [];
4. // SUBMIT TASKS
5. for(i=0;i<N;i++) {
6. def aResult = new String[]; results << aResult;
7. taskids <<

scheduler.addJob(remoteFunc,arg1,arg2,aResult);
8. }
9. scheduler.waitAnd(** subset of taskids **);

10. // CHANGE SCHEDULING AGENT
11. schedulingAgent =

new ScheduleAgent(type:"CostPrior");
12. remoteFunc.agent = schedulingAgent;
13. remoteFunc.save();
14. scheduler.reschedule();
15. scheduler.waitAll();
16. // PROCESS RESULTS
17. for(i=0;i<N;i++) { **use results[i]** }

Fig. 3 InterS client program.

ranks all the resources by job execution times in ascending order (through 1 to 7
lines) and stores the ranking to the list Lrt. Then, InterS gets the first resource
R from the list Lrt, which has Nr cores, and assigns the first Nr jobs in the

list Lj to it. InterS repeats this process until it assigns all the jobs (through
9 to 22 lines). Finally, InterS calculates the execution time and costs for each
resource and creates the execution plans for the user (through 24 to 26 lines).
The algorithm to generate CostPrior plans is almost the same, InterS ranks all
the resources by the cost rate Rr (the cost to execute one job with one core in
one second) in ascending order and then does the same as the PerformancePrior
plan generation (through 9 to 26 lines).

The scheduling agent presented in Fig. 4 performs scheduling. An instance of
the scheduling agent is generated for each resource allocation algorithm, that is,
four scheduling agent instances (MasterWorker, RoundRobin, PerformancePrior,
CostPrior) are implemented in the default setting. The user can change the
resource allocation algorithm at application run time by switching the scheduling
agent instances. The scheduling agent submits tasks to the execution manager
(illustrated in Fig. 2) following the resource allocation algorithm. The execution
manager invokes tasks to remote computing resources through execution threads,
where an execution thread is created for each task.

Information concerning remote computational resources, e.g., CPU specifica-
tions, available memory sizes and unit prices for computation, is required in

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

92 Interactive Application Scheduling with GridRPC

Fig. 4 An example of automatic scheduling.

scheduling. InterS has two ways of obtaining the information. The first way
is collecting resource information from the MDS 8). The resource information is
collected automatically and the user does not have to input the information. The
second way is that the user provides the information.

The estimation of task execution time on remote computational resources is an
important issue in making a better scheduling plan. InterS has a mechanism to
estimate task execution time on remote computational resources by running test
jobs. The user can configure the test, e.g., defining the number of test jobs to
run, through the InterS interface. Running test jobs is not acceptable in some
cases due to performance problems or budget constraints. In this case, the user
can give an estimated task execution time to InterS.

The automatic scheduling mechanism takes care of job execution and makes
sure that the jobs are finished successfully. When some jobs have failed and the
migration cost does not exceed the user’s budget declared before run time, the
automatic scheduling mechanism moves jobs automatically. When the migration
cost exceeds the budget, the automatic scheduling mechanism needs the user’s

Lr is the list of available resources now
Lrt = [], an empty list for ranking resources in Lr

3: for all resource R in Lr do
calculate the average of execution times Tr for all finished jobs in resource R
store the pair (R, Tr) to list Lrt

6: end for
sort Lrt by execution times in ascending order.

9: Lj is the list of jobs to be execute
Lcr = [], an empty list to store costs for the resources in Lr

Ltr = [], an empty list to store execution times for the resources in Lr

12: repeat
for all pair (R, T) in Lrt do

Nr is number of available nodes in the resource R
15: remove the first Nr jobs from Lj

get the execution cost rate Rr for resource R
{Rr is the cost to execute one job with one core in one second}

18: calculate the costs Cr = Cr + Nr · T · Rr

calculate the execution time Tr = Tr + T
store Cr and Tr in Lcr and Ltr, respectively

21: end for
until The list Lj is empty

24: for all resource R in Lr do
make plan Pr with Cr and Tr in Lcr and Ltr, respectively

end for

Fig. 5 The algorithm to generate PerformancePrior plan.

direction, so InterS creates advice and waits for the user’s instruction. In this
situation, InterS does not move jobs unless it receive the user’s instruction. The
next section will show the details of execution advice.

3.3 Execution Advice
The execution advice mechanism gives advice for changing resource allocation,

or scheduling plan, during application run time, when it finds a better plan. In-
terS monitors the execution status of each task in each cluster, so it can give
advice for job execution failure and performance degradation on the allocated
resource(s) at application run time. The user can use the new resources, avoid-
ing performance degradation caused by execution failure and/or external tasks
submission, through the InterS interface if the user accepts the advice. Figure 6
shows the structure of execution advice and Fig. 7 represents the algorithm for
generating execution advice. To generate advice, InterS stores all of the abnor-
mal jobs in the job list L of each execution advice. For example, when a job J

fails its execution in a resource R1, InterS adds the job J into a list L of an exe-

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

93 Interactive Application Scheduling with GridRPC

Fig. 6 Structure of the execution advice.

cution failure advice. To generate migration plans for all the jobs in list L, InterS
uses the resource allocation algorithm A such as CostPrior, PerformancePrior or
customized algorithms to decide the resource R2 next to use, and calculates the
estimated execution time T and cost C. The user may decide which algorithm
to use by the policy file (line three of Fig. 9). If not, InterS uses the algorithm of
the previous plan. InterS only shows the advice that contributes to performance
improvement to the user. For example, if InterS detects a job fails its execution
in the resource R1, the execution time of the job in the resource R1 is considered
to be infinite, so any advice to move the job to a new resource R2 is considered to
be good. When the migration costs become higher or exceeds the user’s budget
if any, InterS shows the advice to the user.

Figure 8 presents an example of the execution advice. The numbers 3 and 6
are the advice ids. The user can handle these ids to accept the advice through
the web interface to the advice manager (illustrated in Fig. 2). The execution
advice shows the number of migration tasks, cluster names, cost and performance
changes. In the example of Fig. 8, the advice 3 recommends the user to migrate
10 tasks from the resource gk to the resource kuruwa. The advice also shows
that the migration costs $30 more but makes execution time 100 seconds shorter.

Fig. 7 The algorithm for generating execution advices.

Fig. 8 An example of execution advice.

Execution advice are managed in three statuses: proposed, used and expired.
Advice 6 is in the expired status because less than 20 tasks are available in
cluster kuruwa.

The advice manager presented in Fig. 2 performs the execution advice. The
advice manager periodically communicates with the execution information man-

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

94 Interactive Application Scheduling with GridRPC

ager, the policy manager and the cluster pool manager presented in Fig. 2. The
execution information manager collects past task execution records, which include
errors, performances and costs to run tasks on remote computational resources.
When a new resource becomes available, the cluster pool manager notifies the
advice manager concerning the information of the new resource.

3.4 Scheduling Policy
The scheduling policy mechanism enables the user to give the customized re-

source allocation algorithm. Two interfaces to give the user’s policy, the web
interface and the policy file in ClassAd format are available in InterS.

The policy manager presented in Fig. 2 actuates changing the user’s policy to
scheduling at application run time. It includes creating new scheduling plans,
adding new computational resources, changing budget constraints and the con-
figuration of test jobs. The user needs to write all the candidate resources in the
policy file.

Figure 9 shows an example of the policy file. Every change is detected and
handled by the policy manager. “CostLimitation” stands for the limitation of the
entire application run. “TestJobCostLimitation” specifies the total cost upper

1. costLimitation = 17; // Budget constraints
2. testJobCostLimitation = 3; // Test job cost constraints
3. planTypeForFaultTolerant = "performancePrior";
4. cluster2 = [// Cluster definition
5. name = "gs.alab.ip.titech.ac.jp";
6. price = 0.002;
7. cpuInfo = (REMOTE_NODE_CPUINFO is undefined)? 1263.475 : REMOTE_NODE_CPUINFO;
8. memInfo = (REMOTE_NODE_MEMINFO is undefined)? 1010 : REMOTE_NODE_MEMINFO;
9. numOfNodes = (REMOTE_NODE_NUMBER is undefined)? 4 : REMOTE_NODE_NUMBER;

10. corePerCPU = (REMOTE_NODE_NUMOFCORE is undefined)? 2 : REMOTE_NODE_NUMOFCORE;
11. onFailReduceRatio = numOfJobsPerCallReduceRatio;
12.];

Fig. 9 A policy file example.

Table 3 The experimental environment.

DRM �1 CPU (vendor/MHz) nodes × cores OS exec. time (s) �2 price ($/(core · s))
davinchi Torque Xeon/2392 8 × 2 Ubuntu 7.10 120 0.00052
kuruwa Torque AMD/2412 10 × 4 CentOS 5.0 70 0.0010

1. DRM: distributed resource manager, such as SGE, PBS, Condor
2. Average execution time of EP (Class A) benchmark per core in each cluster

bound of test jobs. The user may change these options to affect the behavior of
the PerformancePrior and CostPrior scheduling agents. Cluster information is
written by ClassAd expressions; for example, REMOTE NODE NUMOFCORE is
assigned to corePerCPU, if InterS can retrieve the number of cores in “gs” from
MDS.

4. Experimental Study

This section presents experiments to see the effect of interactive scheduling
provided by InterS. We implemented InterS and conducted experiments using
PC clusters located in two sites. In the experiments, we verify the effect of
interactive scheduling by InterS using three scenarios.

4.1 Experimental Setting
Table 3 shows PC clusters used in the experiments. Two clusters, davinchi

and kuruwa, are located in Yokohama and Tokyo, respectively. The execution
time in the table shows the average benchmark execution time of each core in
each PC cluster. The EP benchmark (Class A) in NAS Parallel Benchmarks 9)

is used here. We assume that a unit price to run computation on the PC cluster,
price in Table 3, is announced from resources providers.

In this experiment, we used three scenarios, which present interactions between
InterS and the user. Using the scenarios, we show how interactive scheduling by
InterS works and how to verify the effect of InterS.

4.2 Automatic Scheduling
Figure 10 presents an interaction scenario for the automatic scheduling mech-

anism. In the scenario, the user first submits the application, which consists of
42 parallel jobs to run the NAS Parallel Benchmark EP (Class A). InterS then
presents resource allocation plans for the submitted jobs. The user chooses the
most suitable one for his/her requirements, and InterS starts the execution of the

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

95 Interactive Application Scheduling with GridRPC

Fig. 10 An interaction for the automatic scheduling mechanism.

Table 4 The Evaluation of Automatic Scheduling.

PerformancePrior Plan (ranking by execution time)

Cluster number of jobs the plan (time, cost) evaluation results (time, cost)

davinchi 2 120 [sec] 142 [sec]
kuruwa 40 $2.84 $3.65

CostPrior Plan (ranking by fixed price)

Cluster number of jobs the plan (time, cost) evaluation results (time, cost)

davinchi 16 120 [sec] 176 [sec]
kuruwa 26 $2.76 $3.00

1. the definition of price is the same as in Table 3

jobs. In Fig. 10, InterS presents two resource allocation plans such as CostPrior
and PerformancePrior plans. Besides the above plans, InterS can also present
RoundRobin and MasterWorker plans, which do not consider the costs of running
the users application. The CostPrior plan and the PerformancePrior plan make
ranking of clusters by cost and performance, respectively. The CostPrior plan
chooses computing resources that have a lower cost first, and PerformancePrior
chooses resources, which show shorter a execution time first.

In this scenario, what the user needs to do is to choose a suitable plan for
him/her, and the user does not have to configure details of the plan. We believe
that this mechanism particularly helps non-expert users.

Table 4 shows the results of resource allocation, execution times and costs of
running the application where the user chooses each of the two resource allocation
plans. For example, when the user choose the PerformancePrior plan, 40 CPU
cores on kuruwa were allocated to the application, (or 40 jobs were assigned to

(a) monitoring results in kuruwa

(b) monitoring results in gs

Fig. 11 Execution results of PerformancePrior plan.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

96 Interactive Application Scheduling with GridRPC

Fig. 12 An interaction for the execution advice mechanism.

kuruwa) and two CPU cores on davinchi were allocated to the application. The
PerformancePrior plan allocates resources to minimize the application execution
time. Thus, InterS allocated all CPU cores (40 cores) on kuruwa with higher
performance and two CPU cores on davinchi. InterS estimated the application
would finish in 120 [sec] with a cost of $2.84; however, the actual execution time
and the cost were 142 [sec] and $4.39.

The gap between the estimated execution time and the actual time is due to the
waiting time in the batch queue, or Torque. InterS does not estimate the queuing
time in the current implementation. We will leave the queuing time estimation
in InterS as our future work. When the user chose the CostPrior plan, InterS
allocated 16 CPU cores on davinchi with a lower price and 26 CPU cores on
kuruwa.

InterS also presents monitoring results at application run time. Figure 11
shows a snapshot of the monitoring results in kuruwa and gs respectively, when
the user chooses the PerformancePrior plan. The X-axis indicates the jobs. Note
that Fig. 11 includes one test job on each cluster for estimating the execution
time. The Y-axis shows the execution time in seconds. It shows that first two
jobs run on the davinchi and the remaining 40 jobs run on the kuruwa.

4.3 Execution Advice
Figure 13 shows a snapshot of the monitoring results by InterS. In this

snapshot, job 26 and job 27 are terminated due to the failure on the computing
nodes. InterS automatically detects the failure of job execution during the run
time and give the user through the web interface. It also has an option to detect
performance degradation of computing nodes due to the high load caused by

Fig. 13 Output of InterS when job execution failed.

Fig. 14 Screen capture of advices on cell phone.

external jobs and informs the user.
The scenario in Fig. 12 presents interactions between InterS and the user us-

ing the execution advice mechanism to solve problems due to the failure or the
performance degradation. When InterS detects events of the failure or the per-
formance degradation on computing nodes, it makes a plan to move jobs running
on the computing nodes to other nodes and gives the user advice of the job mi-

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

97 Interactive Application Scheduling with GridRPC

Table 5 The evaluation of execution advice.

(a) Advice for Job Execution Failure

Cluster #initial cores1 #failed jobs #migrated jobs #final cores2 change of cost3

davinchi 2 0 +2 4 $0.12
kuruwa 40 2 −2 38 −$0.14

(b1) Advice for Cluster Performance Degradation (Automatic Migration)

Cluster #initial cores1 #migrated jobs #final cores2 change of cost

davinchi 2 +10 12 $0.62
kuruwa 40 −10 30 −$0.70

(b2) Advice for Cluster Performance Degradation (With the User’s Permission)

Cluster #initial cores1 #migrated jobs #final cores2 change of cost3

davinchi 16 −14 2 −$0.87
kuruwa 26 +14 40 $0.98

(c) External Jobs Running on Kuruwa and Davinchi Clusters4

Cluster #cores normal exec. time (s) burden exec. time (s)5 performance down6

kuruwa 40 70 308 23%
gs 16 120 313 38%

1. CPU cores at job allocation 2. CPU cores after job migration 3. Cost changes because of job migration
4. Details of external jobs: two parallel execution of skampi coll.ski bechmark set
5. The execution time of the PerformancePrior plan with external jobs.
6. Percentage of performance compared to PerformancePrior plan execution only.

gration. When the migration cost becomes higher than the previous plan, the
automatic scheduling mechanism needs the user’s decisions. In this situation,
InterS does not move jobs unless the the user provides interaction. Otherwise,
InterS executes the migration automatically for the user.

In the current implementation, there are two options to give advice to the user,
the web interface and the user’s cell phone. It is not realistic to assume a user
sits in front of the user’s PC for monitoring the long-term application. The user
instructs InterS when he/she accepts the advice or chooses one piece of advice
from the multiple pieces of advices given by InterS. The user can give instructions
through the web interface or the cell phone. Then InterS moves jobs following the
user’s instructions. Figure 14 shows a snapshot of the advice given by InterS
through the cell phone. It tells the user to migrate jobs 26 and 27 from kuruwa
to davichi (the gateway node is named gs), because InterS detects the above jobs

cannot finish normally in kuruwa. And it also shows that the migration can save
the user $0.02. The user just needs to choose the options: accept or deny at
the end of the advice, then a reply email is created. After the user has sent the
email back, InterS can explain the email and apply the advice if the user chose
the accept option.

Table 5 shows the results of job migration using the execution advice mech-
anism. The application used in the experiment is the same as the scenario of
Fig. 10. For the results in Table 5 (a), we simulated failure of nodes on kuruwa
by removing jobs in the batch queue on kuruwa. InterS detected failure of two
jobs in the queue and calculated the costs of moving the jobs to davinchi. The
costs are less than the previous plan, so two jobs were moved from kuruwa to
davinchi automatically. For the results in Table 5 (b1), we simulated the perfor-
mance degradation on kuruwa by running external jobs presented in Table 5 (c).

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

98 Interactive Application Scheduling with GridRPC

1. // Test job cost constraints
2. testJobCostLimitation = 3;
3. planTypeForFaultTolerant = "performancePrior";
4. cluster1 = [// Kuruwa cluster definition
5. name = "kuruwa-gw.alab.ip.titech.ac.jp";
6. price = 0.0001;
7. cpuInfo = (REMOTE_NODE_CPUINFO is undefined)? 2412 : REMOTE_NODE_CPUINFO;
8. memInfo = (REMOTE_NODE_MEMINFO is undefined)? 4021 : REMOTE_NODE_MEMINFO;
9. numOfNodes = (REMOTE_NODE_NUMBER is undefined)? 10 : REMOTE_NODE_NUMBER;

10. corePerCPU = (REMOTE_NODE_NUMOFCORE is undefined)? 4 : REMOTE_NODE_NUMOFCORE;
11. onFailReduceRatio = numOfJobsPerCallReduceRatio;
12.];
13. cluster2 = [// Davinchi cluster definition
14. name = "gs.alab.ip.titech.ac.jp";
15. price = 0.00052;
16. cpuInfo = (REMOTE_NODE_CPUINFO is undefined)? 2392 : REMOTE_NODE_CPUINFO;
17. memInfo = (REMOTE_NODE_MEMINFO is undefined)? 1010 : REMOTE_NODE_MEMINFO;
18. numOfNodes = (REMOTE_NODE_NUMBER is undefined)? 8 : REMOTE_NODE_NUMBER;
19. corePerCPU = (REMOTE_NODE_NUMOFCORE is undefined)? 2 : REMOTE_NODE_NUMOFCORE;
20. onFailReduceRatio = numOfJobsPerCallReduceRatio;
21.];
22. scheduling_MyRanking = [// Definition of scheduling_"PlanName" will add a "PlanName" plan
23. cluster_ranking_data = { cluster2, cluster2, cluster1 } // Using clusters in the list by the index order
24.];

Fig. 15 The policy file used in this experimental study.

Because the migration saves cost for the user this time, 10 jobs were moved from
highly loaded kuruwa to lightly loaded davinchi automatically. The results in
Table 5 (b2) show that the migration costs more than the previous plan, then
InterS asks for the user’s decision. From the results, we can confirm that jobs
migrated successfully when problems occurred. The advice can achieve a better
performance, and the user only needs to choose and apply the advice. Thus, the
execution advice mechanism with interactive operation works robustly with the
changing nature of grid environment.

4.4 Scheduling Policy
Figure 15 shows the policy file used in this experiment. Many behaviors can

be customized through the scheduling policy file, such as cost limitation (line 1),
cluster configuration (through 4 to 21 lines) and default to use plans when job
failure (line 3). Figure 16 shows the usage of scheduling policy. The user creates
a new automatic scheduling plan by adding a “scheduling MyRanking” definition
to the policy file. MyRanking (through 22 to 24 lines) utilizes resources in the
order: davinchi, davinchi, kuruwa. As described in Section 4.2, the automatic

Fig. 16 An interaction for the scheduling policy mechanism.

scheduling mechanism creates plans by cost or performance order, so it left the
problem that user cannot customize the order by hand. The user would like
to rank clusters by him/herself, for instance, when some crucial data sets are
gathered in the local clusters (such as davinchi), so he/she has to deal with the
data in the dedicated clusters and submit enough jobs to process the data sets.

Table 6 shows the results of the MyRanking plan. InterS allocates 32 jobs
to davinchi and the execution time is raised to 240 [sec]. The remaining 10 jobs

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

99 Interactive Application Scheduling with GridRPC

Table 6 The evaluation of scheduling policy.

Resource Allocation Results of MyRanking Plan

Cluster #initial cores1 the plan (time, costs) results (time, costs)

davinchi 32 240 [sec] 310 [sec]
kuruwa 10 $2.7 $3.49

1. Job allocation with “MyRanking” plan.

are allocated to kuruwa and the execution is finished successfully. Thus, the
scheduling policy mechanism provides users with an interface to customize the
scheduling behavior and make their own plans to meet special requirements.

5. Conclusions

This paper proposed InterS, an interactive scheduling system for GridRPC
applications. Interactive scheduling is enabled by the cooperation of three
mechanisms: automatic scheduling mechanism, execution advice mechanism and
scheduling policy mechanism. We implemented the interactive scheduler on the
testbed and evaluated the effectiveness of the interactive scheduling using the
application scenarios. The experiments presented in this paper are limited to
those with a simple application scenario. We plan to evaluate the advantage of
InterS through experiments with more scenarios.

Acknowledgments A part of this work is supported by Japan Society for
the Promotion of Science (JSPS) within the framework of Global COE Program
“Photonics Integration-Core Electronics”.

References

1) Huedo, E., Montero, R.S. and Llorente, I.M.: A Framework for Adaptive Execution
on Grids, Intl. J. of Software — Practice and Experience (SPE) (2004).

2) Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T. and Matsuoka, S.: Ninf-g: A
reference implementation of rpc-based programming middleware for grid comput-
ing, Journal of Grid Computing (2003).

3) Tanimura, Y., Nakada, H., Tanaka, Y. and Sekiguchi, S.: Implementation of A
Task Farming API over GridRPC Framework, IPSJ SIG Technical Reports, HPC-
103 (2005) (in Japanese).

4) Raman, R. jesh, Livny, M. and Solomon, M.: Matchmaking: Distributed Resource
Management for High Throughput Computing, Proc. Seventh IEEE International
Symposium on High Performance Distributed Computing, July 28-31, Chicago, IL

(1998).
5) Buyya, R., Abramson, D. and Giddy, J.: Nimrod/G: An Architecture for a Re-

source Management and Scheduling System in a Global Computational Grid, The
Fourth International Conference on High-Performance Computing in the Asia-
Pacific Region, hpc, p.283 (2000).

6) Watanabe, H., Hirasawa, S. and Honda, H.: F-Omega: A Framework for GridRPC
Application with Adaptive Server Use, IPSJ SIG Technical Reports, HOKKE-2007
(2007) (in Japanese).

7) Seymour, K., Nakada, H., et al.: Overview of GridRPC: A Remote Procedure Call
API for Grid Computing, GRID COMPUTING, GRID 2002, LNCS 2536 (2002).

8) Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C.: Grid Information
Services for Distributed Resource Sharing, Proc. 10th IEEE Int. Symp. on High
Performance Distributed Computing, San Francisco, CA, USA (2001).

9) Bailey, D., Barton, J., Lasinski, T. and Simon, H. (Eds.): The NAS Parallel Bench-
marks, NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett
Field, CA (1991).

10) SKaMPI 5 is a benchmark for MPI implementations. http://liinwww.ira.uka.de/
˜skampi/

11) An dynamic language for Java.

(Received July 24, 2009)
(Accepted December 2, 2009)

Hao Sun received his B.E. and M.E. degrees from Tokyo In-
stitute of Technology University in 2006, 2008, respectively. He
is now a doctor course student at the Department of Information
Processing, Tokyo Institute of Technology from 2008. His research
interests are parallel and distributed computing and e-science. He
is a member of IPSJ.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

100 Interactive Application Scheduling with GridRPC

Kento Aida received his B.E., M.E. and Dr.Eng. degrees from
Waseda University in 1990, 1992, 1997, respectively. He became
a research associate at Waseda University in 1992. He joined the
Tokyo Institute of Technology and became a research scientist at
the Department of Mathematical and Computing Sciences in 1997,
an assistant professor at the Department of Computational Intel-
ligence and Systems Science in 1999, and an associate professor

at the Department of Information Processing in 2003, respectively. He was a
researcher at PRESTO, Japan Science and Technology Agency (JST) from 2001
through 2005. He was a research scholar at the Information and Computer Sci-
ences Department, University of Hawaii in 2007. He is now a professor at the
National Institute of Informatics and a visiting professor at the Department of
Information Processing, Tokyo Institute of Technology from 2007. His research
interests are parallel and distributed computing and e-science. He is a member
of IEICE, IEEJ, ACM and IEEE-CS.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 88–100 (Mar. 2010) c© 2010 Information Processing Society of Japan

