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Single IP Address cluster offers a transparent view of a cluster of machines as
if they were a single computer on the network. In such an environment, process
migration can play a significant role for providing services seamlessly and for
increasing sustainability. In this paper we propose a live migration mechanism
which is capable of moving processes that maintain a massive amount of network
connections, supporting both TCP and UDP sockets. Incoming packet loss
during socket migration is prevented by exploiting the broadcast property of the
Single IP Address cluster, while process live migration minimizes the execution
freeze time during the actual migration of the process context. Performance
evaluation on machines equipped with a 2.4 GHz CPU and Gigabit Ethernet
interconnect shows that migrating a process of 1 GB image size and over 1000
established network connections results in less than 200 ms process freeze time,
rendering the transition fully transparent and responsive from the clients’ point
of view. The implementation is comprised entirely of a kernel module for Linux
2.6, without any changes to the existing kernel code.

1. Introduction

Several network based applications, such as massively multi-player online games
(MMOG) 1), networked virtual environments (NVE) 2) and distributed simula-
tions like the High Level Architecture (HLA) 3) maintain persistent network con-
nections. While providing these services using clusters of inexpensive commodity
computers has become commonplace, addressing scalability, reliability and sus-
tainability is still challenging in such environments.

Process migration is a mechanism which decouples an application from the
physical machine that is executing it, from the source node and allows the process
to continue running on a separate computer, on the destination node. It can be
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used for load balancing to address scalability, it can be utilized as a foundation of
fault tolerance making the system more reliable and it also allows the deallocation
of computers which can decrease the overall power consumption 4).

Migrating applications that maintain TCP/IP or UDP/IP connections with
their clients can cause difficulties due to the strong integration of a connection
with its IP endpoints. Single IP Address clusters help to overcome this problem
by offering a transparent view of a whole cluster as if it were a single computer
on the network. This makes it possible to migrate processes inside the cluster
even with network connections, practically without the client noticing it.

Providing a single IP address can be realized in two ways, Fig. 1 depicts the
difference between these approaches. The most common case is a cluster of ma-
chines with different local IP addresses and a router in front of them, which in
turn translates the IP addresses appropriately 5),6). However, the problem in this
case is that each time a connection is moved, the router has to be updated in
order to reflect the new IP to MAC address mapping. This extra administra-
tion reportedly leads to a noticeable decrease in the process’s responsiveness,
besides it can potentially cause incoming packet loss since the migration is not
an anticipated event on the client side 7).

To the contrary, in a broadcast based cluster each node is equipped with a pub-

Fig. 1 Comparison between NAT and broadcast based Single IP Address Clusters.
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2 Live Migration of Processes Maintaining Multiple Network Connections

lic and a local interface. The same IP address is assigned to public interfaces and
the local ones are used for in-cluster communication. The router simply broad-
casts each incoming packet to the whole cluster 8),9). The broadcast property of
this model makes it possible to migrate a connection without any extra effort on
the router and proper co-operation between the source and the destination nodes
allows capturing packets that might arrive during the migration.

The main difference between the two cluster setups lies in the way new con-
nections are accepted. In case of broadcast based clusters, a cluster-coordinated
method can be realized at the operating system level, without posing any restric-
tions on the type of deployable services 10).

Further focusing on responsiveness, process migration can be categorized in
two cases considering the process freeze time required, frozen migration and live
migration 4). In case of frozen migration, the process gets suspended, its mem-
ory image is transferred to the destination node where the execution is then
restarted. The foundation of this mechanism is called checkpoint-restarting. On
the other hand, live migration lets the application proceed with its execution
while it asynchronously transfers most of the process image. Subsequently, it
tracks and sends incremental updates of the data changed in memory until a pre-
defined condition is met, when the execution context is moved to the destination
node. This solution is based on incremental checkpoint-restarting.

This paper makes the following contributions: a process migration technique
is designed that is capable of moving processes with massive amount of net-
work connections; UDP and TCP sockets in established or listening states are
supported; incoming packet loss is prevented by exploiting the broadcast based
cluster and therefore rendering the transition fully transparent on the peer’s side.
Furthermore, we show how process live migration enhances responsiveness at the
socket level.

The rest of the paper is organized as follows, Section 2 presents basic back-
ground on process migration and introduces the Berkeley Checkpoint-Restart
Library (BLCR) 11), which we have modified to support live migration of pro-
cesses with TCP/UDP connections. Section 3 describes the design and Section 4
details the implementation of the socket migration mechanism. The process live
migration technique and dirty page tracking are explained in Section 5. Perfor-

mance evaluation is given in Section 6 and related work is discussed in Section 7.
Finally, Section 8 concludes the paper.

2. Background

In this section the BLCR 11) checkpoint-restart library is introduced first, pro-
viding an overview of the main steps of the checkpoint and restart procedures.
The act of process migration, based on checkpoint-restarting is then described.

2.1 Berkeley Checkpoint-Restart library
The Berkeley Checkpoint-Restart library (BLCR) 11) is an open source system-

level checkpointer designed with High Performance Computing (HPC) applica-
tions in mind. In order to make an application checkpointable there is no need
to modify its source code. Basic support for BLCR can be enabled for instance
by executing the application via a special tool provided by the BLCR package.

2.1.1 Checkpointing
The BLCR checkpoint library installs a dedicated signal handler to make an

application checkpointable. Figure 2 demonstrates the main execution steps
during the checkpoint procedure, which are the following:
( 1 ) The target process is notified via a signal that checkpointing is requested.
( 2 ) Each thread of the process executes the BLCR signal-handler, which issues

an ioctl() call to the libraries character special file to enter the kernel-space.
( 3 ) The threads are synchronized and one is chosen as the leader.
( 4 ) The leader dumps thread relations, memory mappings and file descriptors.
( 5 ) Each thread writes its registers, signal handlers and its pid.
( 6 ) All threads are synchronized again and the program either continues run-

ning or gets killed according to the options specified.
There are several restrictions on the checkpointable open files. For example,

sockets are entirely not supported and regular files are assumed to be available
under the exact same path and are reopened during restart.

2.1.2 Restarting
Restarting an application is mainly the mirror procedure of checkpointing.

The restart utility opens the context file, which can be practically establishing a
connection via a socket, and executes the following steps. It forks a new process
for the application being restarted, which clones itself to have as many threads
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3 Live Migration of Processes Maintaining Multiple Network Connections

Fig. 2 BLCR checkpoint mechanism.

of execution as the checkpointed application contained. Each thread issues an
ioctl() call to the library’s character special file to enter kernel-space and one
thread is chosen as the leader. The leader thread restores process-wide resources:
open files, memory maps and thread relations. Each thread then restores its pid,
the signal handlers and the registers. The restarter process finally gets notified
and all threads return to user-space where they eventually resume their original
execution.

2.2 Process Migration
Process migration is realized as a synchronized checkpoint/restart event be-

tween the source and the destination nodes inside the cluster.
The source node establishes a network connection to the destination node and

checkpoints the target process. However, instead of writing the process resources
into a regular file, it transfers them through the connection directly to the desti-
nation node. The destination node in turn executes the restart procedure, but,
instead of reading data from a checkpoint file, it receives all process resources

through the network connection.
Process live migration involves further complexity on the way checkpointing is

executed and will be described in Section 5.

3. Socket Migration Design

Socket migration is tightly integrated into the process migration mechanism,
therefore it also has two phases, checkpointing and restarting a connection.

A general socket migration mechanism is executed in both TCP and UDP
cases, which is further specialized according to the underlying protocol, differing
mainly on the data structures the kernel is using for their representations.

For a certain period of time during the migration the socket is not available
for processing incoming traffic, which can potentially cause losing some of the
receiving packets. A mechanism for preventing incoming packet loss is realized by
capturing the packets on the destination node while the migration is carried out.
For further details on how packet capturing is implemented refer to Section 4.2.3.
UDP sockets are not meant to provide a reliable data transfer, thus prevention
of incoming packet loss is only enabled in the case of TCP connections.

3.1 Checkpointing
The actual socket checkpointing is performed while the leader thread iterates

the file descriptor table and dumps the open files of the process. The main
execution steps are the following.

The connection’s remote IP address, remote port and local port are collected
and a capturing request for preventing incoming packet loss is sent to the desti-
nation node. A status response is read from the (context) socket whether packet
capturing has been enabled successfully or not. The socket is deactivated (so
that packets cannot be delivered to it), relevant fields of the socket structures
are copied, queues are iterated, buffers and dumped, all data are sent to the
destination node and finally the socket is closed.

Notice that the checkpointing and restarting procedures are synchronized dur-
ing the activation of the packet capturing, which happens directly before the
socket gets unhashed, thus, ensuring that the number of packets captured on the
destination node is small.
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4 Live Migration of Processes Maintaining Multiple Network Connections

3.2 Restarting
Similarly to the connection checkpointing phase, connection restarting is part

of the process restarting and it is performed while the leader thread iterates the
file descriptor table for restoring the process’ open files.

First, the packet capturing request is read from the context socket, installed
and a status message is sent to the source node. Socket structures and queue data
are then read, a new socket is created. The relevant fields are restored, as well as
the buffer queues. The socket gets rehashed and timers are reactivated. Packet
capturing is still active at this point, thus no incoming packets are delivered to the
socket. The captured packets are then re-injected and capturing gets disabled.

4. Socket Migration Implementation

In order to describe socket migration in technical details, we provide an
overview of the Linux socket infrastructure. The main kernel structures and
the relations among them are introduced first. Linux specific aspects of the
TCP/UDP migration are then discussed along with the implementation of the
packet capturing feature.

4.1 Linux Socket Infrastructure
There are several data structures used in the Linux kernel for representing and

maintaining TCP/UDP connections. Each open file of a process is referred to as
a file struct from the process’s file descriptor table. The directory cache entry
field of a file struct associates the file with the underlying inode structure.

In case the file is a socket the main socket structure is accessible through the
inode. The socket struct represents a general BSD style socket, holds high level
state information, function pointers to protocol specific methods and a reference
to the sock structure, which is the actual network layer representation of the
connection.

A rather central notion of the Linux network stack is the sk buff socket buffer
structure. Socket buffers are used for representing both incoming and outgoing
packets on the network. The sock structure maintains buffer queues (write, re-
ceive and backlog) which are linked lists of socket buffers. It also holds timestamp
values of last received and sent packets which are expressed in terms of kernel
jiffies.

In an object-oriented fashion the connection representation is further spe-
cialized according to the actual protocol used. Internet connections are rep-
resented in an inet sock structure, which contains both local and remote IP
addresses and also port numbers. Connected sockets are maintained through
the inet connection sock structure which holds various timers, congestion con-
trol parameters and the hash bucket for the kernel hash table which is used for
determining which socket is responsible for an incoming packet.

Finally, the tcp sock structure keeps track of the TCP state machine. It stores
sequence numbers, the TCP state, fields for RTT measurement, it controls the
slow start mechanism and so on.

Each TCP socket in the kernel, associated with a connection, resides on two
hash tables. ehash is responsible for keeping track of established connections,
while bhash contains all sockets that are bound to a local port.

UDP sockets are, on the other hand, represented by a udp sock structure which
is built on top of inet sock.

4.2 TCP Migration
The Linux based implementation of the TCP socket migration is explained in

this section. We show which data structures have to be transferred and detail
how checkpointing and restarting are performed.

4.2.1 Checkpointing
The Linux kernel maintains several socket buffer queues for representing TCP

connections. The three most important ones are the write queue for outgoing
packets, the receive queue for incoming packets and the out-of-order queue for
packets that arrived with sequence numbers which do not fit into the expected
sequence window. However, there are two other ones which have to be taken into
account. The backlog queue (which is part of the general sock structure) and
the prequeue (which is TCP specific and therefore maintained in tcp sock). We
ensure that both the backlog and the prequeue are empty during the migration
and therefore, copying the write queue, the receive queue and the out-of-order
queue is sufficient.

Backlog queue: Every incoming packet is pushed upwards on the network
stack by the NET RX SOFTIRQ bottom-half. The backlog queue plays an im-
portant role when a socket is locked (for instance by a user application) but there
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are packets arriving from the network. In this case NET RX SOFTIRQ will place
the packets on the backlog queue in order to prevent bringing the receive queue
into an inconsistent state. If the socket is not locked, incoming segments are
processed and placed on the receive queue. On one hand, the socket is surely
not locked by any user process, because each thread of the application returns
to userspace during the execution of the signal handler (i.e., releases the socket
even if it was processing a read()/write() system call). On the other hand, re-
moving the socket from both ehash and bhash before locking it, guarantees that
the backlog queue is empty, because each packet that does not have a matching
socket hashed gets discarded.

Prequeue: There is a so called fast-path receiving mechanism in the Linux
network stack which is based on the prequeue. When a user application is waiting
on a socket for incoming packets (i.e., it is suspended on a read() system call)
it installs itself as a potential thread for performing fast-path processing. If the
sequence number of the incoming packet is matching the criteria of receiving,
the packet size is not longer than the user process’s request and the current
process is the one registered for fast-path processing, the actual processing of the
packet is put off into the thread’s process context. This mechanism decreases the
amount of time the kernel spends in NET RX SOFTIRQ bottom-half, which in
turn increases the kernel’s overall responsiveness. Since the migration is initiated
by a signal, it ensures that even if a thread was waiting in a read() system call
(and therefore registered itself for processing the prequeue), the system call is
abandoned and prequeue processing gets disabled before returning to user-space
for executing the signal handler.

Checkpointing a Linux TCP socket is performed as follows. First the socket is
unhashed from both the ehash and bhash hashtables. The retransmission timer
of the write queue is then cleared. Relevant fields of the socket representation
structures, such as the tcp sock, inet connection sock and inet sock are extracted.
The receive, write and out-of-order queues are iterated and the sk buff structures
are linearized. All data are transferred to the destination node and finally, the
socket queues are purged and the socket is closed.

4.2.2 Restarting
The following steps are executed for restarting a TCP socket. First, a new

socket is allocated and data are received from the source node. The relevant fields
of the socket representation structures are updated. sk buff structures of the
receive, write and out-of-order queues are allocated, updated and re-inserted. An
IP route destination entry is created for the socket. The socket gets rehashed for
both the ehash and bhash hashtables. The retransmission timer is then restarted.
Finally, the socket is attached to the right file descriptor of the process.

4.2.2.1 TCP Timestamps
Adjustment of timestamps on the destination node is inevitable in order to

preserve data transfer seamlessly even after the migration. The Linux TCP
implementation uses kernel jiffies for timestamps which is a counter increased
approximately every 10 milliseconds. Different nodes can have different jiffies.

Timestamps are recorded during packet transmission and reception and they
also form the basis of several TCP related algorithms. Round-trip time mea-
surement or congestion window size adjustment are some of the examples. In
order to keep these algorithms working appropriately after the migration occurs,
timestamps of the socket structures and buffers have to be updated on the des-
tination node. We overcome this problem by recording the jiffies of the source
node during the checkpoint, computing the difference on the destination node
and adjusting the timestamps of each affected structure accordingly.

4.2.3 Preventing Incoming Packet Loss
As it was described in Section 3 a solution for preventing incoming packet loss

while checkpoint-restarting TCP connections is proposed. The mechanism takes
advantage of the broadcast based Single IP Address configuration. The packet
capturing feature, which is activated on the destination node right before the
socket is unhashed on the source node, is implemented as a netfilter hook in the
kernel.

Netfilter 12) provides a facility to attach arbitrary functions to certain phases
of the network stack processing. Kernel modules can register to listen
at five different hooks, of which two are of interest for incoming traffic.
NF IP PRE ROUTING is responsible for packets that have passed the basic
sanity checks (i.e., not truncated, IP checksum OK, etc), whereas packets that
are to be delivered to the localhost are passed to the NF IP LOCAL IN hook.

Hook functions receive packets and return a decision for the netfilter framework.
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Some of the possible decisions are NF ACCEPT, that lets the packet continue
traversal, NF DROP drops the packet and frees its resources, while NF STOLEN
takes over the packet. Both NF DROP and NF STOLEN prevent the packet
from being passed to upper layers.

The capturing feature takes place on the NF INET LOCAL IN hook. Pack-
ets that match the corresponding remote IP, remote port and local port of the
connection being migrated are simply stored on a buffer queue, i.e., the deci-
sion NF STOLEN is made. Duplicated packets (based on sequence numbers)
are dropped, NF DROP is returned, while packets that are not related to the
connection are simply accepted.

After the TCP socket is successfully migrated, the re-injection phase iterates
the capture queue and submits each packet to the network stack by calling the
netfilter’s okfn() (in case of IPv4 this is the ip rcv finish() function).

Please note that there is a race condition between the re-injection and the
NET RX SOFTIRQ bottom-half on the capture queue. For preventing inconsis-
tency, the queue is protected with a spinlock and bottom-halfs are disabled while
the lock is held.

The netfilter is eventually cleared which enables the standard packet receiving
mechanism on the migrated socket.

4.3 UDP Migration
Migrating UDP sockets is considerably easier than TCP. Besides the main UDP

socket data structure, we only transfer the socket buffers residing on the receive
queue and the inet options structure if the structure is present.

There is an issue, however, that is worth noting with respect to UDP server
sockets, that are bound to a local port. Each UDP server socket has to be
unhashed before the migration takes place and consequently it has to be rehashed
on the destination node.

5. Process Live Migration

We have extended BLCR for supporting live migration. Our mechanism is
based on incrementally dumping address space changes in a helper thread, while
letting the application proceed with its original execution. Figure 3 illustrates
the main steps of performing live checkpointing, which are the following:

Fig. 3 Live migration mechanism.

( 1 ) The application receives the signal of a live checkpointing request.
( 2 ) It clones a new thread and all the application threads simply return from

the signal handler (i.e., continue their execution).
( 3 ) The new thread enters the kernel via an ioctl() call.
( 4 ) It transfers memory mappings to the destination node and enters a loop of

tracking address space changes, where in each subsequent iteration the loop
timeout is decreased and the number of the transferred bytes is logged.

( 5 ) When it reaches a limit on the number of bytes transferred it signals the
application threads for final checkpointing.

( 6 ) Executing the signal handler, each application thread enters the kernel
through an ioctl() call.

( 7 ) All threads enter a barrier and a leader thread is chosen.
( 8 ) The leader transfers the file table, the file descriptors (this is where the
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socket migration takes place) and thread relations.
( 9 ) Each thread transfers registers, signal handlers and its pid.
( 10 ) They enter a final barrier, all of them return to userspace where they finish

up the signal handler and continue their execution or are killed depending
on the options specified.

As for the destination node the restarting procedure is very similar to the one
in case of frozen migration. After the leader thread is chosen among the threads
being restarted, it receives incremental updates from the source node and applies
these to the process’s address space. When the incremental phase is finished the
restarting procedure follows the same steps as in the frozen migration.

Incremental checkpointing can also be initiated directly from the kernel, with-
out notifying the application 13). However, an advantage of the signal based
approach is that even if a thread executes a system call, and therefore may lock
important kernel structures, it will abandon it and return to userspace. For
further details on how socket migration benefits from this, please refer to Sec-
tion 4.2.1.

5.1 Tracking Dirty Pages
Carrying out incremental checkpointing is built upon the mechanism of tracking

dirty pages between subsequent updates. Currently, two main approaches exist,
one manipulates the write bit of the page-table entries (PTE), while the other
utilizes the dirty bit 14).

We opted for the approach of using the dirty bit and relaxing the swap facil-
ity, which is reportedly not a major restriction in HPC environments 14). Using
directly the dirty bit allows us having the incremental checkpoint mechanism
entirely implemented in a kernel module, without any changes to existing kernel
code.

6. Experimental Results

We evaluate our live migration mechanism to the assess packet delay at the
socket level depending on the process image size; the process freeze time in case
of frozen and live migration and the process freeze time according to the number
of network connections maintained. The test environment is a broadcast based
single IP address cluster with two nodes, each node is equipped with a 2.4 GHz

Dual-Core AMD Opteron processor and two gigabytes of RAM. The nodes are
connected with a Gigabit Ethernet network for in-cluster communication and
they both have a Gigabit Ethernet public interface.

6.1 Packet Delay and TCP Window Size Changes
We migrate processes with different image sizes under a high bandwidth net-

work traffic while the migration delay, i.e., the time difference between the last
packet of the source node and the first packet of the destination node, as well as
changes in the TCP window size, were measured on the peer’s side. Each experi-
ment is evaluated three times and the average result is presented. We apply both
frozen and live migration in order to show how the socket migration is affected
by the technique utilized at the process level. The process being migrated is
generating a traffic of 120 MB/s.

Figure 4 (a) shows the results of the migration delay according to the process
image size and the migration technique applied. As it demonstrates, the delay
between the last packet on the source node and the first packet on the destination
node changes between 50 and 80 milliseconds in case of frozen migration. To the
contrary, live migration keeps the packet delay constant 30 milliseconds regardless
of the process image size.

During normal execution the peek TCP window size oscillates between 24000
and 25000 in our test environment. As shown in Fig. 4 (b), there is a significant
window size degradation for processes over 10 MB image size. In the case of
frozen migration, the whole process address space is transferred before the file
descriptor table is iterated, which prolongs the process freeze time. The long
freeze time in turn increases the period during which the socket’s buffer queues
remain unprocessed even though the peer assumes the same communication con-
ditions and sends data with the same bandwidth, for which the Linux TCP reacts
by decreasing the window size.

Live migration lends itself naturally as a remedy for this problem, it transfers
most of the process image asynchronously, leaving only a small portion of data
to be transferred during the actual context transition. Figure 4 (b) reflects this
by showing that there is no window size degradation even with bigger process
image sizes.
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(a) TCP packet delay (b) TCP window size degradation

Fig. 4 Packet delay and TCP window size degradation.

6.2 Multiple Connections
We evaluate our migration technique by applying it to processes that maintain

several network connections. In each case we are aiming at simulating an interac-
tive server. The server process executes a loop of receiving 1 kB data from all of
its clients, performing some computations and sending the data back. Moreover,
in each iteration a random amount of pages are dirtied. Client processes are
simply sending and receiving data in an infinite loop.

Since we are not aware of the typical characteristics of MMOG or NVE server
processes in terms of memory need due to their proprietary nature, we present
measurements for a wide scale of attributes. Memory footprint size scales from
5 MB to 50 MB in the case of frozen migration, whereas in the case of live mi-
gration results are presented up to 1 GB of process image size. The number of
connections scales in both cases from 2 up to 1024.

Figure 5 (a) shows the overall duration of frozen migration with different pro-
cess image sizes and number of network connections, where the process image
size grows up to 50 MB. In contrast, overall live migration duration is shown on
Fig. 5 (b) for processes with 32 MB, 64 MB and 128 MB memory footprint size,
while Fig. 5 (c) demonstrates the same experiment for processes with 256 MB,
512 MB and 1 GB of image size.

Notice that although frozen migration takes shorter time, the migration dura-
tion is equal to the process freeze time in this case. Reaching over 600 ms even

with only 50 MB image size is not acceptable for an interactive service.
Figure 5 (d) depicts the actual process freeze time in the live migration case. As

it shows process freeze time is less than 200 ms for 1 GB process image size and
over 1000 network connections, while maintaining approximately 500 connections
the actual transition results in less than 100 ms. Consequently, live migration
process freeze time is significantly shorter than a frozen migration process freeze
time. Process freeze time in this range ensures full transparency and a high
responsiveness even for an interactive server.

7. Related Work

7.1 Connection Migration
TCP migration has been implemented before. NEC corp. proposed transferring

TCP sessions between nodes for a distributed Web Server architecture under
Linux kernel version 2.4 7). Their environment assigns each TCP session a virtual
IP address which is reported to cause incoming packet loss during the migration.

SockMi 15) offers TCP migration with IP layer forwarding between the source
and the target node, therefore it is not feasible for addressing fault tolerance
in a cluster environment. Furthermore, their implementation requires applica-
tion specific support for exporting and importing connections. Tcpcp 16) provides
similar capabilities to SockMi, where the source node establishes an IP layer for-
warding mechanism to the destination after the migration takes place. However,
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(a) Frozen migration (b) Overall live migration duration

(c) Overall live migration duration (d) Live migration process freeze time

Fig. 5 Comparison between frozen and live migration.

Tcpcp is implemented as a kernel patch. Earlier forwarding based solutions were
also proposed in MobileIP 17) and MSOCKS 18).

TCP Migrate option 19) is an extension to the TCP protocol in order to support
session migration. The transfer can be initiated by sending a special migrate SYN
packet with a previously arranged token in order to reestablish the connection. A
major drawback of this solution is that the peer must also support the protocol
extension.

Reliable sockets (ROCKS) and reliable packets (RACKS) 20) both offer trans-
parent network connection mobility using only user-level mechanisms. They can
detect a connection failure, preserve the endpoint of a failed connection in a

suspended state and automatically reconnect. However, they both require the
extended socket library on each side of the connection.

7.2 Process Migration
Process migration has been researched actively and several distributed operat-

ing systems offer the capability of migrating processes. V-System 21), Amoeba 22),
Mach 23), Sprite 24),25), MOSIX 26) or OpenSSI 27) are some of the examples, al-
though connection migration is supported in a very limited way. Amoeba provides
connection migration, but it restricts the implementation for dealing explicitly
with RPC communications, which are layered on the lower level FLIP protocol 28)

instead of TCP/IP.
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BLCR 11) is an open source checkpoint-restart library for Linux, which can
be used for migrating processes. BLCR currently does not support connection
migration, neither incrementally dumping address space changes.

Zap 29) implements a thin virtualization layer on top of the operating system
which provides the facility of migrating a group of processes, called pods. Zap’s
VNAT 30) mechanism for virtualizing network resources supports connection mi-
gration. Its main drawback is that it requires the Zap VNAT mechanism to be
present also on the client side in order to map the virtual address to the new
remote physical address after the migration.

Incremental checkpoint/restart has been proposed by several recent stud-
ies 13),14),31). While they all offer the benefit of process live migration, none of
them deals with sockets, therefore lacking the ability of migrating processes that
maintain network connections.

NEC reports 7) the integration of their TCP migration mechanism with process
frozen migration, however they do not deal with multiple connections. Besides,
no details are revealed regarding the process migration itself.

7.3 Virtual Machine Migration
Virtual machine (VM) migration is an actively researched topic in recent years.

Solutions based on Xen 32), KVM 33) and VMware’s VMotion 34) also provide the
ability of live migrating VM instances.

Due to its clear separation of the OS from the underlying hardware VM mi-
gration naturally eliminates the problem of “residual dependencies”, which is an
advantage compared to migration at the process level 4). While several Single
System Image (SSI) systems leave residual dependencies on the source node af-
ter a process is migrated, such as network connections are routed through, or
certain system calls are still forwarded back to the source node, our proposed
solution transfers all the dependencies of the process, allowing the source node
to be possibly switched off after the migration has taken place.

It has also been showed that conducting VM live migration while keeping net-
work connections alive gives comparable service downtime to process level live
migration 32). However, no results are provided for the case where a massive
amount of connections are involved.

MMOG and NVE services often divide the virtual space (referred as zoning)

and let each zone be handled by a separate server process 35). Aiming at having
each zone-server as a migratable unit of the system, a disadvantage of VM based
solutions lies in the fact that each server needs to reside in its own VM, leading
to unnecessary allocation of resources.

8. Conclusion and Future Perspectives

We have proposed a process live migration technique which is capable of mi-
grating processes that maintain massive amount of network connections. Both
TCP and UDP connections are supported.

Test results showed that the migration is efficient enough for moving real-world
applications. At the socket level, keeping the packet delay around 30 millisec-
onds, allows us to move connections with a high bandwidth network traffic while
rendering the transition fully transparent on the client’s side. At the process
level, incrementally transferring address space changes enables a smooth migra-
tion even if multiple network connections are maintained. We showed that live
migrating a process with a gigabyte size address space and over 1000 network
connections results in less than 200 milliseconds process freeze time.

In the future we intend to further improve the service downtime and to apply
our migration mechanism to applications, such as massively multi-player online
game servers, networked virtual environments, distributed simulations or media
streaming solutions.

MMOG and NVE servers often maintain in-cluster connections, for instance
with database servers. Since we have control over all in-cluster machines, we are
planning to investigate how these connections could be kept alive. Our envisioned
solution is based on applying IP level filters on both ends of the connection in
order to translate the new local IP address properly.
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