
IPSJ SIG Technical Report

An Interesting Opponent for Fighting Videogames

Simón E. Ortiz B.,†1 Koichi Moriyama,†2

Ken-ichi Fukui,†2 Satoshi Kurihara†2

and Masayuki Numao†2

Industry-standard opponents in fighting videogames do not adapt, making
them uninteresting in the long run. To increase the level of entertainment
that can be derived from playing fighting videogames against the computer,
we propose an adapting agent. In this context “adapting” is interpreted as
modifying the level of the opponent to match that of the user, and learning to
fight against the fighting style of the user. The proposed agent utilizes mainly
Profit-Sharing and Pattern-Mining for achieving adaptation. The proposed
agent was developed and evaluated against static opponents with real users.

1. Introduction

Fighting videogames are a popular genre of video-games with new titles be-
ing released every year. A fighting videogame is a simulation of hand-to-hand
combat. The winner of each round is the first user that lowers the energy of the
opponent to zero by means of attacks.

Fighting videogames are designed to be played by at least two users compet-
itively. However, these games also have the possibility of being played by only
one user. In this case, the machine will take control of the opponent. But, if
given the option, users may prefer to play against other users.

We assume that one of the main reasons users prefer to play against other users
is that the AI found in standard videogames is usually uninteresting. This is not
to say that it is easy to defeat, since the machine can execute complicated attacks
and respond quickly. Rather, we are assuming that the adaptability of the human
player makes it interesting compared to the machine. However, the machine AI

†1 Graduate School of Information Science and Technology, Osaka University
†2 Institute of Scientific and Industrial Research, Osaka University

used so far is typically of a simple design, just enough to make the user feel the
software is reasonably smart1), e.g., Finite State Machines2), which means that
standard videogames’ AI is not complex enough to learn users’ patterns.

Nevertheless, learning the user behavior (or his/her fighting style) and adapting
to it in order to defeat the user should not be the aim. An agent that behaves
so, would learn to easily defeat the user. An opponent that cannot be defeated
is not interesting. Therefore, our aim is to adapt to the behavior of the user and
to the user’s level. Here lies the novelty of our research.

2. Background

2.1 Fighting videogames
In typical fighting videogames the first player that lowers the health-points

(HP) of the opponent to zero is the winner of a round. The winner of a fight is
the best of several rounds. Some videogames have a time limit per round.

The set of available actions in a game is X∪D∪C∪B∪M . X is the set of simple
attacks. Simple attacks deal moderate damage, e.g., punch, kick, or special attack
(long range projectile-like attacks). D is the set of defensive actions, or blocks.
Blocks guard the character from simple attacks. C is the set of combos. Combos
are a predefined combination of simple attacks that deal significant damage.
B is the set of combo-breakers. Combo-breakers are special combinations that
counter-attacks a combo. Each combo ci ∈ C might have a different combo-
breaker bi ∈ B. When the corresponding combo-breaker is executed before the
opponent finishes delivering the combo, the receiving player will not receive the
extra-damage of the combo; in some games the delivering player will receive the
extra-damage of the combo. M is the set of movements the players can use to
navigate the stage, e.g., walk and jump. When the stage is finite, falling outside
the stage usually translates into an immediate lose. Different fighting videogames
vary in the details and design of the possible actions.

2.2 Related Work
The researches that are more closely related to our own are agents that adapt

to the user, e.g. 3), 4). Although these agents adapt to the user, their goal is
to win all the fights, i.e., they are aiming to become very difficult opponents.
Adaptation to the level of the user has been explored by 5), although the game

c© 2010 Information Processing Society of Japan1

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

was Pac-Man, which is of a lower complexity compared to fighting videogames.
The problem of a static opponent being uninteresting is dealt with in 6), but

they do not aim adapting to the user. Instead, their agent learns behaviors from
different users and adds them into its lists of behaviors. Hence, their agent is
always creating new routines.

3. Proposal

As stated above, playing a modern fighting videogame can be thought of as
dealing with the following tasks: executing simple attacks, executing blocks, ex-
ecuting combos, executing combo-breakers when receiving a combo, and moving.

We propose an agent that adapts to the user in a fighting videogame. This
agent will control the actions of the opponent character. We divided the agent in
three sub-agents, each of which will be in charge of some of the mentioned tasks.
Dividing the tasks among sub-agents should help the agent learn each task in
less time. The sub-agents are: Main Sub-agent (henceforth MSA), Executing-
Combo Sub-agent (henceforth ECSA) and Receiving-Combo Sub-agent (hence-
forth RCSA). Since videogames must run in real-time, all the learning is delayed
until the end of each round. From the agent’s point of view, one round equals
one episode.

3.1 Main Sub-agent (MSA)
The MSA will be in charge of executing simple attacks, blocks, and moving.

When deemed appropriate the MSA will pass the control to one of the other
sub-agents. The MSA utilizes Profit-Sharing for adapting.

3.1.1 Profit-Sharing
Profit-Sharing is a method from the Reinforcement Learning field7). The objec-

tive of Reinforcement Learning is to produce agents that learn by trial-and-error,
without any prior knowledge of the task or environment.

The function that the agent is trying to learn is called a policy, i.e., a function
that maps states into actions. An agent using Reinforcement Learning will modify
its policy, increasing the probability P (s, a) of executing action a in state s, if
choosing action a in state s contributes to a desirable reward. The pair (s, a) of
the executed action a in state s is called a rule.

Profit-Sharing was originally proposed by 8). The fundamental idea behind

Profit-Sharing is that all the rules that were used in an episode will receive a
portion of the positive reward attained at the end of the episode. This positive
reward is shared among all the rules according to a reinforcement function f .

The rules are updated as follows:
Pn+1(st, at) := Pn(st, at) + f(Rn, t, T) (1)

where P (st, at) is the probability of choosing action a in state s at time t; n is the
number of the episode; f is the reinforcement function; Rn is the reward obtained
at the end of the episode n; and T is time of the last action of the episode.

3.1.2 Design of the MSA
The MSA is modeled as a Profit-Sharing agent, as described in 9). A Profit-

Sharing agent is divided into the following modules:
- The state recognizer receives the input from the environment where the agent

lives, and decides the corresponding state st.
- The look-up table contains all the rules. It receives the state st and looks up

the pairs of actions-weights [ai, wi] associated with this particular state.
- The action selector chooses one action at from all the available ai depending

on their weight wi. The agent executes action at.
- The episodic memory records the pair (st, at).
- At the end of the episode, the learner will receive the reward R from the

environment, and it will apply the reinforcement function to all the pairs
(sj , aj) in the episodic memory.

The algorithm9) followed by the MSA is found in Fig. 1. Each of the subrou-
tines invoked in Fig. 1 is explained below.

The state recognizer takes readings from the current state of the videogame in
order to define a Profit-Sharing state s.

The look-up table will return a list [ai, wi] of pairs of the available actions ai

for state s with their associated weights wi.
The action selector choses an action ai from the list of [ai, wi] returned by

the look-up table. Normally, the action selection in Profit-Sharing is a random
roulette over the weights of the rules, i.e., an action ai is chosen with probability
equal to its weight wi. In this case, the weight wi of every action has to be
positive. The rewards obtained at the end of an episode are positive: ideal goal
states give maximum rewards, not so good final states give small positive rewards.

c© 2010 Information Processing Society of Japan2

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

MSA():
while True:

st := StateRecognizer(state of the game);
[ai, wi] := Look-upTable(s);
at := ActionSelector([ai, wi]);
execute action at;
EpisodicMemory(st, at);
if received reward:

execute Learner(); exit

Fig. 1 Pseudo-code of the MSA

Distributing positive rewards will always increase the probability of choosing
an action. This approach would not work if the agent needs to weaken the
probability of actions that lead to undesirable final states. If the agent receives
a negative reward as a consequence of reaching an undesirable goal state, when
updating the weights of the actions we run into the possibility of lowering the
weight of an action to zero (the action would never be executed again) or to a
negative value which random roulettes cannot handle. Hence, instead of using
random roulette, the action selector uses Boltzmann Action Selection7):

P (ai) =
ewi/τ∑n

j=1 ewj/τ
(2)

where the probability P (ai) of choosing action ai depends on its weight wi and the
weight of each of the available actions wj . e is the natural exponential function.
The parameter τ is called temperature. The higher the temperature, the more
random the action selection becomes, i.e., the less relevant the relative weights
of the actions becomes. Similarly, the lower the temperature, the more accented
the difference in the weights becomes.

Using the Boltzmann equation the action selector chooses one action. The
available actions to the agent are those defined in the videogame in question,
plus passing control of the character to ECSA or RCSA. After the decided action
has been executed, or the sub-agent executes its action, the MSA resumes control

of the character.
The episodic memory will store the state s defined by the state recognizer and

the action a chosen by the action selector.
The reinforcement function used by the learner is:

Pn+1(st, at) := Pn(st, at) + Rn+1 · γT−t (3)
which is a geometrically decreasing function, so it satisfies the Rationality The-
orem10) which guarantees rational policies for Profit-Sharing. Rn is the reward
received at the end of the episode n, γ is a discount factor (γ < 1), and T is the
time t of the last executed action.

At the end of an episode, the environment will give the agent a reward. While
higher positive rewards are given when the difference in the final HP of the agent
and the user is small, negative rewards are given when the difference is significant.
This reinforces actions that lead the agent to behave in such a way that it is not
too difficult nor too easy for the user to defeat it.

With this selection of rewards we are reinforcing actions that put the agent at
the same level of the user. Consider also that, at the same time, we are reinforcing
actions that were effective against the fighting style of the user, otherwise the
HP difference would be greater.

3.2 Executing-Combo Sub-agent (ECSA)
The ECSA has the responsibility of choosing which combos execute, and exe-

cuting them. The ECSA maintains a set of combos that it executes. During a
fight, when the ECSA is invoked by the MSA, the ECSA will randomly select a
combo from its combo set CA. Then, it will execute the selected combo. Exe-
cuting a combo is very simple: the ECSA will instruct the character to execute
the actions defined for the chosen combo, one by one.

The interesting part of the ECSA is how the selection of the set CA ⊆ C of
combos is done. In order for the agent as a whole to be at the same level of the
user, the combos that the agent executes must also be on a level close to that of
the user. Hence, the responsibility of selecting the combos to be executed by the
ECSA is translated into selecting combos of a level similar to that of the user. If
we consider the set of the combos used by the user, the goal of the ECSA would
be to create a set of combos of similar difficulty.

A näıve solution would be to copy the set of combos of the user. But an

c© 2010 Information Processing Society of Japan3

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

opponent that copies your actions would be an extremely uninteresting opponent.
In order to be able to create the set CA of combos to be used by the agent

of similar difficulty to set CU of combos used by the user, we need to have a
comparison function that will allow us to order sets by their difficulty.

There are many possible comparison functions that could be used for this pur-
pose. We use the following three: ratio of used combos, indistinguishability of
combos, and entropy of combo-breakers.

Let us imagine we have two users; user U1 uses six different combos during a
fight, while user U2 uses only two different combos. It is logical to believe that
user U1 has a higher level than user U2. A better user would execute a wider
variety of combos because it would make it difficult for the opponent to predict
the combo-breakers. Consequently, the ratio of used combos shown in Eq. 4 is a
valid metric of the difficulty of a set.

used ratio(CE) =
|CE |
|C|

(4)

where C is the set of available combos for the game in question, and CE ⊆ C is
a set of combos.

For sake of example, let us consider combos ci each of which is made up of
four attacks xj from the set of simple attacks X. Let us use again our imaginary
users U1 and U2. Let us assume that the set of combos of user U1 is {x1x1x1x1,
x1x1x1x2, x1x1x1x3}, and the set of combos of user U2 is {x1x1x1x1, x2x2x2x2,
x1x2x3x4}.

In this case, the set of user U1 is more difficult than the set of user U2. Since the
combo-breaker must be executed before the last action of the combo, an opponent
fighting against opponent U1 would have to decide which combo-breaker to use
when presented with the partial sequence x1x1x1 . Given the set of U1, and the
given initial actions, it is impossible to decide the proper combo-breaker. In the
case of user U2, the opponent would have enough information before the last
action to decide the combo-breaker. Hence, a set of combos where the combos
are indistinguishable given the initial actions, is a more difficult set than a set
where the combos can be distinguished by their initial actions. The equation for
the indistinguishability metric is:

indistinguishability(CE) =
∑

|combos with repeated initial actions in CE |
|CE |

(5)

where CE ⊆ C is a set of combos.
Let us imagine that all the combos ck found in the set of combos of user U1 have

a different combo-breaker bk, while all the combos cl in the the set of combos
of user U2 share the same combo-breaker b1. In that case, the combo-breakers
for user U1 would be {b1, b2, . . ., bn}, and that of user U2 would be {b1, b1,

. . ., b1}. An opponent playing against user U2 would not need to decide combo-
breakers when confronted with a combo. It is enough to always select b1. On the
other hand, an opponent playing against user U1 would have to select a different
combo-breaker when present with different combos. Evidently, the set of user U2

is easier than that of user U1. The characteristic we are looking at is the entropy
of the set of combo-breakers:

breaker entropy(CE) =

−
N∑

i=0

P (bi) log P (bi)

log N
(6)

where N is the number of distinct combo-breakers the combo set CE ⊆ C con-
tains, log is the natural logarithm, and P (bi) is the probability of randomly
choosing the combo-breaker bi out of the combo-breakers of CE .

The first time the ECSA is executed it will create a combo set containing m

combos. In this set the combo-breakers of all the combos are different, and the
initial actions of all the combos are different (high combo-breaker entropy, low
indistinguishability). We consider that such an initial set is not too difficult, but
it is not too easy either.

After finishing an episode, this combo set will be partially adapted to that
of the user. For adapting the combo set we use implicitly one iteration of Hill
Climbing11) by greedily choosing the first option that gets one of the metrics
closer to its goal.

For adapting its set, the ECSA follows the algorithm presented in Fig. 2. CU

is the set of combos of the user, CA is the set of combos of the agent, the
parameter ∆ defines the level of tolarence in the difference of sizes of the sets,

c© 2010 Information Processing Society of Japan4

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

adaptECSA():
if used ratio (CA) > used ratio(CU)+∆: delete(CA)
elif used ratio (CA) < used ratio(CU)−∆: add(CA)
else: swap(CA)

delete(CA):
for(i := 0; i < top; i := i + 1):

c := random combo from CA;
if |entr(CA − c) − entr(CU)| < |entr(CA) − entr(CU)| or

|inds(CA − c) − inds(CU)| < |inds(CA) − inds(CU)|:
CA := CA − c; exit

Fig. 2 Pseudo-code of the ECSA

and the parameter top is a limit imposed on the number of tries that will be
executed; this is to prevent the ECSA from cycling indefinetily if there is not a
suitable combo to choose. The subroutine delete is presented along with the
algorithm. The subroutines add and swap follow the same idea as delete. The
metrics entr (entropy) and inds (indistinguishability) are defined as explained
above.

3.3 Receiving-Combo Sub-agent
The design of the RCSA is presented extensively in 12). This sub-agent ba-

sically mines the patterns with which the user executes combos. The mining
occurs after each episode. For pattern mining the RCSA uses Substring Tree13).

When the RCSA executes during a round, it matches the combos executed by
the user with mined patterns; using the matched patterns, the RCSA predicts the
next possible combos. Then the RCSA chooses the combo-breaker stochastically
based on the relative frequency of the predicted combos. For more details of this
sub-agent see 12).

4. Experiments

We developed a simple fighting videogame to test the proposed adapting agent.
Our videogame was developed using the Open Source game engine Crystal Space
3D14). An image of the videogame can be seen in Fig. 3.

In order to evaluate whether the proposed agent is more entertaining than static

Fig. 3 An screen capture of our simple fighting videogame

agents, we asked 28 real users to play it. The users were of different nationalities,
ages and with different level of expertise at playing videogames.

The fighting videogame developed has the following characteristics: the fights
occur in a 2D plane; the characters have a height of 3.5 units and a width of
2 units; the stage is a finite platform with a length of 42 units, falling from
the platform equals losing the fight; there is no time limit; there is one round
per fight; the initial HP of the characters is 200; the set X of simple attacks
contains punch (p), kick (k) and special attack (s), the last one being a long
range projectile attack; each of the simple attacks deal 1 point of damage; the
set D of defenses contains one action: block; while blocking, simple attacks do
not have effect; the set C of combos is listed in Table 1; for a combo to be valid,
each action must be executed within 0.5 seconds of the previous one; the combo-
breaker of a combo is defined as its last action; in order for the combo-breaker
to be valid it must be executed before the opponent completes the combo; if
the combo-breaker is valid, the character executing the combo will receive its
damage; the set M of movements contains move to the right, move to the left,
jump and crouch.

The proposed agent was used with the following parameters:
• For the MSA: The discount factor γ of the reinforcement function is fixed

at 0.99. The temperature parameter τ of the Boltzmann action selection is

c© 2010 Information Processing Society of Japan5

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

Table 1 List of Combos

ID Actions Damage ID Actions Damage
0 pppp 15 6 kppk 20
1 pppk 20 7 kpps 25
2 ppps 25 8 kspp 15
3 pkpp 20 9 ksps 20
4 pkpk 15 10 kpsp 30
5 pkps 25 11 kkkk 30

fixed at 1.0
• For the state recognizer of the MSA: In order to keep the design of the agent

simple, we discretized the world state as explained below.
– Is the agent/user crouching?
– Is the agent/user jumping?
– Is the agent receiving a combo?
– Is the user executing a simple attack?
– Is the agent/user blocking?
– Is the agent near a border of the stage?
– Is the user in danger of losing (HP below 15%)?
– The distance between the user and the agent, discretized in eight sections:

≤ 0.25, ≤ 0.50, ≤ 2.00, ≤ 2.60, ≤ 4.00, ≤ 10.00, ≤ 24.50 and > 24.50.
– The distance from the agent to the closest special attack thrown by the

user, discretized in three sections: ≤ 0.50, ≤ 2.60 and > 2.60.
– The difference in HP between the user and the agent, rounded to tens.

These characteristics were selected to define a state s because they provide
enough information to the agent to make intelligent decisions.

• For the action selector of the MSA: the available actions are those available
in the game, plus ECSA, RCSA, and stay. Instead of the actions right and
left, the agent uses approach and withdraw, which are independent of the
character changing the direction to which it faces. Each of the actions ap-
proach, withdraw, crouch and block are executed for 0.1 seconds. The action
stay has a duration of 0.4 seconds. All the other actions last as long as it
takes to fully execute them.

• For the RCSA: The number of patterns that are being track simultaneously
is five.

Table 2 Assignment of rewards

HP difference Reward HP difference Reward
< 25 +1.00 <125 −0.25
< 50 +0.75 <150 −0.50
< 75 +0.25 <175 −0.75
<100 −0.10 ≥175 −1.00

• For the ECSA: The number of combos in the original set is three, the pa-
rameter ∆ is 0.1, and the parameter top is 20.

The reward given to the agent by the environment after one episode is defined
in Table 2. The HP difference is the absolute difference between the HP of the
user and the agent.

For comparison purposes we developed three static agents: weak, medium and
strong. The weak agent is very easy to defeat, 50% of its action are to wait; it
only executes combos 0 and 10 from Table 1; the combo-breaker it uses is always
p. The medium agent was obtained by training our adapting agent against a user
for 20 rounds; while the medium agent is being used for the evaluation it will not
adapt. The strong agent is very difficult to defeat; it will always get close to the
opponent, it will use combos whenever close enough; the combos used are all the
available combos, executed in a random order; the combo-breakers it uses are
chosen stochastically based on the distribution of combo-breakers for the initial
actions executed by the user (e.g., if the user executes ksp the strong agent
will execute either p or s with 50% probability each, if the user executes kkk

the strong agent will execute k).
We compared these static agents against two versions of our adapting agent:

adap0 and adapF. The adap0 agent is as explained in Section 3. The adapF agent
is structurally the same as adap0, but it has been trained by playing 20 rounds
beforehand. In comparison with adap0, adapF already knows certain rules from
the environment, such as falling from the platform equals finishing the round, or
that executing combo-breakers when receiving combos lowers the damage of the
opponent, etc.

We asked the users to play between 15 and 30 rounds against each agent. After
the first 15 rounds with an agent, the user could quit whenever he/she was no
longer having fun. The users did not know the characteristics of each agent.

c© 2010 Information Processing Society of Japan6

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

Fig. 4 Questionnaire results

The order of the agents was randomized for the users. The users filled in a
questionnaire after the experiments. They were asked to order the agents from
most fun to least fun.

5. Results

The results of the survey are shown in Fig. 4. The opponent that appeared as
the most fun in the survey of a test subject was assigned one green point, the
second of the list was assigned a blue point, etc. Although the strong agent
received more “most fun” qualifications, the proposed agent adapF got the less
amount of negative ratings.

We also compare the length of play against each opponent. Similar to the
survey, the opponent that was played the most received one green point, the
second opponent a blue point, etc. In case of draws, both opponents received
the point corresponding to their position. The comparison is shown in Fig. 5.
Similar to the survey, the proposed agents were the opponents that figured less
in the least played opponents.

The results of each round for one of the test subjects can be seen in Fig. 6.
The behavior of the results do not change drastically for other subjects. Whether
the proposed agents is in fact adapting to the user or not, cannot be deduced
from these graphics. The rapid variations in the HP results of the proposed
agents could be consequence of the agent compensating its own difficulty, and/or

Fig. 5 Analysis of playing length

Fig. 6 HP differences for one subject

consequence of the users trying new strategies.

6. Discussion

We believe that the reason why the strong agent received better ratings than
the proposed agent, is that the proposed agent’s goal is to have a difficulty similar
to that of the user. If the goal were to defeat the user by a certain HP difference,
the proposed agent would be perceived as more challenging by the users and

c© 2010 Information Processing Society of Japan7

Vol.2010-GI-23 No.4
2010/3/8

IPSJ SIG Technical Report

might outperform the best static opponent.
Although the strong opponent received better ratings, the length of play-time

is not much different than that of the proposed agents. Although not consid-
ered as fun as the strong agent, the proposed agents provide similar time of
entertainment.

Given that the goal of the agent is to defeat the user by a certain amount
of HP, could the proposed agent be used as is in an industry videogame? The
authors are of the opinion that this is not the case yet. Although having an agent
that adapts itself by only comparing the HP difference is a very elegant idea, this
method arose some problems: unnecessary actions and reinforcing suicide.

The rationality theorem10) guarantees that no ineffective rule will be part of
the agent’s policy, but it does not prevent unnecessary actions to be reinforced.
If the agent, while exploring actions, executes kicks 15 units away from the user,
and by chance the HP difference is low enough at the end of the round, then the
agent will execute unnecessary kicks next time it is a 15 units from the user. The
accumulation of unnecessary actions in the policy does not make the agent look
like a smart opponent.

It has been observed that, in some cases, the agent learned to lower the HP
of the user to a small level, and then jump from the platform. Falling from the
platform reduces the HP of the agent to 0, which becomes a small HP difference
and a high reward.

In order to solve these problems the reward could be assigned with more consid-
erations than only HP difference, or the reward could be shared using a function
that discerns whether or not the rule to be reinforced was essential in attaining
a particular result.

7. Conclusions

An agent that adapts to the user’s fighting style and to the user’s level was
developed. The adapting agent is divided in three sub-agent: MSA, ECSA and
RCSA, each of which is in charge of handling different aspects of fighting. In
comparison with static opponents the adapting agent received the least amount
of negative ratings. We believe that the reason why the strong agent received
better ratings is that the proposed agent’s goal is to have a difficulty similar to

that of the user. If the goal were to defeat the user by a certain HP difference, the
proposed agent would be perceived as more challenging by the users and might
outperform the best static opponent.

References

1) Adams, E.: Fundamentals of Game Design, New Riders, Berkeley, CA, 2nd edition
(2009).

2) Graepel, T., Herbrich, R. and Gold, J.: Learning to fight, Proceedings of the Inter-
national Conference on Computer Games: Artificial Intelligence, Design and Edu-
cation, pp.193–200 (2004).

3) Lee, L.: Adaptive Behavior for Fighting Game Characters, Master’s thesis, San
Jose State University (2005).

4) Ricciardi, A. and Thill, P.: Adaptive AI for Fighting Games. Final project of CS
229 Machine Learning, Standford University (2008).

5) Yannakakis, G. and Hallam, J.: Evolving Opponents for Interesting Interactive
Computer Games, Proceedings of the Eighth International Conference on the Sim-
ulation of Adaptive Behavior; From Animals to Animats 8, pp.499–508 (2004).

6) Nakano, A., Tanaka, A. and Hoshino, J.: Imitating the Behavior of Human Play-
ers in Action Games, Lecture Notes in Computer Science, Vol.4161, pp.332–335,
Springer, Berlin / Heidelberg (2006).

7) Sutton, R.S. and Barto, A.G.: Reinforcement Learning: An Introduction, The MIT
Press, Cambridge, MA (1998).

8) Grefenstette, J.J.: Credit Assignment in Rule Discovery Systems Based on Genetic
Algorithms, Mach. Learn., Vol.3, No.2–3, pp.225–245 (1988).

9) Arai, S. and Sycara, K.: Effective Learning Approach for Planning and Scheduling
in Multi-Agent Domain, Proceedings of the Sixth International Conference on the
Simulation of Adaptive Behavior; From Animals to Animats 6, pp.507–516 (2000).

10) Miyazaki, K., Yamamura, M. and Kobayashi, S.: On the Rationality of Profit
Sharing in Reinforcement Learning, Proceedings of the 3rd International Conference
on Fuzzy Logic, Neural Nets and Soft Computing, pp.285–288 (1994).

11) Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach, Prentice-
Hall, Englewood Cliffs, NJ, 2nd edition (2003).

12) Ortiz B., S.E., Moriyama, K., Matsumoto, M., Fukui, K., Kurihara, S. and Numao,
M.: Road to an Interesting Opponent: An Agent that Predicts the Users Combina-
tion Attacks in a Fighting Videogame, Proceedings of the Human-Agent Interaction
Symposium (2009).

13) Cao, H., Mamoulis, N. and Cheung, D.W.: Mining Frequent Spatio-Temporal
Sequential Patterns, Proceedings of the Fifth IEEE International Conference on
Data Mining, pp.82–89 (2005).

14) http://www.crystalspace3d.org/: Crystal Space 3D.

c© 2010 Information Processing Society of Japan8

Vol.2010-GI-23 No.4
2010/3/8

