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立体構造情報と機能情報による
タンパク質間相互作用予測法の改良

吉 川 達 也†1 瀬 尾 茂 人†1

竹 中 要 一†1 松 田 秀 雄†1

相互作用するタンパク質ペアを高精度に識別するために，タンパク質間ドッキング
の評価結果に基づいた相互作用予測法を提案する．従来研究では，相互作用に必要な
親和性の強さはタンパク質の機能と無関係であると仮定していた．ところが，この親
和性の強さは，剛体ドッキングやフレキシブルドッキングのようなドッキング様式に
よって異なり，この様式はタンパク質の機能に関係していることが分かってきた．本
研究では，タンパク質の機能情報に基づいてサンプリングした親和性スコア分布を統
計的に解析する新たなスコアリング手法を提案する．すべてのタンパク質ペアを用い
て評価した結果，提案手法は予測精度を改善し，提案手法を組み合わせて用いた場合
に，さらに高い精度を達成することが検証された．これにより，タンパク質の機能情
報を考慮することで偽陽性の発生を抑制して相互作用を予測できることが示された．

Tatsuya Yoshikawa,†1 Shigeto Seno,†1

Yoichi Takenaka†1 and Hideo Matsuda†1

To identify protein–protein interaction pairs with high accuracy, we propose a
method for predicting these interactions based on characteristics obtained from
protein–protein docking evaluations. Previous studies assumed that the re-
quired protein affinity strength for an interaction was not dependent on protein
functions. However, the protein affinity strength appears to differ with different
docking schemes, such as rigid-body or flexible docking, and these schemes may
be related to protein functions. Thus, we propose a new scoring system that
is based on statistical analysis of affinity score distributions sampled by their
protein functions. As a result, of all possible protein pair combinations, a newly
developed method improved prediction accuracy of F-measures. By combining
two proposed scoring systems, Receptor-Focused Z-scoring and Ligand-Focused
Z-scoring, further improvement was achieved. This result suggested that the
proposed prediction method improved the prediction accuracy, with few false
positives, by taking biological functions of protein pairs into consideration.

1. Introduction

Most biological functions involve interactions between several proteins in a cell.

Therefore, it is important to elucidate biological phenomena, including cell signaling,

enzyme reactions, and gene expression regulation, by analysis of protein–protein inter-

actions (PPIs). In the past, several reviews1)–3) have examined the interaction charac-

teristics of known protein complexes and PPI maps, which can play a role in discovering

protein partners. Several methods have been developed in computational studies for

predicting PPIs using genomic information4),5). Recently, research on PPIs has focused

on not only ascertaining their roles in living organisms but also applying this knowledge

to medicinal fields such as drug design. In essence, the interactive properties associ-

ated with protein conformation need to be thoroughly investigated if we are to analyze

the relationships between protein structure and function. Ideally, PPI studies for drug

design should be based on protein structural information. Structure-based PPI study

includes protein–protein docking. Most previous studies on docking have attempted to

solve protein-docking problems; the ultimate objective of these studies was to accurately

predict the structures of protein complexes from three-dimensional (3D) structures of

individual proteins.

In this study, given that protein docking has the potential to decide whether or not a

complex actually occurs in nature and for measuring its affinity, we focused on the 3D

structures of proteins in order to calculate PPIs via protein–protein docking. This kind

of PPI study has been previously discussed by Smith et al.6), although they did not

clearly demonstrate the functioning of an actual system or analysis of results. Recent

studies7)–10) involved in predicting PPIs on the basis of shape complementarity docking

succeeded in up to 23 of 84 predictions. Sacquin-Mora et al.11) successfully predicted

7 out of 10 interaction partners using weighted interaction energies. However, meth-

ods for determining protein affinity of only one complex pair have been confined to
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forecasting a local binding likelihood for each protein–protein pair, therefore have not

been considered that the required strength of binding is probably different by biological

functions.

In order to solve this problem, we focused on assessing protein interactions by globally

considering affinities of one protein with other proteins. In this study, we propose a

docking-based prediction method for PPIs by using all possible protein pair combina-

tions. The aim of this study is to improve the prediction accuracy of PPIs.

2. Protein–Protein Interaction Problem

2.1 Protein–Protein Interaction Prediction Method

Most of the previous studies in computational approach developed the genome-scale

techniques, whereas recently the structure-based studies are considered as an effective

mean of applying to drug design. This approach is based on predicting PPIs by protein–

protein docking. This method consists of three procedures that are outlined in Fig. 1.

3D structures of a receptor and ligand are the input data flow, and the predicted result

of the interaction is the output. The squares with “Protein Docking,” “Affinity Eval-

uation,” and “Interaction Prediction” are the key procedures, and each input/output

port is shown in parentheses.

2.1.1 Protein–Protein Docking

Protein–protein docking is performed for calculating the 3D structure of a protein

complex, starting from individual structures of constituent proteins. That is, the gen-

eral aim of this study is to predict the near-native complex structure of two proteins,

which is different from that of a PPI prediction problem that determines whether or

not the proteins interact. The reason for considering protein docking as a procedure

in a PPI prediction problem is based on the following assumption. It is assumed that

protein affinity plays a role in deciding whether or not proteins interact only when their

binding affinity can be calculated accurately. That is, if the affinity of proteins is equal

to or more than a certain threshold, then they can be computationally regarded as a

protein pair that interacts. Based on this assumption, PPI prediction can be realized

by statistically analyzing docking scores from protein docking programs.

A rigid-body model for expressing molecules is exhaustively screened in a six-

(structure) x2: (Ri, Lj)

➊➊➊➊ Protein Docking

➋➋➋➋ Affinity Evaluation

➌➌➌➌ Interaction Prediction

(structure, score) xNs: X

(affinity): aij

(result): pij

Fig. 1 Flowchart for PPI prediction by protein–protein docking.

dimensional rotation and translation space. The procedure starts by rotating a ligand

as a probe protein. When the rotational angular step ∆ is equal to the widely used

15 degrees, λ (=3600) poses are sampled because of rotational symmetry. A target

protein (receptor) and 3600 probe proteins (ligands) are discretized into 3D grids n3 by

a certain grid pitch γ (e.g., 1.2 Å), where n is the number of grid points in each coordi-

nate. Each grid point is assigned to a structural and chemical property value based on

geometric characteristics (i.e., core, surface and cavity areas) and free energies, respec-

tively. When the rotated ligand is translated with respect to the receptor, the docking

algorithm calculates the product sum of assigned property values, which is referred to

as the docking score (s). Given the grid size of a receptor n3 and the number of sampled

ligand poses λ, λn3 docking scores can be obtained by an exhaustive search for only one

protein pair. The top-ranked Ns (Ns ≥ 1) scores are generally sampled as candidates

because of a large number of docking results. The results X = {xk | 1 ≤ k ≤ Ns}
include not only the docking scores sk but also the structural information of complex

candidates:

xk =
(
sk, tk (tx, ty, tz) , rk (rθ, rϕ, rψ)

)
, (1)

where tk(tx, ty, tz) and rk(rθ, rϕ, rψ) are the translational distance and the rotational
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angle of the ligand, respectively.

2.1.2 Affinity Evaluation

Based on the docking results, affinity evaluation plays a role in calculating the binding

likelihood. The aim is to assess how strong the interactions are. The simplest way is to

utilize the maximum value among Ns docking scores as protein affinity such that

a = max
(
sk
)Ns

k=1
. (2)

An alternative is to use the statistical characteristics provided by clustering the docking

results according to the score or structural similarities between candidates.

2.1.3 PPI Prediction

Interaction prediction makes the final decision as to whether or not proteins interact.

The primitive threshold-based approach is used to determine the interactions as follows:

p =

{
1 if a ≥ τ

0 otherwise
, (3)

where p is the prediction result that includes the Boolean values (i.e., 1 and 0 indicat-

ing positive and negative PPI, respectively), and τ is the affinity threshold for deciding

whether or not proteins interact. Here, the threshold τ has to be decided using biological

knowledge or statistical characteristics of affinity values, etc.

2.2 Previous Studies

2.2.1 Outline of ZDOCK

A previous method for PPI prediction, which we have designated as ZDOCK here-

after, uses docking scores from the protein–protein docking program ZDOCK 3.0.112).

This tentative method was used for comparing the prediction method in Section 2.2.2.

The ZDOCK 3.0.1 program can assess structural and chemical complementarity between

proteins. It enables us to find binding sites and complex structures using a FFT-based

search algorithm with a scoring function that is based on pairwise shape complementar-

ity, electrostatics, and explicit interface atomic contact energies. In affinity evaluation,

the maximum score from only one docking simulation among 2000 docking scores was

used to simply assess the affinity of a protein pair. The setting values defined in Section

2.1.1 are as follows: ∆ = 15, γ = 1.2, and Ns = 2000, where ∆ is the rotational angu-

lar step, γ is the grid pitch, and Ns is the number of samplings for candidates. Here,

when applying the ZDOCK 3.0.1 program execution option, all default values (i.e., –N

(=2000), –S (=no at randomization), and –D (=none)) were used. The threshold τ was

determined to maximize the F-measure by ROC analysis described in Section 3.2.3.

2.2.2 Outline of Affinity Evaluation and Prediction (AEP)

A previous study10) had predicted the interactions by assessing the statistical signif-

icance of binding likelihood based on shape complementarity characteristics between

protein pairs: affinity evaluation and prediction (AEP). In their protein–protein dock-

ing procedure, the original docking program with a scoring function of pair-wise shape

complementarity was developed.

Here, setting values were ∆ = 15, γ = 1.2, and Ns = 512. In the affinity evaluation

procedure, the statistical characteristics of Ns candidates were used to assess protein

affinity. The docking scores were classified into several clusters according to the struc-

tural similarities between candidates. Protein affinity in previous studies was calculated

by the distribution of docking scores of a representative of each cluster and that of the

cluster density. Key parameter settings were also important for determining struc-

tural similarities and extracting cluster characteristics in this procedure. In the PPI

prediction procedure, the affinity threshold τ was obtained by the receiver operating

characteristics (ROC) procedure. The values of key parameters in affinity evaluation

and τ are optimized so that the F-measure is maximized.

Using the above procedures, the previous study successfully predicted 23 interaction

pairs out of 84. The study assumed that the required protein affinity strength for the

interaction was not dependent on the function of proteins. However, the protein affin-

ity strength appears to differ by different docking schemes (i.e., rigid-body or flexible

docking), and the scheme may be related to protein functions.

2.2.3 Protein-Pair Data Set

In order to evaluate the performances of ZDOCK and AEP, 168 bound proteins

derived from 84 co-crystallized complex structures by Protein–Protein Docking Bench-

mark 2.013),14) were used. All proteins were classified as either receptors (R) or ligands

(L) according to Weng’s dfinition, which resulted in 84 proteins of each type. When

the receptor and ligand were derived from the same complex, the receptor molecule was
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Table 1 Protein-pair data set consisting of 84 receptors and 84 ligands.

PDB ID (Index Number)

Antibody–Antigen (A)

1AHW(1), 1BGX(2), 1BVK(3), 1DQJ(4), 1E6J(5), 1JPS(6), 1MLC(7), 1VFB(8)

1WEJ(9), 2VIS(10)

Bound Antibody–Antigen (AB)

1BJ1(11), 1FSK(12), 1I9R(13), 1IQD(14), 1K4C(15), 1KXQ(16), 1NCA(17), 1NSN(18)

1QFW(19), 2HMI(20), 2JEL(21), 2QFW(22)

Enzyme–Inhibitor or Substrate (E)

1ACB(23), 1AVX(24), 1AY7(25), 1BVN(26), 1CGI(27), 1D6R(28), 1DFJ(29), 1E6E(30)

1EAW(31), 1EWY(32), 1EZU(33), 1F34(34), 1HIA(35), 1KKL(36), 1MAH(37), 1PPE(38)

1TMQ(39), 1UDI(40), 2MTA(41), 2PCC(42), 2SIC(43), 2SNI(44), 7CEI(45)

Others (O)

1A2K(46), 1AK4(47), 1AKJ(48), 1ATN(49), 1B6C(50), 1BUH(51), 1DE4(52), 1E96(53)

1EER(54), 1F51(55), 1FAK(56), 1FC2(57), 1FQ1(58), 1FQJ(59), 1GCQ(60), 1GHQ(61)

1GP2(62), 1GRN(63), 1H1V(64), 1HE1(65), 1HE8(66), 1I2M(67), 1I4D(68), 1IB1(69)

1IBR(70), 1IJK(71), 1K5D(72), 1KAC(73), 1KLU(74), 1KTZ(75), 1KXP(76), 1M10(77)

1ML0(78), 1N2C(79), 1QA9(80), 1RLB(81), 1SBB(82), 1WQ1(83), 2BTF(84)

always larger than the ligand. Here, these 84 complexes were classified as follows: 10

pairs of antibody–antigen (functional category A), 12 pairs of bound antibody–antigen

(AB), 23 pairs of enzyme–inhibitor or substrate (E), and others (O). Each complex was

assigned with both a protein data bank (PDB) ID and an index from 1 to 84.

To evaluate the prediction method more exhaustively, Np (NR×NL = 7056) possible

pairs were constructed by combining NR (=84) receptors and NL (=84) ligands, where

Np is the total number of receptor–ligand pairs, and NR and NL are the numbers of

receptors and ligands, respectively. Therefore, the data set included 84 pairs that have

been previously identified experimentally as forming complexes and 6972 others. Be-

cause receptor–receptor or ligand–ligand protein interactions are believed not to occur

under normal biological conditions, we only employed receptor–ligand pairs. Here, in

order to directly compare our method with previous results, the bound structures of

proteins were used.

2.3 Performance Measures

All protein pairs in the data set were classified into either 84 pairs whose interactions

have been previously experimentally detected or 6972 others whose interactions have

not been detected. Using the binary values of 1 or 0, the prediction results suggested

whether or not proteins interacted, indicating positive or negative for PPIs. Table 2

shows the logical combinations of experimental interactions and prediction results as a

Table 2 Logical combinations of experimental interactions and prediction results.

Experimental interaction

Detected Not detected

Prediction result Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

2 × 2 contingency table. The four logical combinations (i.e., TP, FN, FP, and TN) are

defined in Table 2, and these numbers are represented as tp, fn, fp, and tn, respectively.

In general, performance measures for information retrieval are used for assessing the

prediction accuracy of a binary classification problem. Many of the different measures,

such as sensitivity (sens), recall (rec), precision (prec), and F-measure (F ), are given

by

rec(= sens) =
tp

tp+ fn
, prec =

tp

tp+ fp
, F =

2 · prec · rec
prec+ rec

. (4)

F-measure is defined as the harmonic mean of recall and precision. Its value increases

significantly as the values of both these factors increase. Considering the attributes of

the used criteria, we employed the F-measure to assess prediction results. Because the

F-measure can quantitatively gauge the prediction accuracy relative to the prevalence

of a problem, we can evaluate recall and precision as trade-off in the form of a combined

value.

3. Method

3.1 Overview

In order to solve the problem of the previous study, we focused on the docking scores

of functionally classified pairs. This is because when distributions of scores of pairs with

the same functions were checked, the following findings can be revealed: (1) potential

protein affinities exist that represent protein bindings, and (2) affinity thresholds were

different between particular functionally classified pairs, which determine whether or

not proteins interact. Figure 2 shows a flowchart of the proposed prediction method.

The method consists of four procedures, including three key procedures, as shown in

Fig. 1, and an additional procedure by ROC analysis. In the ROC procedure, the

optimal affinity threshold τ is determined by ROC analysis. Although the flow outline

is similar to that of a previous prediction method (i.e., AEP), repeated procedures are
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Prediction
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(result) xNp: p

i = Np
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(function) xNp: F

(threshold): τ
(experimental

interaction) xNp: I

(affinity) xNp: a

(structure, score) xNs: X

((structure, score) xNs) xNp: X

Fig. 2 Flowchart of the proposed prediction method.

quite different. Compared with “Protein Docking” and “Affinity Evaluation” proce-

dures in the previous method, only the “Protein Docking” procedure is repeated Np

(i.e., the number of all protein pairs) times. Since the proposed protein affinity is defined

not only by docking scores of one pair but also by that of others, the iteration in the

“Protein Docking” procedure needs to be completed before the “Affinity Evaluation”

procedure. In addition, calculation methods in each procedure and score definitions are

different.

3.2 Algorithm

Input and output of the proposed method are as follows:

Input:

3D structures and functions of all receptor–ligand pairs,

Output:

prediction results of computational protein–protein interactions.

The method consists of four steps, as outlined in Fig. 2.

Step 1 (Protein Docking):

Search the structures of complex candidates with docking scores using the 3D struc-

ture of one receptor–ligand pair. Step 1 is repeated for all protein pairs.

Step 2 (Affinity Evaluation):

Evaluate protein affinities by statistically inspecting docking scores of pairs using

functional information.

Step 3 (ROC Analysis):

By ROC analysis, detect the optimal threshold τ for determining whether or not

protein pairs interact.

Step 4 (Interaction Prediction):

Predict computational interactions from protein affinities and functions of pairs.

In order to describe the method, a protein is modeled according to the computational

information that represents the 3D structure and biological function, where the protein

structure includes the 3D coordinates of its constituent atoms, and biological functions

are as follows:

F = {“A”, “AB”, “E”, “O”}. (5)

In addition, the experimental interaction of each receptor–ligand pair for determining

the threshold τ and measuring the performance of the prediction method was previously

detected by

I =

{
1 if experimental interaction is detected

0 otherwise
. (6)

3.2.1 Protein–Protein Docking (Protein Docking, Step 1)

In Step 1, we use the protein–protein docking program ZDOCK 3.0.1 to assess struc-

tural and chemical complementarity between proteins. As described in Section 2.2.1,

ZDOCK 3.0.1 enables us to find binding sites and complex structures using a FFT-based

search algorithm with a scoring function based on pair-wise shape complementarity,

electrostatics, and explicit interface atomic contact energies. The setting values defined

in Section 2.1.1 are as follows: ∆ = 15, γ = 1.2, and Ns = 2000. Then, all default

values (i.e., –N (=2000), –S (=no at randomization), and –D (=none)) of execution

options are used. This procedure outputs the top Ns scores for each docking score sij

of a receptor–ligand pair (Ri, Lj). By repeating Step 1, docking scores of all Np (=

NR ×NL) pairs are calculated.

3.2.2 Affinity Evaluation (Step 2)

In Step 2, protein affinities are assessed statistically based on functionally classified
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docking scores. In order to estimate the affinity of a target pair, docking scores of all

pairs having the same function are considered. We propose the following Z-scoring sys-

tems: Receptor-Focused Z-scoring (RFZ) and Ligand-Focused Z-scoring (LFZ). The aim

of this method was to statistically evaluate each receptor- or ligand-focused group of

docking scores and then convert the docking score into an affinity based on the Z-score.

That is, RFZ collects those ligands that have scores similar to a specific receptor, while

LFZ collects those receptors that have scores similar to a specific ligand. Therefore,

either receptor or ligand functions are used for affinity evaluation. When RFZ evalu-

ates protein affinity based on docking score distribution of receptors having the same

functions, functional information of ligands is not used. Since the key steps for RFZ

and LFZ are the same, the details for only RFZ are shown below.

Input and output of the procedure are as follows:

Input:

docking scores,

Output:

protein affinities.

The method consists of three steps.

Step 2.1 (Preparation of docking scores):

Calculate the maximum score among Ns scores for each receptor and ligand pair and

obtain a set of docking scores {sij | Ri ∈ R, Lj ∈ L} for assessing protein affinity.

Step 2.2 (Grouping of docking scores):

In this step, the available information for grouping the docking scores depends on

receptor–ligand pairs. In this study, the following cases can be considered: (1) both

structural and functional information of the confirmed pairs having same functions,

and (2) only the structural information of all pairs consisted of proteins with varying

functions.

All Np docking scores are classified according to pair functions. For example, a set

of receptors in functional category A (i.e., antibody–antigen) is given by:

RA = {Ri | Ri ∈ R, F (Ri) = “A”}, (7)

where F (Ri) denotes the biological function of receptor Ri.

Next, NRA ×NL docking scores are split into NRA subset of scores of pairs that have

the same receptor such that:

sAi = {sij | Lj ∈ L}, Ri ∈ RA, (8)

where NRA denotes the number of receptors with the function A among R. Similarly,

for other functions AB, E, and O, other subsets sAB
i , sEi , and sOi are obtained from

sij .

Step 2.3 (Z-score calculation):

In this step, the Z-score of each score subset is calculated as follows:

aA
ij =

sij − E(sAi )

σ(sAi )
, (9)

where E(sAi ) and σ(sAi ) denotes the mean and standard deviation of scores sAi , re-

spectively. Thus, the affinities of all pairs, aij , are determined.

3.2.3 Receiver operating characteristic analysis (ROC Analysis, Step 3)

In Step 3, the affinity threshold τ is decided to maximize the F-measure by ROC

analysis. When the optimal τ value is used for determinating PPIs, many prediction

results of the 84 protein pairs (Ri, Lj) with experimentally validated interactions (i.e.,

Iij = 1) are correctly evaluated as positives for PPIs (i.e., pij = 1), and the other

6972 pairs whose interactions have not been experimentally detected (i.e., Iij = 0) are

correctly predicted as negatives (i.e., pij = 0). In ROC analysis, a cut-off value is gen-

erally used as the criterion for separating the two classes (i.e., positives and negatives

for PPIs). When the cut-off value is changed by a certain incremental amount from

minimum to maximum of all affinities (a), recall and precision values for each cut-off

value are obtained. Therefore, the F-measure is obtained from recall and precision val-

ues. Although there are various ways of obtaining the optimal threshold, we employed

a method based on the balance of recall and precision, as the objective of this study

is to maximize the F-measure. The threshold τ was determined so that the value of

{recall2 + (1− precision)2} becomes maximum.

The values of τ vary with prediction methods and functional categories. That is,

τA
RFZ for predicting the interactions of pairs in functional category A by RFZ is differ-

ent from τAB
RFZ for predicting AB pairs by the same method. In addition, τA

RFZ is not

equal to τA
LFZ in spite of same functional categories. When the prediction method uses

a combination of RFZ and LFZ, called RFZ×LFZ and RFZ+LFZ (see Section 3.2.4 for
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the definitions of RFZ×LFZ and RFZ+LFZ), a threshold τA
RFZ×LFZ for protein pairs

in A from RFZ×LFZ shows a pair of thresholds for both RFZ and LFZ such as (τA
RFZ,

τA
LFZ).

In the previous method, the entire protein-pair data set, including 84 target protein

pairs, was used for determining the threshold τ by ROC analysis. In order to directly

compare the previous results, the entire data set was also used in this study.

3.2.4 Interaction Prediction (Step 4)

In Step 4, the interactions of all receptor–ligand pairs are finally predicted. Protein

affinities are assessed by comparisons with the optimal threshold τ . If the affinity value

is more than or equal to τ , the prediction result pij is set to 1, indicating “positive;”

Otherwise, the value is set to 0, indicating “negative,” such as

pij =

{
1 if aij ≥ τ

0 otherwise
. (10)

Here, we propose additional scoring systems, RFZ×LFZ and RFZ+LFZ, which pre-

dict the interactions by combining the results of RFZ and LFZ. That is, the prediction

result of each protein pair, pRFZ×LFZ
ij is defined by the logical AND operation of pRFZ

ij

and pLFZ
ij , while pRFZ+LFZ

ij is defined by the logical OR operation.

4. Results and Discussion

For comparison with previous methods, we employed the protein-pair data set in Sec-

tion 2.2.3. At the first evaluation for improving prediction accuracy using the proposed

method, the entire data set (84 × 84 = 7056 protein pairs) was used. Table 3 shows

comparison of prediction accuracy for the proposed scoring systems (RFZ and LFZ) and

previous methods (AEP and ZDOCK). AEP indicates the previous method detailed in

Section 2.2.2, and the best performance of AEP is given by optimizing key parameters,

as shown in Table 3. ZDOCK is a simple PPI prediction method that directly uses

ZDOCK 3.0.1 for protein-protein affinity calculations, as described in Section 2.2.1.

The proposed RFZ and LFZ greatly improved prediction accuracy, with the obtained

F-measures higher than those obtained by previous methods. This improvement arose

as the proposed method could reduce many false positives; the number of false positives

Table 3 Comparison of proposed methods, RFZ and LFZ, and previous methods.

Performance measures

Method F-measure Recall Precision tp fp fn tn

RFZ (τ = 2.984) 28.3 20.2 47.2 17 19 67 6953

LFZ (τ = 3.103) 21.9 16.7 31.8 14 30 70 6942

AEP (τ = 4.520) 6.3 27.4 3.5 23 629 61 6343

ZDOCK (τ = 1364.018) 4.0 73.8 2.1 62 2941 22 4031

Table 4 Comparison of proposed methods, RFZ and LFZ, and previous methods in respective

functional categories.

Performance measures

Method F-measure Recall Precision tp fp fn tn

(a) Antibody–Antigen (10 × 10)

RFZ (τ = 2.001) 33.3 20.0 100.0 2 0 8 90

LFZ (τ = 0.445) 24.2 40.0 17.4 4 19 6 71

AEP (τ = 4.630) 33.3 30.0 37.5 3 5 7 85

ZDOCK (τ = 1489.529) 23.7 90.0 13.6 9 57 1 33

(b) Bound Antibody–Antigen (12 × 12)

RFZ (τ = 1.751) 47.1 33.3 80.0 4 1 8 131

LFZ (τ = 0.949) 31.6 50.0 23.1 6 20 6 112

AEP (τ = 4.590) 22.2 25.0 20.0 3 12 9 120

ZDOCK (τ = 1831.057) 29.8 58.3 20.0 7 28 5 104

(c) Enzyme–Inhibitor or Substrate (23 × 23)

RFZ (τ = 1.536) 36.7 47.8 29.7 11 26 12 480

LFZ (τ = 1.751) 37.2 34.8 40.0 8 12 15 494

AEP (τ = 4.530) 20.9 30.4 15.9 7 37 16 469

ZDOCK (τ = 1320.669) 16.2 73.9 9.1 17 170 6 336

(d) Others (39 × 39)

RFZ (τ = 3.131) 40.0 25.6 90.9 10 1 29 1481

LFZ (τ = 3.483) 39.2 25.6 83.3 10 2 29 1480

AEP (τ = 3.970) 7.1 66.7 3.8 26 665 13 817

ZDOCK (τ = 1359.312) 10.9 74.4 5.9 29 463 10 1019

obtained by RFZ was only 19 among all 6972 negative examples, compared with 629 by

AEP. As a result, using only structural information of proteins, RFZ and LFZ correctly

predicted the interactions of 17 and 14 pairs among 84, respectively.

For predictions using both structural and functional information of proteins, Table

4 summarizes the comparison results of prediction methods in each functional category.

The previous methods, ZDOCK and AEP, indicate prediction results only using pro-

tein pairs having same functions. Each threshold τ was determined so as to maximize

the F-measure by ROC analysis. As shown in Table 4, both proposed scoring systems

improved the performance in F-measures in almost all cases compared to that by pre-

vious methods. Only in the case of LFZ, the 10 × 10 subset of functional category A
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was less than that of AEP (Table 4(a)). As shown in Table 4, LFZ gave a prediction

accuracy of 24.2% with an F-measure <33.3% of AEP because of the increase from 5

false positives by AEP to 19 by LFZ, whereas the number of true positives was slightly

increased by one. In contrast, RFZ provided maximum performance in each category.

The considerable improvement by RFZ was owing to the decrease of many false posi-

tives. This is supported by the fact that precision was greater than recall in three of

four categories. In addition, although there was naturally a trade-off between recall

and precision, LFZ in the AB category achieved the best recall (=sensitivity) that was

50.0% more than AEP (Table 4(b)). These results indicate that the proposed scor-

ing system could provide a significant improvement in prediction accuracy using both

structural and functional information of proteins.

5. Conclusions

We have proposed a method for predicting protein interactions from the docking

scores of protein pairs that have same functions. We developed PPI prediction scoring

systems, RFZ and LFZ, to statistically evaluate separate receptor- or ligand-focused

groups of docking scores and convert the docking score into protein affinity based on

the Z-score. The proposed method assessed the improvement in prediction accuracy

using a protein-pair data set. By an analysis of biological functions of protein pairs, the

prediction accuracy is significantly improved without changing the prediction algorithm

itself. Further refinement of prediction accuracy was achieved by combining RFZ and

LFZ.

In the near future, we plan to study the identification of protein functions using the

existing docking programs with various scoring functions. We also aim at extending the

new findings for application to related research such as drug design.
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