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Enumerating Colored and Rooted Outerplanar Graphs

Jiexun Wang†1 and Hiroshi Nagamochi†1

An outerplanar graph is a graph that admits a planar embedding such that
all vertices appear on the boundary of its outer face. Given a positive integer
n and a color set C with K ≥ 1 colors, we consider the problem of enumerating
all colored and rooted outerplanar graphs with at most n vertices without rep-
etition. We design an efficient algorithm that can generate all required graphs
in O(1) time per each and in O(n) space.

1. Introduction

The problem of enumerating (or listing) graphs of specific classes without repe-

tition is one of fundamental and important problems in computer science. Various

types of graphs has been studied such as trees7)–10) and series-parallel graphs5).

The graphical enumeration has been served as a very useful tool for solving prob-

lems in various field such as chemistry2),6) and biology3).

The goal of graphical enumeration problems is to efficiently enumerate graphs

in classes without duplications in terms of running time and space. The running

time (resp., space) of an enumeration algorithm is the time (resp., computer

memory) required to compute the total amount of changes in the data structures,

but not the time (resp., memory) required to print out all graphs. Particularly,

many researchers are interested in the computation time per each graph, i.e., the

delay between two successive outputs7),9). Note that graphical symmetry leads

to isomorphic duplications which prevent from designing efficient enumeration

algorithms.

In literature, there are various approaches developed for graphical enumera-

tion problems1),4),5). The common idea behind most of efficient algorithms is to

first define a unique embedding for each graph to be enumerated as its canonical
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representation, and then define a parent-child relationship among all canonical

representations such that the difference between parent-child embeddings is small,

which is implicitly represented as the family tree each of whose nodes corresponds

to the canonical representation of a graph. This indicates that all canonical rep-

resentations can be enumerated one by one according to the depth-first traversal

of the family tree.

In this paper, we consider the problem of enumerating all colored and rooted

outerplanar graphs with at most given n (≥ 1) vertices without repetition. To our

best knowledge, few papers have been worked for this problem. The reasons are

twofolds: 1) few researchers notice potential applications of the exhaustive list

of outerplanar graphs, and 2) it is difficult to design efficient algorithms because

free symmetry at cut-vertices and reflectional symmetry at rooted blocks lead to

isomorphic duplications. We design an efficient algorithm that can enumerate all

required outerplanar graphs in O(1) per each and in O(n) space. The algorithm

proposed in this paper may have potential applications in various areas such as

chemoinformatics, medicine and computer science.

2. Preliminaries

Throughout this paper, a graph stands for a simple connected undirected graph.

The set of vertices and the set of edges of a graph H are denoted by V (H) and

E(H), respectively.

A graph is called planar if its vertices and edges can be drawn as points and

curves on the plane so that no two curves intersect except for their endpoints.

An outerplanar graph is a planar graph that admits a plane graph such that all

vertices appear on the boundary of its outer face.

A rooted graph is a graph with an arbitrary vertex designated as the root. For

each block B of a graph rooted at a vertex r, the root r(B) of B is defined to be

the unique vertex v ∈ V (B) closest to r. Let V ′(B) denote V (B) − {r(B)}. A

block B is called the parent-block of all other vertices in V ′(B). A block B with

r(B) = v is a child-block of v. The depth d(B) of a rooted block B is defined by

the number of blocks which edge sets intersect with a simple path from a vertex

in V ′(B) to the root r. Let Br be an imaginary block which is the parent-block of

rG, and define depth d(Br) = 0. For two blocks B and B′ with r(B′) ∈ V ′(B), we
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Fig. 1 (a) An embedding G of a rooted outerplanar graph; (b) The embedding G′ obtained
by flipping block B3 of G.

say that B is the parent-block of B′ and that B′ is a child-block of B. Similarly,

we define the ancestor-blocks and descendant-blocks.

Let C be a set of colors. A colored graph is a graph in which each vertex v

is assigned with a color c(v) ∈ C (different vertices can receive the same color).

Two colored and rooted graphs H1 and H2 are rooted-isomorphic if and only if

their vertex sets admit a bijection by which the root, the color classes, and the

incidence-relation between vertices and edges in H1 correspond to those in H2.

Note that two distinct embeddings of a colored and rooted graph are rooted-

isomorphic.

A colored and rooted outerplanar graph H can have several different embed-

dings in the plane, where each embedding is determined by choosing one of the

two ways of embeddings of each block and choosing one of the orderings of child-

blocks of each cut-vertex. We let G(B) denote the embedding of that consists of

embeddings of B and all descendant-blocks of B. For an embedding G, let Gf

denote the flipped embedding of G that is obtained by reversing the embedding

G on the plane. For example, Fig. 1(a) shows an embedding G of a rooted outer-

planar graph, and Fig. 1(b) shows the embedding G′ obtained by flipping block

B3 in G.

3. Rooted Outerplanar Graphs

Let G be a colored and rooted outerplanar embedding, and let rG denote the

root of G. We define the depth d(rG) = 0 for the root rG, and depth of other

vertices in G recursively based on the following decomposition of blocks.

3.1 Structure of rooted blocks

We decompose a rooted block B into three parts: “core,” “left wings” and

“right wings,” where the core is a subgraph which is reflectionally symmetric in

the block B (except for an assignment of colors to the vertices in the core), left

(resp., right) wings can be treated as rooted outerplanar embeddings on the left

(resp., right) side of B.

Specifically, for a block B in G, the vertices in V ′(B) adjacent to r(B) are

called the head-vertices of B, and the edges in B incident to r(B) are called the

head-edges of B. Let Vhead(B) denote the set of all head-vertices in B, and let

h = |Vhead(B)|. We denote the head-vertices in Vhead(B) by

x1, x2, . . . , x(h−1)/2, z, y(h−1)/2, . . . , y2, y1 (if h is odd)

x1, x2, . . . , xh/2, yh/2, yh/2−1, . . . , y2, y1 (if h is even)

from left to right, where x1 is the leftmost vertex in V (B) adjacent to r(B). See

Fig. 2. Define depth of the above head-vertices to be

d(xi) = d(yi) = d(r(B)) + i, d(z) = d(r(B)) + (h + 1)/2.

We define “axial-faces,” “axial-vertex” and “bottom” of block B as follows.

Let h be odd. We call vertex z the bottom vertex of B and denote it by bv(B).

If h = 1, then no axial-face is defined for B. If h ≥ 3, then an inner face of B

containing edge (r(B), z) is called an axial-face of B. Note that B has exactly

two such faces.

Let h be even. The inner face f1 of B containing both edges (r(B), xh/2) and

(r(B), yh/2) is called the first axial-face of B. If f1 consists of an odd number of

edges, then f1 has a unique edge e1 farthest from r(B), and the other inner face

containing e1 (if any) is defined to be the second axial-face f2. For each axial-face

fi, i ≥ 2, if fi consists of an even number of edges, then fi has a unique edge ei

farthest from r(B), and the other inner face containing ei (if any) is defined to

be the (i + 1)st axial-face fi+1.

Given any block B, the non-head-vertices in all axial-faces are called the axial-
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Fig. 2 Structure of a rooted block.

vertices, and the non-head-edges in all axial-faces are called the axial-edges. Let

Vaxis(B) denote the set of axial-vertices in B. Note that B has no axial-vertex

if |Vhead(B)| is odd. The depth d(u) of an axial-vertex u is defined to be the

number of edges in a shortest path from u to a head-vertex v plus d(v). The

last axial-face fp has a unique vertex or edge farthest from r(B), which is called

the bottom vertex of B or bottom edge of B, and denote it by bv(B) or be(B),

respectively. We let bv(B) = ∅ (resp., be(B) = ∅) mean that B has no bottom

vertex (resp., edge). A head- or axial-vertex (if any) is called a core-vertex of B.

Let Vcore(B) denote the set of core-vertices of B.

A non-core-vertex in B is called a wing-vertex of B. Let Vwing(B) denote the

set of wing-vertices in B. We define a unique numbering and depths for all wing-

vertices as follows. Here we only explain the case where |Vhead(B)| = h is even,

because the case where h is odd is similar. Let

x1, x2, . . . , xp (resp., x1, x2, . . . , xp, bv(B))

be the sequence of axial-vertices on the shortest path from x1 to the bot-

tom if (xp, yp) = be(B) (resp., bv(B) exists). We define y1, y2, . . . , yp (resp.,

y1, y1, . . . , yp, bv(B)) symmetrically.

Let x and x′ be two consecutive core-vertices in the sequence x1, x2, . . . , xp, bv(B)

(possibly bv(B) = ∅). Removal of these vertices from B leaves at most one sub-

graph B′ which consists of wing-vertices. Let B(x, x′) denote such a subgraph

B′ if any. We define a unique numbering for the wing-vertices in B(x, x′) as

the reverse order of the following vertex eliminations: recursively eliminating the

wing-vertex of degree 2 visited last when traversing the boundary of B(x, x′) from

x to x′ until no wing-vertices in B(x, x′) remains (Fig. 2). Besides, we define a

unique numbering π for all wing-vertices in B(xi, xi+1) for i = 1, 2, . . . , p − 1

(and in B(xp, bv(B)) if bv(B) exists). The depth of the jth wing-vertex w in π

is defined to be d(w) = d(r(B)) + p + j (see Fig. 2).

The sequence of core-vertices x1, x2, . . . , xp and wing-vertices in the order π is

called the left side of B. We define the right side of B in the same way (note

that bv(B) is not contained in the left or right side of B). Let V L(B) and V R(B)

denote the sets of vertices in the left and right sides of B, respectively. A vertex

u ∈ V L(B) (resp., V R(B)) is called a left (resp., right) vertex of B. Also denote

V L(B) ∩ Vcore(B) by V L
core(B). Similarly for V R

core(B), V L
head(B) and V R

head(B),

V L
axis(B), V R

axis(B), V L
wing(B) and V R

wing(B). For a vertex u in the left side of B,

let PL(u; B) denote the boundary of the left side of B from u to the bottom of B

(excluding the bottom edge), and EL(u; B) denote the sequence of edges in the

path PL(u; B). We define PR(u; B) and ER(u; B) for the right side symmetrically

with PL(u; B) and EL(u; B).

Let Ẽ(B) denote the set of all edges (v, v′) with v, v ∈ V L(B) ∪ {bv(B)} or

v, v ∈ V R(B) ∪ {bv(B)}, where we include edge (v, v′) that appears as an edge

when we remove the wing-vertex w adjacent to v and v′ to define the ordering

π, but (v, v′) is not an edge in B. A left (resp., right) edge e = (v, v′) is an edge

such that {v, v′} ⊆ V L(B) ∪ {bv(B)} (resp., {v, v′} ⊆ V R(B) ∪ {bv(B)}).

We define depth d(e) for all left edges e ∈ Ẽ(B) as follows. Let L1 = |V L
core(B)∪

{bv(B)}| (possible bv(B) = ∅), and L2 = |V L
wing(B)|. For the left wing-vertex w

with the largest depth and the two edges e and e′ incident to w, where e is closer to

x1 than e′ along PL(x1; B), we let d(e) = 2L2 + L1 − 1 and d(e′) = 2L2 + L1 − 2,

and then remove w. We repeat this procedure of assigning pair of numbers

(2(L2−1) + L1−1, 2(L2−1) + L1−2), . . . , (L1+1, L1) until no left wing-vertices

remain. After removing all left wing-vertices, we assign d(ei) = i for the ith edge

ei along PL(x1; B
′) when we traverse PL(x1; B

′) reversely from the bottom to the

first left head-vertex x1 in the resulting block (see Fig. 2). We define depth d(e)

for all right edges e ∈ Ẽ(B) similarly.
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3.2 Tips of Rooted Blocks

We define the “tip” t(B) of a block B as follows. If B consists of a single vertex

u, then we define t(B) to be the vertex u. Otherwise, let {xi | i = 1, 2, . . . , pL}

with pL = |V L(B)| (resp., {yj | j = 1, 2, . . . , pR} with pR = |V R(B)|) denote the

set of vertices in the left (resp., right) side of B, where d(xi) = d(r(B)) + i and

d(yj) = d(r(B)) + j.

Case-1. V R
cut(B) 6= ∅ (see Fig. 3(a)): Define t(B) to be the right vertex y ∈ V R

cut(B)

with the largest depth d(y).

Case-2. V R
cut(B) = ∅ and V R

wing(B) 6= ∅ (see Fig. 3(b)): Define t(B) to be the right

wing-vertex y ∈ V R
wing(B) with the largest depth d(y).

Case-3. V R
cut(B) = V R

wing(B) = ∅ and V L
cut(B) 6= ∅, where possibly V L

wing(B) = ∅

(see Fig. 3(c)-(d)): Define t(B) to be the left vertex x ∈ V L
cut(B) with the

largest depth d(x).

Case-4. V R
cut(B) = V R

wing(B) = V L
cut(B) = ∅ and V L

wing(B) 6= ∅ (see Fig. 3(e)):

Define t(B) to be the left wing-vertex x ∈ V L
wing(B) with the largest depth

d(x).

Case-5. |V (B)| = 2 or V R
cut(B) = V R

wing(B) = V L
cut(B) = V L

wing(B) = ∅, where

possibly B(bv(B)) 6= ∅ (see Fig. 3(f)-(g)): Define t(B) to be the core-vertex

u ∈ V ′(B) with the largest depth d(u). Let t(B) be the right endvertex of

be(B) if any.

The spine of G is defined to be the sequence of all successors starting from the

rightmost block B1 ∈ B(rG) by B1, B2, . . . , Bp, where B1 is the rightmost block

in B(rG), and each Bi (i ≥ 2) is the rightmost block in B(t(Bi−1)) (Fig. 4). The

tip t(G) of G is defined to be the tip t(Bp) of block Bp, and the last block Bp is

called the tip-block of G.

4. Signatures of Embeddings

This section will explain how to encode each colored and rooted outerplanar

embedding into a sequence, called signature, such that each embedding can be

uniquely reconstructed from its signature. We will first define a parent-child rela-

tionship between two outerplanar embeddings, and then introduce the signature

for an outerplanar embedding based on its parent-embedding.

Specifically, let G be an embedding with at least one vertex, and t(G) = u be
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Fig. 3 Tip t(B) of a rooted block B: (a) Case-1; (b) Case-2; (c) Case-3; (d) Case-3; (e)
Case-4; (f) Case-5; and (d) Case-5.

the tip of G. We define the parent-embedding G′ = P (G) by removing the vertex

u. Accordingly, G is called a child-embedding of G′, which can be obtained from

G′ by adding the vertex u. We first encode the operation that creates the vertex

u into a sequence, denoted by γ(u). Then we define the signature σ(G) by the

following recursive formula

σ(G) = [σ(G′), γ(u)].

We set σ(G′) = ∅ if G′ is an empty graph.
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Fig. 4 An illustration for a sequence of blocks between rG and t(G), which forms a spine.

Now we explain how to define the code γ(u) of the tip u of G. If u = tG, i.e.,

G consists of a single vertex rG, then we define the vertex code γ(u) = c(u) ∈ C.

Otherwise, we define a vertex code γ(u) is a sequence

(d1(u), at(u), d2(u), op(u), c(u))

of five entries such that d1(u) and d2(u) are nonnegative integers, c(u) ∈ C,

at(u) ∈ {hL, wL, hR, wR, ∗}, and op(u) ∈ {new-block, star, triangle, subdivide}.

Formally, we define the code γ(u) of the tip u of G as follows. Let B be the

parent-block of u, which is the tip-block of G.

(P-1) Let u be a head-vertex of B: Let h = |V ′(B)|.

If h = 1, i.e., B consists a leaf edge (v = r(B), u) of G, then for the block B′

with v ∈ V ′(B′), define

γ(u) =











(d(B′), hL, d(v), new-block, c(u)) if v is a left vertex of B′

(d(B′), hR, d(v), new-block, c(u)) if v is a right vertex of B′

(d(B′), ∗, d(v), new-block, c(u)) otherwise,

(1)

where B′ = Br with d(Br) = 0 if v = rG.

If h = 2, i.e., B consists of a triangle (r(B), ℓv(B), u) of G and (r(B), ℓv(B))

is an edge in B, then define

γ(u) = (d(B), ∗, d(ℓv(B)), triangle, c(u)).

For h ≥ 3, let v and v′ be the vertices in V ′(B) adjacent to u, and let d(v′) ≥ d(v),

where (v, v′) is an edge e in P (G). Define

γ(u) = (d(B), ∗, d(v′), star, c(u)).

(P-2) Let u be an axial-vertex of B, where u is of degree 2 in G: Let v and v′ be

the vertices in V ′(B) adjacent to u, and let d(v′) ≥ d(v), where (v, v′) is an edge

e in P (G), but (v, v′) can be an edge in B only when |V (B)| is even. Define

γ(u) =

{

(d(B), ∗, d(v′), triangle, c(u)) if u, v and v′ form a triangle in G

(d(B), ∗, d(v′), subdivide, c(u)) if v and v′ are not adjacent in G.

(P-3) Let u be a left wing-vertex of B: Let x and x′ be the two vertices in B

adjacent to u, where (x, x′) is an edge e in P (G) and e ∈ Ẽ(B) holds. Define

γ(u) =

{

(d(B), wL, d(e), triangle, c(u)) if u, x and x′ form a triangle in G

(d(B), wL, d(e), subdivide, c(u)) if x and x′ are not adjacent in G.

(P-4) Let u be a right wing-vertex of B: Let y and y′ be the two vertices in B

adjacent to u, where (y, y′) is an edge e in P (G) and e ∈ Ẽ(B) holds. Define

γ(u) =

{

(d(B), wR, d(e), triangle, c(u)) if u, y and y′ form a triangle in G

(d(B), wR, d(e), subdivide, c(u)) if y and y′ are not adjacent in G.
By definition, we can see that each vertex code uniquely determines the result-

ing graph augmented with a new vertex.

Let an element denote a vertex or an edge. In case (P-1) with h = 1, we say

that G is obtained from P (G) by creating a new block at B with an application of

γ(u) to vertex v = r(B) in P (G). In case (P-1) with h ≥ 2 and cases (P-2)-(P-4),

we say that G is obtained from P (G) by expanding block B with an application

of γ(u) to edge e in P (G). Such a vertex v and an edge e in P (G) are called

applicable elements in P (G).

5. Canonical Embeddings

We choose a specific embedding of a colored and rooted outerplanar graphs as

canonical such that it facilitates identifying free symmetry at cut-vertices and

reflectional symmetry along rooted blocks.

We will explain the choice of canonical embedding after giving necessary nota-

tions. For two sequences A and B, let A > B mean that A is lexicographically

larger then B, and let A ≥ B mean that A > B or A = B. Let A ⊐ B mean that

B is a prefix of A and A 6= B, and let A ≫ B mean that A > B but B is not a

prefix of A. Let A ⊒ B mean that A ⊐ B or A = B, i.e., B is a prefix of A.

For two embeddings G1 and G2 of a graph H , we compare two signatures σ(G1)

and σ(G2) by comparing their codes lexicographically code-wise. We compare

two vertex codes γ and γ′ by comparing their entries lexicographically, treating
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colors and labels as negative integers such that
0 > cK > cK−1 > · · · > c1 > ∗ > wL > hL > wR > hR

> subdivide > triangle > star > new-block.
For each block B ∈ B(v), the signature σ(G) of an embedding G contains a

subsequence which consists of the codes of vertices in V (G(B)) − {v}, which we

denote by σ(G(B); G).

Left-sibling-heaviness An embedding G is called left-sibling-heavy at a block

B ∈ B(v) = (B1, B2, . . . , Bp) if B = B1 or σ(G) ≥ σ(G′) holds for the embedding

G′ obtained from G by exchanging the order of Bi−1 and Bi = B in B(v).

We can obtain the following result.

Lemma 1 An embedding G is left-sibling-heavy at a block Bi ∈ B(v) =

(B1, B2, . . . , Bp) with i ≥ 2 if and only if σ(G(Bi−1); G) ≥ σ(G(Bi); G) holds.

Let B̂ ∈ B(r(B)) denote the sibling preceding B, where we let B̂ = ∅ indicate

that there is no such sibling (i.e., B is the leftmost block in B(r(B))). We define

the sibling-state sbl(B; G) of a block B in G as follows:

sbl(B; G) =











stc if B̂ = ∅ or σ(G(B̂); G) ≫ σ(G(B); G)

pfx if B̂ 6= ∅ and σ(G(B̂); G) ⊐ σ(G(B); G)

eqv if B̂ 6= ∅ and σ(G(B̂); G) = σ(G(B); G).

(2)

Left-side-heaviness An embedding G is called left-side-heavy at a block B ∈

B(v) if σ(G) ≥ σ(G′) holds for the embedding G′ obtained from G by replacing

B with Bf (thus flipping the embedding B along the axis through v and the

bottom of B).

The code subsequence σ(G(B); G) consists of six subsequences: the first con-

sists of the codes of left or right core-vertices excluding bv(B) (denoted by

σcore(G(B); G)), the second consists of the code of the descendants of the bottom

vertex bv(B) if any (denoted by σb(G(B); G)), the third consists of the code of

left wing-vertices (denoted by σL
wing(G(B); G)), the fourth consists of the code of

descendants of left vertices (denoted by σL
dscd(G(B); G)), the fifth consists of the

code of right wing-vertices (denoted by σR
wing(G(B); G)), and the sixth consists

of the code of descendants of right vertices (denoted by σR
dscd(G(B); G)).

Besides, let σL(G(B); G) (resp., σR(G(B); G)) denoted the subsequence

of σ(G(B); G) consisting of σL
wing(G(B); G) and σL

dscd(G(B); G) (resp.,

σR
wing(G(B); G) and σR

dscd(G(B); G)). Let σL
core(G(B); G) (resp., σR

core(G(B); G))

denote the sequence obtained from σcore(G(B); G) by eliminating the codes of

right (resp., left) core-vertices and of the bottom vertex bv(B) (if any) after

deleting the first four entries of each code in σcore(G(B); G), respectively. Thus,

σL
core(G(B); G) (resp., σR

core(G(B); G)) is the sequence of color entries of left

(resp., right) core-vertices of B.

For each left wing-vertex u of B (resp., a child-vertex u ∈ Ch(v) of a vertex v

in the left side of B), we define the flipped code γ(u) of vertex code γ(u) to be

the code obtained from γ(u) by replacing the second entry wL (resp., hL) with wR

(resp., hR). Symmetrically, for each right wing-vertex u of B (resp., a child-vertex

u ∈ Ch(v) of a vertex v in the right side of B), we define the flipped code γ(u)

of vertex code γ(u) to be the code obtained from γ(u) by replacing the second

entry wR (resp., hR) with wL (resp., hL). For a notational convenience, we set

γ(u) = γ(u) for the other vertices u ∈ V (G(B)) − {r(B)}.

Let σL(G(B); G) (resp., σR(G(B); G)) denote the sequence obtained from

σL(G(B); G) (resp., σR(G(B); G)) by replacing each vertex code γ(u) with γ(u).

We can gain the following sufficient and necessary condition for left-side-

heaviness at a rooted block.

Lemma 2 An embedding G is left-side-heavy at a block B ∈ B(v) if and only

if it holds [σL
core(G(B); G), σL(G(B); G)] ≥ [σR

core(G(B); G), σR(G(B); G)].

For simplicity, denote σL
core(G(B); G) by σL

core. Similarly for σR
core, σR and σL.

We define the side-state sd(B; G) of a block B in G as follows:

sd(B; G) =



















stc if “[σL
core, σL] ≫ [σR

core, σR]

nil if σL
core = σR

core and σR = ∅

pfx if σL
core = σR

core and σL ⊐ σR 6= ∅

eqv if σL
core = σR

core and σL = σR 6= ∅.

(3)

An embedding G is called canonical if it is left-sibling-heavy and left-side-heavy

at all blocks in G. We find the following property of canonical embeddings.

Lemma 3 Let G be an embedding of a colored and rooted outerplanar graph

H . Then G is canonical if and only if σ(G) is lexicographically maximum among

all σ(G′) of embeddings G′ ∈ ξ(H).

Lemma 4 For a canonical embedding G with |V (G)| ≥ 2, its parent-

embedding P (G) is a canonical embedding.

Family Tree Based on Lemma 4, we construct a rooted tree whose nodes
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represent canonical embeddings to be generated, called family tree, where the

root-node is an empty graph, and other nodes are canonical embeddings of all

colored and rooted outerplanar graphs. This family tree indicates that all colored

and rooted outerplanar graphs may be generated by traversing all nodes in some

order such as depth-first searching.

6. Generating Canonical Child-embeddings

This section explains how to systematically generate all canonical child-

embddings from any given canonical embedding G without repetition and without

testing duplication. Based on Sections 4 and 5, an embedding G′ is a canonical

child-embedding of G if and only if G′ is obtained from G by attaching a new

vertex v to an element ε (i.e., vertex or edge) in V (G) ∪ E(G) with a vertex

code γ and G′ satisfies the left-heavy properties. The systematical generation of

all canonical child-embeddings of G depends on the determination of all possible

elements ε of G (arranged as a sequence E∗(G)) and all possible vertex codes

(denoted by Γ). We can see that if all these valid elements and vertex codes

can be automatically gained, then all canonical child-embeddings of G can be

generated systematically without repetition.

To obtain E∗(G) and Γ, we first identify all the elements ε in V ′(B) ∪ E(B)

and vertex code set Γ(ε) that admit a vertex code γ ∈ Γ(ε) such that G′ =

G + γ(uN+1) remains left-side-heavy at a block B based on the same five cases

used to define the tip of a block. We give the set of such elements in V ′(B)∪E(B)

as a sequence of these elements, called the element sequence E(B). Let E(B) = ∅

if sd(B; G) = eqv, since no application of γ(uN+1) is applied any element in

V ′(B) ∪ E(B) without violating left-side-heaviness of B.

Then we identify the condition for G + γ(uN+1) to remain canonical, i.e., left-

sibling-heavy and left-side-heavy at all blocks. For the spine B1, B2, . . . , Bp of

G, define sequences

E(G) = [rG, E(B1), E(B2), . . . , E(Bp)]

and
s(G) = [s1 = sbl(B1; G), s2 = sd(B1; G), s3 = sbl(B2; G), s4 = sd(B2; G), . . . ,

s2p−1 = sbl(Bp; G), s2p = sd(Bp; G)].
A canonical child-embedding G′ = G + γ(uN+1) of G is generated by applying

a code γ(uN+1) = (d1, at, d2, op, c) ∈ Γ(ε) to an element ε ∈ E(G).

Let Bh be the block in the spine with ε ∈ V ′(Bh) ∪ E(Bh), i.e., the block to

which a new vertex uN+1 is introduced, where Bh is determined by d(Bh) = d1.

Let B′ denote the new block created by γ(uN+1) (if ε is a vertex), where B′ is the

(h + 1)st block in the spine of G′. Observe that G′ is also left-sibling-heavy and

left-side-heavy at any block not in the spine of G or at any block Bi with i > h

in the spine of G. Thus, to know when G′ is canonical, we only need to examine

states s1, s2, . . . , s2h−1, s2h in G′ and the new sibling-state s2h+1 = sbl(B′; G′)

(if ε is a vertex) (recall that the side-state s2h+2 = sbl(B′; G′) is always nil).

We define copy-state cs(G) of G to be the state si∗ ∈ {eqv, pfx} with the

minimum index i∗ in s(G), and the block Bℓ attaining si∗ = sbl(Bℓ; G) or

si∗ = sd(Bℓ; G) is called the dominating block of G; let cs(G) = stc and i∗ = ∞

otherwise (i.e., each state in s(G) is stc or nil). Then we can characterize the

element sequence E∗(G) by the copy-state cs(G) of G. Specifically, if cs(G) =

stc, then E∗(G) = E(G), if cs(G) = eqv, then E∗(G) is the sequence of element

obtained from E(G) by deleting the elements contained in a block Bi with i ≥ ℓ

in the spine, and if cs(G) = pfx, then E∗(G) is the sequence of elements obtained

from E(G) by deleting the elements preceding a unique and specific element ε∗

(excluding ε∗), where ε∗ can be computed in O(1) time based on constant-size

of the information about the dorminating block Bℓ of G. The vertex code set

Γ = ∪ε∈E∗(G)Γ(ε).

7. Algorithm

Recall that all canonical embeddings with at most n vertices to be enumerated

are arranged in the family tree. Starting from a graph consisting of a single

vertex, we recursively enumerate its first canonical child-embedding by appending

a new vertex to the current graph until reaching an embedding that has no child-

embedding; and then backtracking to the most recent embedding which has child-

embeddings not being enumerated yet. Note that during the enumeration, we

only output the constant-size difference between two consecutive embeddings.

The above idea of enumeration is presented as the following Algorithm GEN-

ERATE, where “/*. . . */” indicates a comment.

Algorithm GENERATE(n, C)
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Input: An integer n ≥ 1 and a set C = (c1, c2, . . . , cK) of K colors.

Output: All canonical embeddings of colored and rooted outerplanar graphs

with at most n vertices.

1 begin

2 for each c ∈ C do

3 Let G be the graph consisting of a single vertex u1(= rG) with c(u1) = c;

4 Let Br be the imaginary parent-block of the root rG;

5 Output c(u1) = c;

6 ε1 := u1; γ1 := (0, ∗, 0, new-block, c1);

7 GEN(G, Br, ε1, γ1)

8 endfor

9 end.

Given an embedding G with N vertices, a block B, an element ε ∈ E(B) and a

code γ ∈ Γ(ε), Procedure GEN(G, B, ε, γ) recursively generates all descendant-

embeddings of G with at most n vertices, which is given as follows.

Procedure GEN(G, B, ε, γ)

/* Let N = |V (G)| ∈ [1, n− 1], and uN+1 be a new vertex that will be created. */

1 begin

2 G′ :=Append(G, B, ε, γ); /* Compute a child-embedding G′ of G. */

3 if N is odd then Output γ(uN+1) = γ endif;

4 if N + 1 < n then

5 ε1 := rG; γ1 := (0, ∗, 0, new-block, c1); GEN(G′, Br, ε1, γ1)

6 endif;

7 if N is even then Output γ(uN+1) = γ endif;

8 RemoveTip(G′); /* Compute G from G′ by removing the tip of G′. */

9 [B′, ε′, γ′] :=NextCode(B, ε, γ; G); /* Calculate three parameters B′,

ε′ and γ′ to generate the next child-embedding of G */

9 if [B′, ε′, γ′] 6= ∅ then GEN(G, B′, ε′, γ′) endif

10 end.

Theorem 5 Given an integer n ≥ 1 and a set C = (c1, c2, . . . , cK) of K ≥ 1

colors, the proposed algorithm enumerates all colored and rooted outerplanar

graphs with at most n vertices without repetition in O(1) time per each and in

O(n) space.

8. Concluding Remarks

This paper has proposed an efficient algorithm for generating all colored and

rooted outerplanar graphs with at most given number n (≥ 1) vertices without

repetition in O(1) time per each and O(n) space.
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