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Fixed-Hamming-Weight Representation for

Indistinguishable Addition Formulae☆

Hideyo Mamiya† and Atsuko Miyaji††

In the execution of signature on a smart card, side channel attacks such as simple power
analysis (SPA) have become serious threat 12). There are the fixed procedure method and
the indistinguishable method for SPA resistant methods. The indistinguishable method con-
ceals all branch instructions by using indistinguishable addition formulae but may reveal the
hamming-weight when an addition chain with the un-fixed-hamming-weight is used. In the
case of hyper-elliptic curve, the indistinguishable method has not been proposed yet. In this
paper, we give an indistinguishable addition formulae of hyper-elliptic curve. We also give
algorithms which output the fixed-hamming-weight representation for indistinguishable ad-
dition formulae and works with or without computation table, which can dissolve the above
mentioned problem on the indistinguishable method and are also applied to an elliptic curve
scalar multiplication.

1. Introduction

Elliptic curve cryptosystems and hyperellip-
tic curve cryptosystems chosen appropriately to
avoid known attacks 1),7),15),29),31) are vulnera-
ble only to the Pollard ρ-method 21) and the
Pohlig-Hellman method 20). As a result, they
can be constructed over a smaller definition
field than discrete-logarithm-problem (DLP)-
based cryptosystems 8),9) and RSA cryptosys-
tems 22). Elliptic curve cryptosystems (ECC)
and hyperelliptic curve cryptosystems (HECC)
with a 160-bit key are thus believed to have
the same security as both the DLP-based cryp-
tosystems and RSA with a 1,024-bit key. This
is why ECC and HECC have been attractive in
smart card applications, whose memory stor-
age and CPU power is very limited. ECC and
HECC execute a scalar multiplication of dP for
a secret key d and a publicly known P as a
cryptographic primitive, which determines the
performance of a smart card.

In executions on a smart card, side chan-
nel attacks such as the simple power analy-
sis (SPA) and the differential power analysis
(DPA) have become a serious threat. Side
channel attacks 12),13) monitor power consump-
tion and even exploit the leakage informa-
tion related to power consumption to reveal
bits of secret key d even though d is hid-
den inside the smart card. Thus, developing
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resistance to SPA, DPA, and specific DPAs,
called refined power analysis (RPA) 10) or zero-
register analysis (ZRA) 2). Many countermea-
sures 3),4),11),13),14),16),17),19),30) have been pro-
posed so far.

This paper focuses on countermeasures
against SPA, which consists of two main coun-
termeasures: fixed procedure method 6) and
indistinguishable method 3). A fixed pro-
cedure method deletes any branch instruc-
tion conditioned by a secret d; some exam-
ples are the add-and-double-always method 6),
the Montgomery-ladder method 18), and the
SPA-resistant wNAF 19). The indistinguish-
able method conceals all branch instructions of
scalar multiplication by using indistinguishable
addition formulae 26),28),32). No indistinguish-
able addition formulae for a hyperelliptic curve
has been proposed yet. An SPA attack against
indistinguishable addition formulae that uses
the difference in power consumption between
multiplication and squaring in the Montgomery
multiplication, was proposed 33), but it can be
easily avoided by modifying the Montgomery
multiplication or reconstructing indistinguish-
able addition formulae on the condition that
multiplication and squaring are assumed to be
different. However, there is another problem
with the indistinguishable addition formula in
that the hamming weight of d is revealed when
it is used to execute dP in an addition chain
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that depends on the hamming weight. As a re-
sult, to make the execution of dP secure, the
indistinguishable addition formula needs such
an addition chain 6),18) that outputs a fixed-
hamming weight for any d. Thus, in order to
have an advantage against the fixed procedure
method, the indistinguishable method needs an
addition chain that outputs a fixed-hamming-
weight but does not run in a fixed procedure.
In the case of binary representation, the add-
and-double-always method 6) is only a method
that works with the fixed-hamming-weight for
any d. Therefore, it is useless for indistinguish-
able addition formulae to be used in such ad-
dition chains. On the other hand, in the case
of signed-binary representation, no method has
been proposed that works in a fixed-hamming-
weight and a fixed procedure. Furthermore,
the SPA-resistant window method works in the
fixed-hamming weight but requires additional
points for a precomputed table compared with
the ordinary window method 5). Therefore,
these methods are open to further investigation
for indistinguishable addition formulae.

In this paper, we first give an indistinguish-
able addition formula for a hyperelliptic curve.
The formula deals with multiplication and
squaring differently and thus is secure against
the above attack 33). Then, we present both
signed-binary and signed-window algorithms,
which work in a fixed-hamming weight without
additional memory. Our signed binary algo-
rithm always computes dP in (�n′

2 � − 1) ad-
ditions and (n′− 1) doublings without any pre-
computed point, where n′ is the length of NAF
representation of d. Compared with the add-
and-double-always method, our method can re-
duce the computation amount by 0.2% or 21.3%
with the same memory in the case of ellip-
tic curve or hyperelliptic curve, respectively.
Our signed w-window algorithm always com-
putes dP in (�n′′

w � + 2w−2 − 2) additions and
n′′ doublings with 2w−2 precomputed points,
where n′′ is the length of wNAF representa-
tion of d. Compared with the SPA-resistant
wNAF 19), our method can reduce the compu-
tation amount by 2.8% with the same memory
in the case of a hyperelliptic curve.

This paper is organized as follows. Section 2
summarizes some facts of hyperelliptic curves
such as coordinate systems and reviews SPA
and DPA with some known countermeasures.
Section 3 presents an indistinguishable addi-

tion formulae for hyperelliptic curves. Sec-
tion 4.1 describes the relationship between a
hamming-weight leak and the maximum com-
putation amount of an addition chain and then
presents the signed-binary algorithm and the
signed-window algorithm of 2w−2 precomputed
points in a fixed-hamming-weight.

2. Preliminary

This section summarizes some facts about hy-
perelliptic curves such as coordinate systems,
and also reviews SPA, DPA, and RPA together
with some known countermeasures.

2.1 Hyperelliptic Curve
Let Fp be a finite field, where p > 3 is a

prime. A hyperelliptic curve C/Fp with genus
2 is described as

C : Y 2 = F (X)
= X5 + f4X

4 + f3X
3

+ f2X
2 + f1X + f0,

where F (X) is in Fp[X]. In the case of p �= 5, we
can set f4 = 0. The divisors of a hyperelliptic
curve are defined as the free abelian group of
points P1, . . . , Pr ∈ C,

D =
∑

Pi∈C

miPi, mi ∈ Z.

The degree of D is defined as
∑

Pi∈C mi and
order at Pi in C is defined as mi = ordPi

(D).
The Jacobian variety JC is defined as D0/Dl,
where D0 is a group of divisors with degree 0
and Dl is a group of divisors of functions. Any
divisor D ∈ JC is equivalent modulo Dl to a
divisor called a semi-reduced divisor as follows,

D ∼
∑

Pi∈C

m′
iPi −

(∑
Pi∈C

m′
i

)
P∞ (m′

i ≥ 0).

A semi-reduced divisor is further equivalent
modulo Dl to a divisor called a reduced divi-
sor,

D ∼
∑

Pi∈C

m′′
i Pi−rP∞

(
r =

∑
Pi∈C

m′′
i ≤ g

)
,

where g is a genus of C. Any divisor in
JC is uniquely represented by a reduced di-
visor. To compute an addition of divisors,
Mumford-representation is useful. In Mumford-
representation, D ∈ C with the genus 2 is de-
scribed by D = (u1, u0, v1, v0), where

U =
∏
Pi

(X − xi)m′′
i
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= X2 + u1X + u0 ∈ Fp[X],
V = v1X + v0 ∈ Fp[X],

V 2 ≡ F (X) (mod U(X)).
Hyperelliptic curve cryptosystems (HECC) are
defined over JC , whose security depends on a
hyperelliptic curve discrete logarithm problem
(HECDLP), that is, a problem to find x for a
given D1, D2 ∈ JC(Fp) such that D1 = xD2.

2.2 Power Analysis
There are two types of power analysis 12),13):

simple power analysis (SPA) and differential
power analysis (DPA). In the case of elliptic
curve and also hyperelliptic curve, DPA is fur-
ther improved to use a special point with a zero
value, the refined power analysis (RPA) 10) and
the zero-register analysis (ZRA) 2).

2.2.1 Simple Power Analysis
SPA makes use of such an instruction per-

formed during a scalar multiplication algorithm
that depends on the data being processed. Ap-
parently, Algorithm 1 has a branch instruction
conditioned by a secret d, and thus it reveals the
secret d. To be resistant to SPA, any branch in-
struction of an exponentiation algorithm should
be eliminated. There are two main counter-
measures: the fixed procedure method 6) and
the indistinguishable method 3). The fixed
procedure method deletes any branch instruc-
tion conditioned by a secret exponent d such
as the add-and-double-always method 6) (Algo-
rithm 2), the Montgomery-ladder method 18),
and the SPA-resistant wNAF 19). The indistin-
guishable method conceals all branch instruc-
tions of a scalar multiplication algorithm by
using indistinguishable addition and doubling
formulae. However, use of the indistinguish-
able addition formula may leak the number of
additions if we use an exponentiation algorithm
whose number of additions depend on d. There-
fore, we need an algorithm that always com-
putes dP in the fixed number of additions and
that has a branch instruction to make the indis-
tinguishable addition formula secure and wor-
thy, respectively.

Algorithm 1
Binary algorithm (from MSB)

Input: d, P ( n is length of d )

Output: dP

1. T0 = O, T1 = P.

2. for i = n − 2 to 0

T0 = 2T0

if di = 1 then T0 = T0 + T1

3. output T0.

Algorithm 2
Add-and-double-always algorithm

Input: d, P

Output: dP

1. T0 = P and T2 = P.

2. for i = n − 2 to 0

T0 = 2T0. T1 = T0 + T2.

if di = 0 then T0 = T0.

else T0 = T1.

3. output T0.

2.2.2 Differential Power Analysis
DPA uses correlation between power con-

sumption and specific key-dependent bits. Al-
gorithm 2 reveals dn−2 by computing the
correlation between power consumption and
any specific bit of the binary representation
of 4P . In order to be resistant against
DPA, power consumption should be changed
at each new execution of the scalar mul-
tiplication. There are mainly 4 types of
countermeasures, the randomized-projective-
coordinate method (RPC) 6), the randomized
curve method (RC) 11), the exponent splitting
(ES) 3),4), and the randomized initial point
(RIP) 14),25). RPC uses the Jacobian or Projec-
tive coordinate to randomize a point P = (x, y)
into (r2x, r3y, r) or (rx, ry, r) for a random
number r ∈ F

∗
p, respectively. RC maps an el-

liptic curve into an isomorphic elliptic curve by
using an isomorphism map of (x, y) to (c2x, c3y)
for c ∈ F

∗
p. However, both RC and RPC are

vulnerable against RPA and ZRA, which uses
a special elliptic-curve point with a zero value
of (x, 0) or (0, y) or a register of addition or
doubling formula with a zero value. These spe-
cial points still have a zero value even if it is
converted by RPC or RC. The same discussion
holds in ZRA. This is why both RC and RPC
are vulnerable against RPA and ZRA. The only
method secure against RPA and ZRA is ES and
RIP, where ES splits an exponent and computes
dP = rP + (d − r)P for a randomly integer r
and RIP adds a random pint R and computes
dP = (dP + R) − R.

3. Indistinguishable Hyperelliptic-
curve Addition Formulae

Indistinguishable addition formulae that ex-
ecute addition and doubling in a unified proce-
dure have been proposed in elliptic curve cryp-
tosystems 26),28),32). However, because of com-
plicated addition formulae, there has been no
indistinguishable addition formula of hyperel-
liptic curve cryptosystems. Unifying both ad-
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dition and doubling of hyperelliptic curves is
difficult without any dummy execution. This is
why we aim to derive indistinguishable addition
formulae in hyperelliptic curves.

An addition formula consists of an inversion,
multiplication, squaring, addition and subtrac-
tion in Fp, whose power consumption is de-
creased in order of

inversion 	 multiplication > square
	 addition 
 subtraction.

We revise addition formulae 27) in such a way
that both addition and doubling are executed
in the same procedure with negligible additional
registers and computation. We assume that the
computation amount of 2x is equal to that of
x + x; that parallelizing is not used; and that
registers can be shared between addition and
doubling. Our strategies of indistinguishable
hyperelliptic-curve addition formulae are as fol-
lows.
Dependency analysis. To analyze dependen-
cies between formulae, we use a program de-
pendence graph (PDG) 23), which is a program
data flow graph to make the dependency of each
variable clear. Figure 1 illustrates one exam-
ple.
Register allocation and coding. Allocate
registers in addition and doubling of formu-
lae 27) by as-late-as-possible (ALAP) schedul-
ing policy 24). The formulae do not consider
the registers’ allocation, and many registers
are used wastefully. ALAP allocates registers
to variables just before they are used. Let
sets of operations of each formula be ADD =
{Fa.1, . . . , Fa.i} and DBL = {Fd.1, . . . , Fd.j}.
For two input registers in addition, one regis-
ter can be used for execution, while the other
maintains the input value during execution, and
can be used in the next procedure. For dou-

Fig. 1 Program dependence graph.

bling, one input register also maintains the in-
put value during execution.
Unifying from the last operation of ADD.
Both the addition and doubling are unified from
the last operations of ADD because ADD uses
more registers than DBL, and both are similar
to each other from the middle to the last oper-
ation. As a result, we can reduce the number
of registers. Let a set of operations of unified
formulae be U = {U1, . . . , Uk}, where U1 · · ·Uk

are described in execution order and Ui con-
sists of addition and doubling operations such
as {Fa.i, Fd.j}.
Unifying from the first operations. Op-
erations of ADD and DBL are unified from
the first operation based on the following or-
der, where one additional register for dummy
operations are allowed.
• (1) Unifying without dummy operation.

◦ Choose an executable operation Fa.i ∈
ADD. If not, go to (2).
◦ Search all executable-operation sequences
of DBL with the same operation as Fa.i,
Fa.i+1, . . . , choose the longest sequence,
and renew U . Retry (1) again.

• (2) Unifying with dummy operations.
◦ Choose ADD � Fa.i with the smallest
un-unified i. If not, go to (3).
◦ If there exist operation sequences of exe-
cutable Fd.i in DBL that are the same op-
eration as Fa.i, then choose the smallest se-
quence, insert dummy operations Fa.dummy

in ADD if necessary, and renew unified for-
mula U . Retry (2) again.
◦ Otherwise, put dummy operations
Fd.dummy with the same operation as Fa.i

in DBL and renew U by using Ut =
{Fa.i, Fd.dummy}. Retry (2) again.

• Repeat steps (1) and (2) above by changing
the order of operations of ADD as long as
they can run.

Table 1 shows the indistinguishable addition
formulae. The efficiency is shown in Table 2,
where M , S, I, Add, and Sub respectively indi-
cate the computation times for multiplication,
squaring, inversion, addition, and subtraction.
Indistinguishable addition formulae can be de-
rived by adding only a few dummy operations
and one register.

4. Addition Chain with a Fixed Ham-
ming Weight

The computation amount of the addition
chain of dP usually depends on “d”, which
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Table 1 Hyperelliptic-curve indistinguishable addition formulae.

Addition: Input (R00, R01, R02, R03)← (u20, u21, v20, v21) = D1

(R04, R05, R06, R07)← (u10, u11, v10, v11) = D2

Addition: Output D2 = (u′
0, u′

1, v′
0, v′

1)← (R00, R01, R02, R09)
Doubling: Input (R00, R01, R02, R03)← (u0, u1, v0, v1) = D1

Doubling: Output D2 = (u′
0, u′

1, v′
0, v′

1)← (R09, R06, R04, R08)
Rd, R′

d is any register ( �= 0)

Addition Doubling
D2 ← D1 + D2 D2 ← 2D1

1 R08 ← R2
d R04 ← R2

03 37 R03 ← R2
03 R04 ← R2

04
2 R08 ← 2×Rd R05 ← 2×R02 38 R03 ← R03 ×R09 R04 ← R04 ×R07

3 R08 ← Rd + R′
d R06 ← f3 + R04 39 R09 ← R10 ×R09 R07 ← R06 ×R07

4 R08 ← 2×Rd R07 ← 2×R05 40 R02 ← R02 ×R09 R05 ← R05 ×R07

5 R08 ← R01 −R05 R07 ← R07 −R06 41 R09 ← R10 ×R09 R06 ← R06 ×R07

6 R09 ← 2×Rd R04 ← 2×R04 42 R01 ← R02 −R01 R08 ← Rd −R′
d

7 R09 ← Rd + R′
d R04 ← R04 + R06 43 R10 ← R05 ×R02 R08 ← R03 ×R05

8 R03 ← R03 −R07 R04 ← R04 −R05 44 R10 ← R10 + R04 R08 ← R08 + R02

9 R09 ← 2×Rd R05 ← 2×R01 45 R11 ← R02 −R08 R09 ← Rd −R′
d

10 R09 ← R08 ×R03 R06 ← R03 ×R05 46 R01 ← R01 ×R11 R09 ← Rd ×R′
d

11 R10 ← 2×Rd R08 ← 2×R00 47 R00 ← R01 −R00 R09 ← Rd −R′
d

12 R10 ← R04 −R00 R09 ← R08 −R06 48 R00 ← R00 + R10 R09 ← Rd + R′
d

13 R11 ← −Rd R05 ← −R05 49 R01 ← 2×R07 R09 ← 2× R01

14 R02 ← R02 −R06 R06 ← R08 −R06 50 R01 ← R01 ×R09 R09 ← R09 ×R06

15 R03 ← R02 + R03 R10 ← R09 + R05 51 R11 ← R2
d R10 ← R2

05
16 R11 ← R01 ×R08 R07 ← R03 ×R07 52 R00 ← R00 + R01 R09 ← R10 + R09

17 R11 ← R11 + R10 R07 ← R07 + f2 53 R01 ← R2
09 R06 ← R2

06
18 R02 ← R11 ×R02 R06 ← R08 ×R06 54 R09 ← 2×R05 R10 ← 2× Rd

19 R10 ← R10 ×R11 R05 ← R04 ×R05 55 R09 ← R09 + R08 R10 ← 2× R03

20 R11 ← R08 + R11 R08 ← Rd + R′
d 56 R09 ← R09 ×R01 R10 ← R10 ×R06

21 R12 ← R2
08 R08 ← R2

01 57 R00 ← R00 + R09 R09 ← R09 + R10

22 R03 ← R11 ×R03 R11 ← R02 ×R05 58 R09 ← 2×R02 R10 ← 2× R05

23 R03 ← R03 −R02 R07 ← R07 −R08 59 R11 ← R05 + R02 R05 ← R03 + R05

24 R11 ← 4×Rd R08 ← 4×R08 60 R08 ← R09 −R08 R11 ← Rd −R′
d

25 R11 ← R12 ×R00 R08 ← R02 ×R08 61 R01 ← R08 −R01 R06 ← R10 −R06

26 R10 ← R10 + R11 R06 ← R08 + R06 62 R08 ← R11 −R01 R05 ← R05 −R06

27 R11 ← 1 + R01 R08 ← 1 + R03 63 R02 ← R04 ×R02 R07 ← R02 ×R07

28 R11 ← R09 ×R11 R05 ← R05 ×R08 64 R09 ← R01 ×R08 R10 ← R06 ×R05

29 R09 ← R00 ×R09 R08 ← R07 ×R09 65 R09 ← R09 + R00 R10 ← R10 + R09

30 R12 ← Rd + R′
d R04 ← R07 + R04 66 R09 ← R09 −R10 R08 ← R10 −R08

31 R12 ← Rd ×R′
d R04 ← R10 ×R04 67 R09 ← R09 ×R03 R08 ← R08 ×R04

32 R12 ← Rd −R′
d R04 ← R04 −R08 68 R09 ← R09 −R07 R08 ← R08 −R01

33 R03 ← R03 −R11 R04 ← R04 −R05 69 R08 ← R00 ×R08 R05 ← R09 ×R05

34 R02 ← R02 −R09 R05 ← R08 −R11 70 R02 ← R08 −R02 R05 ← R05 −R07

35 R09 ← R10 ×R03 R07 ← R06 ×R04 71 R02 ← R02 ×R03 R04 ← R05 ×R04

36 R09 ← R−1
09 R07 ← R−1

07 72 R02 ← R02 −R06 R04 ← R04 −R00

Table 2 Complexity and number of registers.

#M #S # I (1) #Add #Sub (2) (3) # register
Addition 22 3 1 0 14 17 1 0 12
Doubling 22 5 1 1 19 14 1 1 11

Proposed formulae 23 5 1 1 22 18 1 1 13
#Dummy in Addition 1 2 0 1 8 1 0 1 -
#Dummy in Doubling 1 0 0 0 3 4 0 0 -

(1): # multiplication to a small constant, (2): # addition to a small constant, (3): # sign conversion

means that an addition chain does not usu-
ally work with a fixed-hamming-weight. In
this section, however, we investigate a con-
dition of an addition chain which does work
with a fixed-hamming-weight. We present Al-

gorithm 3, which always computes dP in the
computation of (�n′

2 � − 1)A + (n′ − 1)D from
MSB by using the NAF representation of dn =∑n′

i=0 dn
i2

i, where n′ is the length of the NAF
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representation. We also present Algorithm 4,
which always computes dP in the computation
of (�n′′

w � + 2w−2 − 2)A + n′′D with 2w−2 pre-
computed points, where n′′ is the length of the
wNAF representation.

4.1 The Relation between the Ham-
ming-weight Leak and the Maxi-
mum Computation

Algorithm 1 to compute dP =
∑n

i=0 di2iP
executes doubling and addition if di = 1; other-
wise it executes only doubling. Therefore, even
if we use the indistinguishable addition formula,
the number of additions, that is the hamming-
weight, is leaked by measuring the power con-
sumption. This is why we have to use Algo-
rithm 2 even with the indistinguishable addi-
tion formula. The computation amount of in-
distinguishable addition formulae is larger than
that of conventional formulae and, thus, the in-
distinguishable addition formulae do not give
any advantage over the conventional formulae
in the case of binary algorithm. Then what
algorithm is useful for the indistinguishable ad-
dition formula? Let us think about the algo-
rithmic meaning between Algorithms 1 and 2.

As we mentioned above, the complexity of
the addition chain depends on d; that is, there
are worst and best cases. The worst case in an
addition chain means that it works with a fixed-
hamming-weight. Therefore, the indistinguish-
able addition formula can work in the worst
case of an addition chain without revealing the
hamming-weight (HW). The worst case in Al-
gorithm 1 is, apparently, that the hamming-
weight (HW) of d is full for n, in which both
addition and doubling are done in each bit of d.
This is exactly the case of Algorithm 2. There-
fore, we can consider Algorithm 2 to be the
worst case of Algorithm 1. In the same way,
the SPA-resistant wNAF 19) is considered to be
the worst case of wNAF.

In summary, the indistinguishable addition
formula has an advantage over conventional ad-
dition formulae for an addition chain of dP that
always works in the worst case of d but has a
branch instruction. This is because a conven-
tional addition formula reveals the branch if it
is used on such an algorithm. The addition-
subtraction chain works in (�n

3 �−1)A+(n−1)D
on the average and (�n

2 � − 1)A + (n − 1)D
on the maximum, where A and D mean the
computation amount of addition and doubling,
respectively. We remark that an addition-

subtraction method that always has the maxi-
mum computation has not yet been proposed.
On the other hand, the wNAF 5) computes dP
in � n

w+1�A + (n − 1)D on the average and
in (� n

w � − 1)A + (n − 1)D at the maximum
for an n-bit d with 2w−2 precomputed points.
The SPA-resistant wNAF 19), called S-wNAF in
short, needs 2w−1 precomputed points and al-
ways works in (� n

w � − 1)A + (n − 1)D. We can
say that S-wNAF realizes the SPA resistance by
the sacrifice of additional precomputed points.
Note that the window method has not been pro-
posed that always run with the maximum com-
putation while maintaining 2w−2 precomputed
points.

4.2 Fixed-hamming-weight Signed-
binary Algorithm

In the NAF representation dn, a non-zero bit
is always next to 0. Therefore, the HW of dn is
less than or equal to �n′

2 �. We can compute dP

while increasing the HW of dn to exactly �n′
2 �

by the following rules:
• Case 1 If dn

id
n
i−1 is 00, then execute addition,

doubling, subtraction, and subtraction. This
means that 00 is converted into 1(1̄ + 1̄) and
then HW is increased by 3.
• Case 2 If dn

i is 0, then execute addition and
subtraction. This means that 0 is converted
into (1 + 1̄) and then HW is increased by 2.
• Case 3 If dn

id
n
i−1 is 01 or 01̄, then execute ad-

dition, doubling, and subtraction, or subtrac-
tion, doubling, and addition, respectively. This
means that 01 or 01̄ is converted into 11̄ or 1̄1,
respectively, and then HW is increased by 1.

Therefore, we compute dP by executing Case 1
or 2 if dn

id
n
i−1 = 00; and Case 3 if dn

id
n
i−1 = 01̄

or 01 until HW = �n′
2 �. The following algo-

rithm 3 describes these steps in detail. The
detailed algorithm to compute dP in the signed
binary algorithm with a fixed-hamming-weight
is given as follows, where it starts at the NAF
representation dn and computes dP from MSB.

Algorithm 3
Fixed-HW-Signed-binary algorithm

Input : P, d =
∑n

i=0
di2

i

(binary representation)

Output: dP

1. Convert d =
∑n

i=0
di2

i to the NAF

representation dn =
∑n′

i=0
dn

i2
i;

2. Set HW of dn to l;

3. Q = P;

4. for i = n′ − 1 down to 0
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Q = 2Q;

if dn
i = ±1 then Q = (Q ± P );

else

if (�n′
2
� − l) ≥ 1 and dn

i−1 = ±1, then

Q = Q ± P, Q = 2Q, Q = Q ∓ P,

l = l + 1, and i = i − 1;

else if 3 > �n′
2
� − l > 1 and dn

i−1 = 0,

then Q = Q + P, Q = Q − P, and

l = l + 2;

else if �n′
2
� − l ≥ 3 and dn

i−1 = 0, then

Q = Q + P, Q = 2Q, Q = Q − P,

Q = Q − P, l = l + 3, and i = i − 1;

next i.

5. Output Q;

Theorem 1 For any n-bit d, Algorithm 3
always computes dP in (�n′

2 �−1)A+(n′−1)D,
where n′ is the length of NAF representation
dn.
proof: Let HW of dn be l and a = �n′

2 � − l.
The proof is done inductively. In the case of
a = 1, then there exist two consecutive bits of
dn

id
n
i−1 = 01 or 01̄ because a non-zero bit is next

to 0 in NAF representation. Algorithm 3 exe-
cutes Case 3. Then HW becomes �n′

2 �. We
assume that HW becomes �n′

2 � by Algorithm 3
in the case of a = i. When a = i+1, there exist
two consecutive zero bits such as dn

i0
dn

i0−1 = 00
because �n′

2 � − l = i + 1 ≥ 2. We set the most
significant bit to i0, i.e dn

n′ · · · dn
i0+1d

n
i0

dn
i0−1 =

1010 · · · 100. Then dn

n′ · · · dn
i0+1 coincides with

the NAF representation whose density of 1 is 1
2 .

Algorithm 3 executes Case 1 to dn
i0

if i + 1 ≥ 3,
or Case 2 to dn

i0
if i + 1 = 2; then �n′

2 � − HW
becomes i − 2 < i or i − 1 < i, respectively. In
both cases, dn

i0−2 · · · dn
0 is still a NAF represen-

tation. Therefore HW becomes �n′
2 � from the

assumption of induction.
Corollary 1 The computation amount of

Algorithm 3 is the minimum among the
fixed-hamming-weight signed binary algorithms
without any additional precomputed point.
proof: From Theorem 1, Algorithm 3 can al-
ways compute dP in the exact same computa-
tion amount as in the worst case of the addition-
subtraction algorithm. A worst case of d exists
such as d = 10 or 101: they cannot be trans-
formed into an addition-subtraction algorithm
that works faster than the worst case. There-
fore, the computation amount of Algorithm 3
is the minimum among the fixed-hamming-
weight algorithms without any additional pre-
computed point.

4.3 Fixed-hamming-weight Signed
Window Algorithm

Let a window representation with the width
w and the wNAF representation of d be
dw and dwn, respectively. The number of
non-zero bits of dw and dwn is denoted by
wHW. For example, wHW of dwn is 5 when
dwn = 100030003̄0000070001. An interest-
ing property is that dwn is uniquely repre-
sented for d, but neither the signed binary
representation ds nor the window representa-
tion dw is determined uniquely. For exam-
ple, the above dwn can be represented by ds =
ds

n−1 · · · ds
0 = 10011001̄1̄001110001, and it can

be represented by ds = 111̄01̄1̄10101001̄11̄1̄1̄,
which is converted to dw = dw

n−1 · · · dw
0 =

5003̄005010001̄007̄.
In the wNAF representation dwn, a non-zero

bit is always next to (w − 1) 0s. Therefore,
wHW of dwn is less than or equal to �n′′

w �, where
n′′ is the length of the wNAF representation of
dwn =

∑n′′

i=0 dn
i2

i. We can compute dP while
increasing wHW of dwn to exactly �n′′

w � by the
conversion rules of Cases 1 and 2 in Section 4.2
and of the following Case 3’, which is a modifi-
cation of Case 3 in Section 4.2.
• Case 3’ If dwn

i = · · · = dwn
i−w+2 = 0 and

dwn
i−w+1 �= 0, then execute an addition or a sub-

traction, (w − 1) doublings, and subtraction of
([s]2w−1 − dwn

i−w+1)P in this order, where s is
the sign of dwn

i−w+1. Namely, dwn
i · · · dwn

i−w+1 is
converted to = [s]1 · · · (−1)([s]2w−1 − dwn

i−w+1),
and thus wHW is increased by 1.

The detailed algorithm to compute dP us-
ing the signed-window method with a fixed-
hamming-weight is given as the following Al-
gorithm 4, where it starts at the wNAF repre-
sentation dwn and computes dP from MSB with
the precomputation table {P, . . . , 2w−1P}.

Algorithm 4
Fixed-wHW signed window algorithm

Input : P, d =
∑

di2
i

(binary representation)

Output: dP

1. Convert d =
∑n

i=0
di2

i to the wNAF

representation dwn =
∑n′′

i=0
dwn

i 2i.

2. Set wHW of dwn to l.

3. Q = dwn
n′′P.

4. For i = n′′ − 1 down to 0

Q = 2Q.

if dwn
i �= 0 then Q = Q + dwn

i P;

else

if �n′′
w
� − l ≥ 1, dwn

i−1 = · · · = dwn
i−w+2 = 0
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and dwn
i−w+1 �= 0, then

set the sign of dwn
i−w+1 to s,

Q = Q + [s]P, Q = 2w−1Q,

Q = Q − ([s]2w−1 − dwn
i−w+1)P, l = l + 1

and i = i − (w − 1);

else if 3 > �n′′
w
� − l > 1, then

Q = Q + P, Q = Q − P, and l = l + 2;

else if �n′′
w
� − l ≥ 3 and dwn

i−1 = 0, then

Q = Q + P, Q = 2Q, Q = Q − P,

Q = Q − P, l = l + 3 and i = i − 1;

next i.

5. Output Q.

Theorem 2 For any n-bit d, Algorithm
4 computes dP in (�n′′

w � + 2w−2 − 2)A +
n′′D with the precomputation table of T =
{P, 3P, . . . , (2w−1 − 1)P} (#T = 2w−2) on
the assumption that the precomputation ta-
ble is constructed using a simple method of
(2w−2−1)A+D (w > 2), where n′′ is the length
of the wNAF representation dwn.
proof: Let HW of dwn be l and a = �n′′

w � −
l. The proof is done inductively. In the
case of a = 1, then there exist w consec-
utive bits of dwn

i · · · dwn
i−w+1 = 0 · · · 0︸ ︷︷ ︸

w−1

dwn
i−w+1

(dwn
i−w+1 �= 0) because a non-zero bit is next

to (w − 1) 0s in the wNAF representation.
Algorithm 4 executes Case 3’; then HW be-
comes �n′′

w �. We assume that wHW becomes
�n′′

w � by Algorithm 4 in the case of a = i.
When a = i + 1, there exist w-consecutive-
zero bits like dwn

i0
· · · dwn

i0−w+1 = 0 · · · 0 because
�n′′

w �−l = i+1 ≥ 2. We set the most significant
bit to i0, i.e dwn

n′′ · · · dwn
i0+1d

wn
i0

dwn
i0−1 · · · dwn

i0−w+1 =
dwn

n′′ · · · dwn
i0+1 0 · · · 0︸ ︷︷ ︸

w

. Then dwn

n′′ · · · dwn
i0+1 is the

wNAF representation and so its density of non-
zero bits is 1

w . Algorithm 4 executes Case 1 to
dwn

i0
if i + 1 ≥ 3, or Case 2 to dn

i0
if i + 1 = 2;

then a = � n
w �− l becomes i− 2 < i or i− 1 < i,

respectively. In both cases, dwn
i0−w · · · dwn

0 is still
the wNAF representation. Therefore wHW be-
comes �n′′

w � from the assumption of induction.
Algorithm 4 executes addition or subtrac-

tion only to points ∈ T in any Case. In
fact, ([s]2w−1 − dwn

i )P in Case 3’ is in T be-
cause |[s]2w−1 − dwn

i | < 2w−1 and dwn
i is odd.

Table 3 Comparison (n = 160).

Algorithm work #Point ECC (q = 160) HECC (q = 80)
ADA (n− 1)A + (n− 1)D 1 2544M+1590S (3816M) 6996M+1272S + 318I (11193M)

Alg. 3 (�n
2
� − 1)A + (n− 1)D 1 2856M+1190S (3808M) 5474M+1190S+238I (8806M)

S-wNAF (w = 3) (�n
3
�+ 2)A + nD 4 1313M+1184S (2260M) 4752M+968S+ 216I (7687M)

Alg. 4 (�n
4
�+ 2)A + nD 4 2424M+1010S (3232M) 4646M+1010S+202I (7474M)

Therefore, Algorithm 4 can work with T =
{P, 3P, . . . , (2w−1 − 1)P} of 2w−2 points.

Corollary 2 The computation amount of
Algorithm 4 is the minimum among the fixed-
hamming-weight signed w-window algorithms
with 2w−2 precomputed points.
proof: It follows from the same discussion as
Corollary 1. In the w-window method, the
worst case of d is given as

(2w−1 − 1) 0 · · · 0︸ ︷︷ ︸
w−1

(2w−1 − 3)0 · · · 02 0 · · · 0︸ ︷︷ ︸
w−1

1.

5. Comparison

Table 3 compares our methods with previ-
ous SPA-countermeasures that do not use any
indistinguishable addition formula such as the
add-and-double-always algorithm (ADA) 6) or
the SPA-resistant wNAF (S-wNAF) 19). Our
methods use indistinguishable addition formu-
lae, which work in 12M + 5S or 23M + 5S + I
by using an elliptic-curve-addition formula 28)

or our hyperelliptic-curve-addition formula in
Section 3, respectively. The previous SPA coun-
termeasures use the best coordinate of the Jaco-
bian or Affine coordinate system 27) that works
in 12M + 4S or 22M + 5S + I of addition and
4M +6S or 22M +5S+I of doubling in the case
of elliptic or hyperelliptic curves, respectively.
We assume that S = 0.8M and I = 10M and
the precomputation table is constructed by a
simple method of repeating additions to 2P .

Now let us compare Algorithm 3 with ADA.
Algorithm 3 reduces the computation amount
by 0.2% with an elliptic curve or 21.3% with
a hyperelliptic curve. Let us compare Algo-
rithm 4 (w = 4) with S-wNAF (w = 3). Al-
gorithm 4 increases or reduces the computation
amount by 43.0% or 2.8% with the same mem-
ory in the case of elliptic curves or hyperelliptic
curves, respectively. We see that our novel com-
bination of an indistinguishable addition for-
mula and the fixed-hamming-weight represen-
tation gives a great advantage against the pre-
vious approaches of fixed procedure methods of
ADA and S-wNAF in the case of hyperelliptic
curve.
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6. Concluding Remarks

In this paper, we have given the hyperelliptic-
curve indistinguishable addition formula for the
first time. We have also proposed a new coun-
termeasure against SPA that represents any ex-
ponent d with the minimum fixed-hamming-
weight HW or wHW. The novel combination of
our indistinguishable addition formula and our
fixed-hamming-weight representation gives an
advantage over the previous approaches of fixed
procedure methods such as the add-and-double-
always method or the SPA-resistant wNAF in
the case of hyperelliptic curve.
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