
Vol. 47 No. 8 IPSJ Journal Aug. 2006

Regular Paper

Unlinkable Identification for Large-scale RFID Systems

Yasunobu Nohara,† Toru Nakamura,† Kensuke Baba,†

Sozo Inoue† and Hiroto Yasuura†

Unlinkability, the property that prevents an adversary recognizing whether outputs are from
the same user, is an important concept in RFID. Although hash-based schemes can provide
unlinkability by using a low-cost hash function, existing schemes are not scalable since the
server needs O(N) hash calculations for every ID matching, where N is the number of RFID
devices. Our solution is the K-steps ID matching scheme, which can reduce the number of
hash calculations on the server to O(log N). In this paper, we explain the protocol, describe
a test implementation, and discuss the application of this scheme to practical RFID systems.
We also compare the scheme with other hash-based schemes from various viewpoints.

1. Introduction

RFID (Radio Frequency IDentification) is
a technology to identify humans and objects
through RFID devices ; that is, silicon chips
with IDs and radio frequency functions. In
RFID, the server identifies an RFID device by
ID matching, where the server compares the
output of each RFID device with the IDs stored
in the server. As pervasive computing envi-
ronments become more commonplace, RFID
devices, such as contact-less smart cards and
RFID tags, are becoming part of our daily life.

Privacy is a serious concern when RFID is
used. For example, the location privacy prob-
lem – the possibility that an adversary can trace
a user’s behavior by reading and linking a de-
vice’s ID – is a privacy issue.

Unlinkability is a property which means an
adversary cannot recognize whether outputs are
from the same user, and this property is impor-
tant with respect to the privacy problem. The
randomized hash lock scheme 1) and the hash-
chain scheme 2),3) provide unlinkability against
an adversary by using a hash function. These
schemes are suitable for RFID systems because
the implementation cost of an RFID device
must be low in these systems. However, these
schemes are not scalable since the server needs
O(N) hash calculations for every ID matching,
where N is the number of RFID devices. Our
solution is the K-steps ID matching scheme 4),
which can reduce the number of hash calcula-
tions on the server to O(log N).

In this paper, we explain the protocol of this
scheme, describe a test implementation, and

† Kyushu University

discuss application of the scheme to practical
RFID systems. In addition, we compare the
scheme with other hash-based schemes from
various viewpoints.

The remainder of this paper is organized
as follows. Section 2 describes related work.
Section 3 explains the K-steps ID matching
scheme, and discusses the ID structure. Sec-
tion 4 describes the implementation of the
scheme and discusses its application to practical
RFID systems. Section 5 compares this scheme
with other hash-based schemes. Section 6 con-
cludes this paper.

2. Related Work

The randomized hash lock scheme 1) and
the hash-chain scheme 2),3) use a hash function
to provide unlinkability against an adversary.
These schemes are suitable for RFID systems,
where the implementation cost of an RFID de-
vice must be low.

Let N be the number of RFID devices in an
RFID system where the ID idi of an RFID de-
vice Di is a string of length L over a finite al-
phabet Σ for 1 ≤ i ≤ N . We assume that if
i �= j, then idi �= idj for 1 ≤ i, j ≤ N , and
2L � N . For s, t ∈ Σ∗, we denote by s‖t the
concatenation of s and t.

2.1 Randomized Hash Lock Scheme 1)

In this scheme, a hash function H, a ROM,
and a pseudo-random number generator are
embedded within each RFID device.

RFID device Di stores idi in the ROM. The
server stores the IDs idi (1 ≤ i ≤ N) of all de-
vices. The ID matching protocol of this scheme
is as follows.
STEP1: RFID device Di generates a ran-
dom number R, and sends X = H(idi‖R)

2362



Vol. 47 No. 8 Unlinkable Identification for Large-scale RFID Systems 2363

and R to the server.
STEP2: The server finds idi that corre-
sponds to X by checking X = H(idi‖R) for
1 ≤ i ≤ N .
X = H(idi‖R) is not fixed since R changes

every time. Hence, 2L hash calculations are
necessary when an adversary tries to get idi

from X and R. It is computationally difficult
to calculate the hash function 2L times. There-
fore, this scheme provides unlinkability against
an adversary.

2.2 Hash-chain Scheme 2),3)

In this scheme, two different hash functions
H and G, a ROM, and a non-volatile memory
are embedded within each RFID device.

RFID device Di stores idi in the ROM, and
stores secret information cs1

i ∈ ΣL′
in the non-

volatile memory. The server stores the pair
(idi, cs

1
i ) (1 ≤ i ≤ N) of all devices. The ID

matching protocol of this scheme is as follows.
STEP1: RFID device Di sends X =
H(idi‖csl

i) to the server. RFID device Di

updates csl+1
i ← G(csl

i).
STEP2: The server finds the idi correspond-
ing to X by checking X = H(idi‖csl

i) for all
1 ≤ i ≤ N and all 1 ≤ l ≤ M (where M is
the maximum length of the hash chain).
X = H(idi‖csl

i) is not fixed since csl
i changes

every time. Hence, 2L+L′
hash calculations are

necessary if an adversary tries to get idi from
X. It is computationally difficult to calculate
the hash function 2L+L′

times. Therefore, this
scheme provides unlinkability against an adver-
sary. Moreover, it is computationally hard to
get csl′

i (l′ < l) even if idi and csl
i are tampered

with. Therefore, the scheme provides forward
security, meaning that no RFID device can be
traced from past ID information even if the se-
cret information in the device is tampered with.

2.3 Problems of Existing Hash-based
Schemes

In the randomized hash lock scheme and the
hash-chain scheme, the server needs to calcu-
late a hash function for every candidate (e.g.,
id1, id2, · · · , idN ) in every ID matching. This
means these schemes are not scalable since the
server has to perform O(N) hash calculations.

Avoine, et al. 5),6) developed a specific time-
memory trade-off that reduces the amount
of computation in the hash-chain scheme 2),3).
This time-memory trade-off reduces the hash
calculations on the server with help of pre-
computation results. However, heavy pre-

calculation is needed with Avoine’s scheme 5),6).

3. K-steps ID Matching Scheme

In this section, we describe the K-steps ID
matching scheme 4). First, we explain the ba-
sic ideas for reducing the time complexity, and
then we show a method for generating IDs and
a protocol for ID matching.

Molnar, et al. propose a similar approach of
reducing the number of hash calculations by
constructing a tree of IDs 7). Compared to their
work, we consider the ID structure more gen-
erally and address the question of the optimal
tree form.

3.1 Basic Idea
To reduce the time complexity, we use group

IDs. First, all RFID devices are classified into
groups of size α, and a group ID is assigned to
each RFID device in a group. When ID match-
ing is executed, the number of hash calculations
is reduced to N

α by having each RFID device
send its group ID.

However, this approach weakens unlinkability
since the group IDs will be exposed to attack-
ers. To deal with this problem, our approach is
to hash the group IDs, as well as the device IDs,
to prevent group IDs being exposed to an ad-
versary. This preserves unlinkability. The time
complexity of the server becomes N

α +α, which
is greater than that of the previous approach
by α.

Furthermore, we apply the above procedures
recursively.

Based on these approaches, we improve the
generation of IDs and reduce the time complex-
ity on the server by utilizing the tree property.

3.2 ID Configuration
We use a labeled tree of depth K, such as the

tree shown in Fig. 1. The tree has N leaves,
and each leaf corresponds to an RFID device.
Each node has a unique label. ID idi of an
RFID device corresponding to a leaf node is
defined as the sequence of labels from the root
node to the leaf node (e.g., a2bX@ in Fig. 1).

In the following, the k-th (1 ≤ k ≤ Si) label
of Di is denoted by idi[k], where Si is the depth
of leaf i, and 1 ≤ Si ≤ K.

3.3 Protocol
In the K-steps ID matching scheme, the

server recognizes an ID from the output of an
RFID device through the following protocol.
STEP1: RFID device Di generates a ran-
dom number R. Di then sends (R, X1,
X2, . . . , XK) to the server, where Xk is



2364 IPSJ Journal Aug. 2006

Fig. 1 An ID structure for the K-steps ID matching
scheme.

H(idi[k]‖R) if 1 ≤ k ≤ Si and a random
number Rk if Si + 1 ≤ k ≤ K.

STEP2: The server operates as follows:
STEP2-1: let Z be the root of the labeled
tree and let k ← 1;

STEP2-2: find Li s.t. H(Li‖R) = Xk by
computing H(Li‖R) for each child Li of Z,
and update Z ← Li;

STEP2-3: output the label corresponding
to Z as the ID of the RFID device if Z is
a leaf; otherwise, let k ← k + 1 and return
to STEP2-2.

In Step 1, RFID device Di sends a random
number as Xk for Si + 1 ≤ k ≤ K, which hides
the depth of the leaf Si to prevent weakening
the unlinkability against an adversary.

When K = 1, the proposed protocol and the
ID structure of the protocol correspond to those
of the randomized hash lock scheme 1). If some
procedures of the protocol are changed, it be-
comes a protocol corresponding to the hash-
chain scheme 2),3).

3.4 Number of Hash Calculations
We next analyze the time complexity of the

K-steps ID matching scheme. Specifically, we
consider the expected number of hash calcula-
tions on the server and the RFID devices.

Although the time complexity depends on
several factors (for example, the time for string
matching), in practice, the hash calculation is
the most important. The number of hash cal-
culations depends on (at least)
• the number of leaves N ,
• the depth K, and
• the number of edges αn for each node n of

the labeled ID tree.
We first find the number of edges αn with re-

spect to each node that minimizes the number
of hash calculations on the server. In Section 4,
we discuss the optimized K to minimize the to-

tal execution time.
We assume that the number of hash calcula-

tions necessary for ID matching with m candi-
dates is m. The ID matching with the labeled
tree is solved by K times ID matchings with αn

candidates. We also assume that any leaf is of
the same depth K and N

1
K is an integer.

Lemma 1 The expected number of hash calcu-
lations for an ID matching with a labeled tree
of depth K with N leaves is at least KN

1
K for

any N > 0 and any 1 ≤ K ≤ N .
Proof 1 By induction for K. If K = 1, the
number of hash calculations is N . Let ν be the
root of the tree and ν1, ν2, . . . , ναν

be the chil-
dren of ν. We denote by gK(N) the expected
number of hash calculations for an ID match-
ing with a tree of depth K with N leaves. Then,

gK(N) = αν +
αν∑
i=1

ni

N
gK−1(ni),

where ni is the number of leaves in the sub-tree
whose root is νi for 1 ≤ i ≤ αν and

∑αν

i=1 ni =
N . By induction hypothesis, gK−1(ni) is at
least (K − 1)n

1
K−1
i for each 1 ≤ i ≤ αν . Hence,

gK(N) is at least αν + K−1
N

∑αν

i=1 n
K

K−1
i . Since

K
K−1 is larger than unity and

∑αν

i=1 ni = N , the
expected number is minimal if ni = N

αν
for any

1 ≤ i ≤ αν . Therefore, we have only to con-
sider the case where gK(N) is of the form

αν +
K − 1

N
· αν ·

(
N

αν

) K
K−1

= αν + (K − 1) ·N 1
K−1 · αν

− 1
K−1 .

This is minimal only if 1−N
1

K−1 αν
− K

K−1 = 0
and therefore αν = N

1
K . Thus, the minimal

number of gK(N) is

N
1
K + (K − 1)N

1
K−1 N

1
K − 1

K−1 = KN
1
K .

By the previous proof, the number of hash
calculations for a single matching is the mini-
mal number KN

1
K if the number of edges for

each node is αn = N
1
K . Therefore, in the rest of

this paper, we consider a labeled tree in which
any node has the same number of children α.
Then, KN

1
K = α logα N . Therefore, the previ-

ous lemma implies the following theorem.
Theorem 1 The K-steps ID matching proto-
col can find an ID in N candidates by O(log N)
time.

The number of hash calculations in the RFID
device is K. Therefore, the time of total hash



Vol. 47 No. 8 Unlinkable Identification for Large-scale RFID Systems 2365

Table 1 Execution time on the RFID device for various values of K.

K 1 2 3 4 5 6 7 8
td[s] 0.6333 0.9085 1.1950 1.4835 1.7638 2.0281 2.3097 2.5896

calculation Thash is

Thash = βsKN
1
K + βdK, (1)

where βs is the time of one hash calculation on
the server and βd is the time of one calculation
on the RFID device.

4. Evaluation

In this section, we first show the implemen-
tation result of the proposed scheme. After
that, we show the results from a simulation
using the basic parameters obtained from the
implemented scheme. Last, we discuss the ap-
plication of the K-steps ID matching scheme to
practical RFID systems.

4.1 Environments
Considering the typical environments for im-

plementation, we adopted Java cards as RFID
devices on which to implement our scheme.
Moreover, we adopted SHA-1 8) as the hash
functions. We set the length of a random num-
ber to 4 bytes, and the length of an ID to
28 bytes. In the following, execution times were
obtained as an average of 10 trials.

The following are the execution environments
of the RFID devices and the server.

RFID device (Cyberflex Access e-gate
32 K)
• OS: Java Card OS
• ROM: 96 KB
• RAM: 4 KB
• EEPROM: 32 KB
• equipped with a cryptographic co-processor

and random number generator hardware
Server
• OS: Linux Fedora Core 4 (kernel-2.6.13)
• Compiler: GCC 4.0.1 with O3 Option
• CPU: Pentium4, 1.7 GHz
• Memory: 1GB
4.2 Implementation Results
For an RFID device, let td be the execution

time on the RFID device from the time it re-
ceives a command from the server to the time it
returns the hashed value of the ID to the server,
where td corresponds to the time of STEP 1.
Additionally, let ts be the execution time on the
server from the time it receives the hashed ID
from the RFID device to the time it finishes
searching the ID list, where ts corresponds to
STEP 2. We call T = td + ts the total execution

time.
The execution time ts on the server in the

case of 1 million IDs and K=1 was 1.788 sec-
onds, where the target ID was assumed to be
found at the last entry in the IDs. To inves-
tigate the contents of the execution time, we
examined 1 million SHA-1 hash calculations on
the server, which took 1.785 seconds. Thus, the
hash calculations clearly made up a major por-
tion of ts.

On the other hand, the execution time td on
the RFID device for various K values was as
shown in Table 1.

From the above, we can denote the execution
time on the RFID device as

td = 0.2795 K + 0.3561
with a correlation coefficient of 1.00, where the
slope corresponds to the increased time of the
hash calculations and the communication as K
increases, and the constant time includes pro-
cesses such as random number generation that
are independent of K.

From the results shown in this section, the
total execution time in this implementation is
given as

T = 1.785×10−6 ·KN
1
K +0.2795 K+0.3561

4.3 Simulation
Using the formula obtained in the previous

section, we simulated the total execution time
varying N and K. Table 2 and Fig. 2 show
the simulation results.

In the table, the values that are the minimum
execution time for each N are shown in bold.

The simulation results show that the total ex-
ecution time does not increase as N increases.

4.4 Discussion
From Eq. (1), the relationship between the

optimized K and N , βd/βs, is as follows.

K small ←→ large
N small ←→ large

βd/βs large ←→ small

According to the implementation result,
βd/βs is large (about 150,000). Therefore,
the optimized K is much less than 10 even
if N becomes 2100. This means the proposed
scheme’s degree of unlinkability decreases only
a little 4) compared with the other hash-based
schemes 1)∼3).



2366 IPSJ Journal Aug. 2006

Table 2 Simulation results for total execution time.

K
N 1 2 3 4 5 6 7 8

210 0.6370 0.9150 1.195 1.474 1.754 2.033 2.313 2.592
220 2.507 0.9190 1.195 1.474 1.754 2.033 2.313 2.592
230 1.917e3 1.032 1.200 1.475 1.754 2.033 2.313 2.592
240 1.963e6 4.659 1.250 1.481 1.756 2.034 2.313 2.593
250 2.010e9 120.7 1.752 1.515 1.763 2.037 2.314 2.593
260 2.058e12 3.834e3 6.810 1.708 1.790 2.044 2.317 2.595
270 2.107e15 1.227e5 57.79 2.798 1.900 2.068 2.325 2.598
280 2.158e18 3.925e6 571.7 8.961 2.339 2.144 2.347 2.607
290 2.210e21 1.256e8 5751 43.83 4.093 2.384 2.405 2.627
2100 2.263e24 4.019e9 5.796e4 241.1 11.11 3.147 2.562 2.675

Fig. 2 Simulation results for total execution time.

Generally, the cost of an RFID tag must be
low relative to the cost of a smart card. There-
fore, we predict K in a practical RFID system
will be smaller than the simulation result.

5. Comparison

In this section, we compare the proposed
scheme with other hash-based schemes from the
viewpoints of security, hash calculation time,
the amount of memory needed, and the amount
of communication.

5.1 Classification of Hash-Based
Schemes

For our comparison, we classify hash-based
schemes with regard to three characteristics:
• Base model (hash lock or hash chain)
• ID structure (normal or tree)
• Introduction of a time-memory trade-off

technique 5) (yes or no)
The compared schemes are our K-steps

ID matching scheme, the randomized hash
lock scheme 1), the hash-chain scheme 2),3),
the tree-based private authentication scheme 7),
Avoine’s scheme 5),6), and Yeo, et al.’s scheme 9).

We described the randomized hash lock
scheme, the hash-chain scheme, and Avoine’s
scheme in Section 2, and introduced the tree-

based private authentication scheme in Sec-
tion 3. We describe Yeo’s scheme in the fol-
lowing.

Yeo’s scheme is a hash-chain scheme, and the
same grouping technique as in our scheme is
used to reduce the server complexity. Yeo pro-
poses two types of scheme. One is a scheme
without pre-computation which uses only a
grouping technique. The other is a scheme with
pre-computation which uses both a grouping
technique and a time-memory trade-off tech-
nique 5).

Yeo, et al. described the schemes with an ID
tree depth of 2 9). The tree structure of Yeo’s
schemes may be extended more generally as in
our scheme.

Table 3 shows the classification results.
There are no proposed schemes with the com-

bination (Hash Lock, Normal, Yes) or (Hash
Lock, Tree, Yes) because the responses of RFID
devices in a hash lock scheme are randomized,
which means a large memory space is needed to
apply a time-memory trade-off technique 6).

5.2 Security
We compare the security of the hash-based

schemes with respect to three concerns:
• Unlinkability
• Forward security
• Prevention of replay attacks
5.2.1 Unlinkability
Unlinkability means the difficulty of finding

relations between the outputs of RFID devices.
Achieving unlinkability is important to prevent
an adversary tracing a user’s behavior.

We analyzed the unlinkability of the hash-
based schemes by the degree of unlinkability 4).
The degree of unlinkability ranges from 0 to
log2 N [bit], and unlinkability becomes stronger
as the degree of unlinkability increases.

When an adversary has no ID information,
each degree of unlinkability for the hash-based



Vol. 47 No. 8 Unlinkable Identification for Large-scale RFID Systems 2367

Table 3 Classification of Hash-Based Schemes.

Base Model ID Struct. Time-memory

Hash Lock 1) Hash Lock Normal No

K-step 4), Tree-based 7) Hash Lock Tree No

Hash-chain 2),3) Hash Chain Normal No

Avoine’s scheme 5),6) Hash Chain Normal Yes

Yeo’s without pre-comp. 9) Hash Chain Tree (K=2) No

Yeo’s with pre-comp. 9) Hash Chain Tree (K=2) Yes

schemes is log2 N .
When an adversary obtains one ID, such as

by tampering with an RFID device, the degree
of unlinkability of each scheme differs depend-
ing on its ID structure. The degree of unlinka-
bility for the normal ID structure and that for
the tree ID structure are given as follows 4).

Unormal =
N − 1

N
log2 (N − 1) (2)

Utree =log2 N+
N − 1

N

{
log2

(
N

1
K − 1

)

− N
1
K

K
(
N

1
K − 1

) log2 N

}
(3)

The normal ID structure schemes enable user
unlinkability, except for the tampered user, but
the tree ID structure schemes cannot enable
user unlinkability since some users share part
of the ID of the tampered user. From Eqs. (2)
and (3), we can see that the degree of unlink-
ability with the tree ID structure is lower than
that with the normal structure.

However, the tree ID structure schemes pro-
vide the same level of unlinkability as the nor-
mal ID structure if α = N

1
K is large enough.

Since the optimized K is much less than 10 even
if N becomes 2100, as we discussed in Section 4,
the tree ID structure decreases the degree of un-
linkability only slightly.

Thus, the decrease in the degree of unlinka-
bility with the proposed scheme is only small 4)

compared to that with the normal ID structure.
5.2.2 Forward security
Forward security is a property that means no

RFID device can be traced from past ID infor-
mation even if an adversary tampers with the
secret information in the device.

Hash lock schemes, including our scheme,
cannot provide forward-security because an ad-
versary can easily get a random number R. On
the other hand, hash-chain schemes can provide
forward security since it is computationally dif-
ficult for an adversary to get csl′

i (l′ < l) even if

he has tampered with idi and csl
i.

However, Juels, et al. pointed out that hash-
chain schemes create a security risk in that
an adversary can guess a device’s count num-
ber 10). We discuss this problem in Section 5.3.

5.2.3 Prevention of Replay Attacks
A replay attack is one in which a valid data

transmission is maliciously or fraudulently re-
peated. The attack is carried out by an adver-
sary who masquerades as a legitimate user.

Replay attacks must be prevented when a
server has to authenticate as well as identify
an RFID device. One way to do this is to
use a fresh challenge by the server. Hash lock
schemes can prevent replay attacks if a step is
added where the server sends a fresh challenge
to the device and includes the challenge in the
hash calculations. In our scheme, the protocol
to prevent replay attacks is as follows.
STEP1: The server generates a random
number Rs, and then sends Rs to RFID de-
vice Di.

STEP2: RFID device Di generates a ran-
dom number Rd, and then sends (Rd, X1, X2,
. . . , XK) to the server, where Xk is
H(idi[k]‖Rs‖Rd) if 1 ≤ k ≤ Si, and a ran-
dom number Rk if Si + 1 ≤ k ≤ K.

STEP3: The server operates as follows:
STEP3-1: let Z be the root of the labeled
tree and let k ← 1;

STEP3-2: find Li s.t. H(Li‖Rs‖Rd) =
Xk by computing H(Li‖Rs‖Rd) for each
child Li of Z, and update Z ← Li;

STEP3-3: output the label corresponding
to Z as the ID of the RFID device if Z is
a leaf; otherwise, let k ← k + 1 and return
to STEP 3-2.

Avoine, et al. propose a modified hash-
chain scheme which prevents replay attacks
using a challenge 6). This technique can be
easily adopted in Yeo’s scheme without pre-
computation.

However, the technique of using a fresh chal-
lenge cannot be applied directly to Avoine’s
scheme or Yeo’s scheme with pre-computation



2368 IPSJ Journal Aug. 2006

Table 4 Comparison of required memory and time.

Hash Calc. Hash Calc. Pre-comp. Memory
on Device on Server on Server on Server

Hash Lock 1 N 0 0

K-step, Tree-based K KN
1
K 0 0

Hash-chain 2 MN 0 N

Avoine’s scheme 2 [+1]
33

23

M3γ

c3µ2
[+1]

NM2

2
cN

Yeo’s without pre-comp. 4 2M
√

N 0 N

Yeo’s with pre-comp. 4 [+1]

(
25M6γ

c3µ2

) 1
4

[+1]

(
23c3N4µ2

34M2γ

) 1
4 M2

2
cN

Table 5 Communication cost.

not preventing replay attacks preventing replay attacks
Hash Lock r + h 2r + h

K-step, Tree-based r + Kh 2r + Kh
Hash-chain h r + h

Avoine’s scheme h r + 2h
Yeo’s without pre-comp. 2h r + 2h

Yeo’s with pre-comp. 2h r + 3h

since the randomization of the device’s response
prevents the server using a time-memory trade-
off (see Section 5.1). Therefore, the RFID de-
vice must calculate a hash value (s) without a
challenge and a hash value with the challenge 6).
The former value (s) enable (s) the server to
identify the device, while the latter one pre-
vents replay attacks.

All of the hash-based schemes proposed so
far have a countermeasure against replay at-
tacks, and preventing replay attacks increases
both the calculation complexity and the com-
munication amount. We discuss this problem
in Sections 5.3 and 5.4.

5.3 Comparison of memory and time
In this section, we compare the different

schemes regarding the number of hash calcula-
tions on the RFID device and on the server, the
number of pre-computations on the server, and
the memory required for the pre-computation
results.

Table 4 compares the memory and the time
needed for each scheme. In the table, M is the
maximum length of the hash-chain, µ is the con-
version factor, c is the memory size parameter
for Avoine’s scheme 5), and γ is the rate of suc-
cessful search parameter in that scheme. For
example, the success rate is 99.9% when γ = 8.

In the table, ‘Memory on server’ denotes the
amount of secret information to be stored csl

i

in hash-chain schemes. Note that the memory
amount does not include the space for the ID
list, which is required for every scheme.

The additional number of calculations for the
scheme to prevent replay attacks is given in
brackets.

As the table shows, the number of hash calcu-
lations on the server in a time-memory trade-off
scheme includes M3 or M1.5, while that in the
K-step ID matching scheme includes N . There-
fore, our scheme might be disadvantageous in
terms of the required time if M3 or M1.5 is suf-
ficiently smaller than N

1
K .

The server cannot identify the RFID de-
vice when the device number is larger than
M because it will be outside of the search
range. In addition, there is a security risk in
that an adversary can guess a device’s count
number if M is small 10). Therefore, M must
be sufficiently large.

Avoine, et al. pointed out that replacing
cs1

i by csk
i in the database regularly expands

the search range of the server 5). However, the
problem of M being too small remains, and
heavy pre-computation (e.g., M2N/2) is needed
for every replacement.

5.4 Communication cost
Table 5 compares the communication cost

for each scheme in terms of the amount of com-
munication data. The costs are shown in each
case of preventing or not preventing replay at-
tacks. In the table, r is the length of the random
value for the challenge, and h is the length of
the hash output.

In tree ID structures, including those of the



Vol. 47 No. 8 Unlinkable Identification for Large-scale RFID Systems 2369

K-step ID matching scheme, the communica-
tion cost increases in proportion to the tree
depth. For the K-step ID matching scheme,
we measured the practical time for the entire
execution (including the communication time
between the server and the RFID device), and
found it is shorter than that of a naive scheme 1)

when N is sufficiently large.
Thus, we expect the communication cost of

our scheme to be negligible in a practical situ-
ation. However, further evaluation is required
since we used contact smart cards in our exper-
iment. With contact-less smart cards or RFID
tags, the communication cost might increase
because of communication failures.

6. Conclusion

In this paper, we described the K-steps ID
matching scheme and explained how it can re-
duce the number of hash calculations on the
server to O(log N). We also showed results from
an implementation of the proposed scheme, and
discussed its application to practical RFID sys-
tems. In addition, we compared this scheme
to other hash-based schemes from several view-
points.

Acknowledgments This work has been
partly supported by a Grant-in-Aid for Creative
Scientific Research, No.14GS0218, and the 21st
Century COE Program “Reconstruction of So-
cial Infrastructure Related to Information Sci-
ence and Electrical Engineering”. We are grate-
ful for this support.

References

1) Weis, S.A., Sarma, S.E., Rivest, R.L. and
Engels, D.W.: Security and Privacy Aspects of
Low-Cost Radio Frequency Identification Sys-
tems, 1st International Conference on Security
in Pervasive Computing (SPC2003 ), LNCS,
Vol.2802, pp.201–212, Springer (2004).

2) Ohkubo, M., Suzuki, K. and Kinoshita, S.:
Cryptographic Approach to a Privacy Friendly
Tag, RFID Privacy Workshop@MIT (2003).

3) Ohkubo, M., Suzuki, K. and Kinoshita,
S.: Hash-Chain Based Forward-Secure Pri-
vacy Protection Scheme for Low-Cost RFID,
2004 Symposium on Cryptography and Infor-
mation Security (SCIS2004 ), Vol.1, pp.719–
724 (2004).

4) Nohara, Y., Inoue, S., Baba, K. and Yasuura,
H.: Quantitative Evaluation of Unlinkable
ID Matching Schemes, 2005 ACM Work-
shop on Privacy in the Electronic Society
(WPES2005 ), pp.55–60, ACM Press (2005).

5) Avoine, G. and Oechslin, P.: A Scalable
and Provably Secure Hash-Based RFID Pro-
tocol, 2nd International Workshop on Per-
vasive Computing and Communications Secu-
rity (PerSec2005 ), pp.110–114, IEEE Com-
puter Society Press (2005).

6) Avoine, G., Dysli, E. and Oechslin, P.: Reduc-
ing Time Complexity in RFID Systems, 12th
Annual Workshop on Selected Areas in Cryp-
tography (SAC2005 ), LNCS, Vol.3897, pp.291–
306, Springer (2005).

7) Molnar, D. and Wagner, D.: Privacy and
Security in Library: RFID Issues, Practices,
and Architectures, 11th ACM Conference
on Computer and Communications Security
(CCS2004 ), pp.210–219, ACM Press (2004).

8) National Institute of Standards and Technol-
ogy: SECURE HASH STANDARD, Federal
Information Processing Standards Publication
180-2 (2002).

9) Yeo, S.-S. and Kim, S.K.: Scalable and Flex-
ible Privacy Protection Scheme for RFID Sys-
tems, 2nd European Workshop on Security in
Ad-Hoc and Sensor Networks (ESAS2005 ),
LNCS, Vol.3813, pp.153–163, Springer (2005).

10) Juels, A. and Weis, S.A.: Defining Strong
Privacy for RFID, IACR Cryptology ePrint
Archive Report, No.2006-137 (2006).

(Received November 29, 2005)
(Accepted June 1, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.489–497.)

Yasunobu Nohara is a
Ph.D. candidate at the Gradu-
ate School of Information Sci-
ence and Electrical Engineering,
Kyushu University. He received
his B.E. and M.E. degrees in
Computer Science from Kyushu

University. His current research focuses on the
privacy and security of RFID systems. He is a
student member of IPSJ, IEICE, and IEEE.

Toru Nakamura is a mas-
ter’s student at the Gradu-
ate School of Information Sci-
ence and Electrical Engineering,
Kyushu University. He received
his B.E. degree in Electrical En-
gineering and Computer Science

from Kyushu University. His current research
focuses on computer security and social infras-
tructure.



2370 IPSJ Journal Aug. 2006

Kensuke Baba is a research
associate of the Department of
Informatics, Graduate School of
Information Science and Electri-
cal Engineering, Kyushu Univer-
sity. He received his B.E. and
M.E. degrees and his Ph.D. in

Science from Kyushu University in 1996, 1998,
and 2002, respectively. His current interests in-
clude algorithms for string processing and for-
mal analysis of security. He is a member of
IPSJ.

Sozo Inoue is a research as-
sociate in the Graduate School
of Information Science and Elec-
trical Engineering, Kyushu Uni-
versity, and in the System LSI
Research Center, Kyushu Uni-
versity. His research interests

include RFID information systems, particu-
larly security, privacy, and reliability in RFID
systems, system LSIs, and database systems.
Inoue was born in 1974 and received his Doc-
torate of Engineering from Kyushu University.
He is a member of IPSJ, the Database Society of
Japan (DBSJ), ACM, and the IEEE Computer
Society. He can be reached at sozo@acm.org.

Hiroto Yasuura is a pro-
fessor of the Department of
Computer Science and Com-
munication Engineering, Grad-
uate School of Information Sci-
ence and Electrical Engineering,
Kyushu University. He is also

a director of the System LSI Research Cen-
ter in Kyushu University. Prof. Yasuura re-
ceived his B.E. and M.E. degrees and his Ph.D.
in Computer Science from Kyoto University,
Kyoto, Japan, in 1976, 1978, and 1983, re-
spectively. His current interests include em-
bedded system design, hardware/software co-
design, system design methodology, and social
infrastructure. He is a member of IPSJ, IEICE,
ACM, and IEEE.


