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Rendezvous of Asynchronous Mobile Agents in Trees
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This paper reveals the relation between the time complexity and the space
complexity for the rendezvous problem with k agents in asynchronous tree net-
works. The rendezvous problem requires that all the agents in the system have
to meet at a single node within a finite time. We first prove that at least Ω(n)
memory size per agent is required to solve the rendezvous problem in O(n) time
where n is the number of nodes. Next, we present the rendezvous algorithm
which terminates in O(n) time. The space complexity of this algorithm is also
O(n) per agent. From this lower/upper bound, Θ(n) memory size per agent
is necessary and sufficient to solve the problem in O(n) time (asymptotically
time-optimal). Finally, we present the asymptotically space-optimal rendezvous
algorithm. This algorithm has space complexity O(log n) and time complexity
O(∆n8) where ∆ is the maximum degree of the tree.

1. Introduction

1.1 Background and Motivation
In this paper, we are interested in the relation between the time and the memory

size for each mobile agent to solve the rendezvous problem. In the problem,
agents, which are initially distributed in a network, have to meet on a single
node. The rendezvous problem is one of the fundamental problems that are
required for a lot of agent systems. For example, an application may require
rendezvous to share the information of all the agents.

To solve the rendezvous problem is easy if each node in a network has a unique
identifier or ID: Each agent explores the network and terminates at the node with
the smallest ID. However, such unique ID may not be available for the agents
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in some cases. It is prohibited to publish the unique ID to agents for security
reasons, or the agents cannot store it because of its small memory. Hence, it is
important to design algorithms which work in anonymous networks.

In anonymous networks, agents using the same deterministic algorithm cannot
meet at a single node if there are cycles in the network. The problem can be feasi-
ble with some additional assumptions such that agents can leave marks on nodes
or the network topology is restricted. We are interested in the rendezvous prob-
lem where agents with the same deterministic algorithm meet without leaving
marks. To solve the problem in this model, we consider only tree networks.

In the rendezvous problem, the time complexity and the space complexity
are important metrics to show the efficiency of algorithms. Because agents are
moving entities in the computer network, the size of each agent, that is the
memory space of the agent, is desired to be small. In addition, meeting at a
single node is not a goal of the agent system but the means to achieve another
task. Therefore, the algorithm which achieves rendezvous in a short time is
required.

1.2 Related Work
A number of researchers have studied the rendezvous problem in a variety of

models. In the area of anonymous networks and anonymous agents, identical to-
kens, which are put on nodes, are often used to solve the problem since Kranakis
et al. showed that two agents in a ring network can meet by the same determin-
istic algorithm using a token11). If one token is available for each agent, the ren-
dezvous problem in a synchronous ring is solvable for any number of agents4),6).
The lower bound on the space complexity in this model is Ω(log k + log log n)
where k is the number of agents and n is the number of nodes, and the asymp-
totically space-optimal algorithm is proposed for uni-directional ring networks by
Gasieniec et al.6). The effect of token failure is also considered in some papers1)–3).

The model described above is different from ours in terms of the availability
of the memory of nodes. Fraigniaud et al. proved that two anonymous agents
can rendezvous in any synchronous tree network without using a token unless
the tree is symmetric5). This is the same model as we consider in this paper.
The memory size of this algorithm is O(log n) and this is asymptotically optimal.
Although the authors say that the algorithm does not work for more than two
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agents, we believe it can be easily extended to work for any number of agents.
Lastly, we refer to another model that agents are oblivious8),9). This model may

be weaker in that agents cannot remember any information of the past. However,
agents in this model can take the snapshot of the system, which is different from
ours.

1.3 Our Contributions
In this paper, we first prove that it takes at least Ω(n) time to solve the ren-

dezvous problem in trees with n nodes. Then, we show that there are trees in
which Ω(n) memory size is necessary to solve the rendezvous problem in O(n)
time. Moreover, we present the asymptotically space-optimal algorithm on the
condition that the time complexity is also asymptotically optimal, i.e., both the
time complexity and the space complexity are O(n). Next, we are interested in
whether the rendezvous problem is solvable with lower memory space. In fact,
the answer is positive. We present an algorithm such that any number of agents
with O(log n) memory space can rendezvous in any asynchronous tree unless
the tree is symmetric. This space complexity is asymptotically optimal. This
algorithm attains a significant improvement compared to the previous one5) in
that this algorithm is applicable for any number of agents and any asynchronous
non-symmetric tree.

2. Terminology and Preliminaries

2.1 The Network Model
We consider the tree network T = (V, E) with n = |V | nodes where V is the

set of anonymous nodes and E is the set of undirected edges. A tree network
is an arbitrary connected network with no cycle. Every node u ∈ V has some
ports, each of which connects to an edge. The number of ports node u has is
denoted by δ(u) or degree of u. Every port is assigned a port number λu(e) from
the set {0, . . . , δ(u)− 1}, which is unique at u, using a local labeling function λu.
This local labeling function is determined at each node and there is no coherence
between λu(e) and λv(e) for any e = {u, v} ∈ E.

There are k ≥ 2 agents with no identifiers in the tree T . Each agent has a
bounded amount of memory. Each node can host at most k agents, but it does
not provide agents with any whiteboard, which is the local memory of a node

agent can freely read and write. Each agent initially stays at a node called its
home node and starts the same deterministic algorithm at any time. The agents
have no priori knowledge about the network or other agents, that is, they do not
know n, k, the shape of the tree, or where other agents are. After the algorithm
is started, the agent can move in the network by the following three operations:
1) When the agent walks across an edge e into node v (resp. immediately after
the agent initiates the algorithm at node v), it memorizes λv(e) (resp. 0) and
the degree of v. 2) The agent computes internally at v, and determines the
port number it leaves next or notices that it should terminate. 3) If the agent
decides to move to the neighboring node, it leaves node v through the port which
is determined by the previous operation. These actions, such as computing or
moving, are progressed asynchronously in the sense that the processing period is
finite but there is no assumption of the upper bound on the length of the period.
If two or more agents passing through the same edge, they cannot detect each
other regardless of the direction of each agent.

2.2 Definition of Terms and Problem
The path P (v0, vk) = (v0, v1, . . . , vk) with length k is a sequence of nodes from

v0 to vk such that {vi, vi+1} ∈ E (0 ≤ i < k) and vi ̸= vj if i ̸= j. Note
that, for any u, v ∈ V , P (u, v) is unique in a tree. The distance from u to v,
denoted by dist(u, v), is the length of the path from u to v. The eccentricity
r(u) of node u is the maximum distance from u to an arbitrary node, i.e., r(u) =
maxv∈V dist(u, v). The diameter D of the network is the maximum eccentricity
in the network. The radius R of the network is the minimum eccentricity in the
network. A node with eccentricity R is called center.

A tree T is symmetric iff there exists a function g : V → V such that all the
following conditions hold:
( 1 ) For any v ∈ V , v ̸= g(v) holds.
( 2 ) For any v ∈ V , the δ(v) and δ(g(v)) are the same value.
( 3 ) For any u, v, g(u), g(v) ∈ V , u is adjacent to v iff g(u) is adjacent to g(v).
( 4 ) For any {u, v}, {g(u), g(v)} ∈ E, λu({u, v}) is equal to λg(u)({g(u), g(v)}).

In the rendezvous problem, k ≥ 2 agents have to meet at a single node, which
is not predetermined. The node all the agents meet is called rendezvous point.
However, if the tree T is symmetric, there are some cases that agents with the
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same deterministic algorithm cannot meet at a single node5). For this reason,
we modify the requirement of the rendezvous problem: All the agents meet and
terminate at a single node if T is not symmetric, otherwise all the agents gather
and terminate at two neighboring nodes. We say an algorithm A solves the
rendezvous problem if agents executing A satisfy the above conditions for any
tree, any location of home nodes, any starting time of agents, and any execution
of agents. The efficiency of an algorithm is measured by the time complexity and
the space complexity. The time complexity is defined as the maximum number
of movements for an agent because there is no assumption about the period of
each action of agents in asynchronous system. The space complexity is defined
as the maximum number of bits an agent requires to store all the local variables.

2.3 Basic Properties
In the followings, we show basic properties of tree networks.
Theorem 1 There exist one or two center nodes in a tree. If there exist two

center nodes, they are neighbors10). ¥
Theorem 2 Let v′ be the farthest node from node v in a tree (i.e., dist(v, v′) =

r(v)). The eccentricity of node v′ is equal to the diameter of the tree, that is,
r(v′) = D. ¥

Theorem 3 Let the distance from node u to node v be D. The node c is a
center if and only if c is included in the path P (u, v) and r(c) = ⌈D

2 ⌉ holds10). ¥

3. Asymptotically Time-optimal Rendezvous Algorithm

3.1 Lower Bound on the Memory Space
In this section, we discuss the lower bound on the time complexity and the

space complexity of algorithms for the rendezvous problem. As for the time
complexity, Theorem 4 clearly holds.

Theorem 4 To solve the rendezvous problem in a tree network with n nodes,
it takes at least Ω(n) time to terminate. ¥

Next, we consider how much memory space on each agent is required for asymp-
totically time-optimal rendezvous algorithm.

Theorem 5 If an algorithm A is asymptotically time-optimal (i.e. O(n)) one
for the rendezvous problem in a tree network with n nodes, then it requires Ω(n)
memory space per agent. ¥

λ1Ts v1 vn/2v2 vn/2-1 λ2 Ts1 0 01 10101 1vn/4 vn/4+10 01 1
Fig. 1 The labeled tree (T, λ) we consider in Theorem 5

Proof. In our model, every agent has to determine the rendezvous point.
The reason of this is that the agents do not have the number k of agents and
any communication tools with other agents. In addition, they operate asyn-
chronously, and when moving on a edge, they do not detect other agents passing
the same edge. Thus, there is an asynchronous execution that no agent meets
with another agent until it terminates.
We define the labeled tree (T, λ) as the tuple of the tree T and the labeling function
λ =

∪
v∈V λv. Consider the labeled tree (T, λ) described in Fig. 1. In (T, λ),

each node vi is connected to only vi−1 and vi+1 for 1 < i < n
2 , and port numbers

are symmetric for these nodes. Moreover, node v1 is connected to a labeled tree
(Ts, λ1) with n

4 nodes and node vn
2

is connected to (Ts, λ2). Note that, given a
tree with O(n) nodes, there exists a tree such that at least 2Ω(n) kinds of labeled
trees can be defined (for example, line network). If Ts is such a tree, it requires
Ω(n) bits of memory to compare λ1 with λ2.

Assume that an algorithm A solves the rendezvous problem in O(n) time with
o(n) space of memory per agent and prove by contradiction. Consider an agent
executing A in (T, λ). If the given labeled tree (T, λ) is symmetric (i.e., λ1 = λ2

holds), the agents gather at two neighboring nodes because there is no algorithm
to meet at a single node in this case5). Otherwise (i.e., λ1 ̸= λ2 holds), all
the agents have to meet at a single node. Thus, the action of the agent when
(T, λ) is symmetric must be different from that when (T, λ) is not symmetric.
However, the agent executing A cannot check whether λ1 = λ2 holds or not.
Thus, the agent cannot change its action in these two cases. This conflicts with
the assumption that A solves the rendezvous problem. ¤
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3.2 The Algorithm with O(n) Memory Space
3.2.1 Outline of the Algorithm
In this subsection, we present the asymptotically time-optimal algorithm

Rendezvous-T, which requires at most O(n) memory space per agent. In
Rendezvous-T, each agent traverses the tree, finds a center, and terminates there
(i.e., the rendezvous point is the center). Note that, since each agent does not
have any device to influence other agents, each agent does such works indepen-
dently.

First, we introduce the basic step, which is the way of movements for agents.
In the basic step, when the agent arrives at node u through the port i, it leaves
u through the port (i + 1) mod δ(u) in the next step. The agent starts its basic
steps by leaving the port 0. By continuing the basic steps, the agent realizes
DFS-traversal. We also define reverse step as the backward step of the basic
step. In our algorithms, the agent starts reverse step only after its basic steps.
When an agent starts the reverse step at a node, it leaves the node through the
port passed in the previous step.

We assume that each agent starts Rendezvous-T at a leaf node of the tree. If the
home node of an agent is not a leaf, the agent moves to a leaf without memory
by using basic steps. A leaf node where the agent starts the algorithm is called
its start node. In Rendezvous-T, each agent performs the following six phases to
find a rendezvous point. Fig. 2 shows the locations of the agent according to the
execution sequence.
Phase 1 The agent computes the eccentricity r(s) of the start node s.
Phase 2 The agent moves to the farthest node v′ from s (we call node v′ second

node).
Phase 3 The agent computes r(v′) of the second node v′ (i.e., r(v′) = D from

Theorem 2).
Phase 4 The agent moves to the farthest node v′′ from v′ (we call node v′′ third

node).
Phase 5 The agent moves back to the first node c which satisfies dist(v′, c) =

⌈D
2 ⌉. (The node c is one of the centers from Theorem 3. )

Phase 6 If there exist two centers (i.e., D is odd), the agent chooses the ren-
dezvous point from two centers and terminates there.

v’

s
v”

agent

v’ v”
c cs

v”v’
c s

v’
ccs
v”

Phase 2 Phase 4 Phase 5

Fig. 2 Location of the agent

In Phase 1 to 3, each agent computes the diameter D. After that, the agent
moves to the center. Note that there may be one or more nodes whose distance
from the second node v′ is ⌈D

2 ⌉. To detect the center among them correctly, the
agent once moves to the third node v′′ whose distance from v′ is D because the
center node is on the path from v′ to v′′ (refer Theorem 3). That is, the center
node is the first node whose distance from v′ is ⌈D

2 ⌉ and that the agent visits
after leaving from v′′. These works are done in Phase 4 to 5. In Phase 6, the
agent terminates at the rendezvous point, which is one of the centers. Note that,
the agent can also understand whether the tree is symmetric or not in Phase 6.

To realize Rendezvous-T, we introduce two functions MoveAndCompute and
Choose. By calling function MoveAndCompute(h1, h2) at node v (called initial
node), the agent starts DFS-traversal of the tree using basic steps. The agent
continues the basic steps until it visits node s2 satisfying dist(v, s2) = h2 after
it visits node s1 satisfying dist(v, s1) = h1, and stops the execution of MoveAnd-

Compute at s2. The agent keeps the maximum distance from the initial node
v to a visited node during the execution of MoveAndCompute, and the maxi-
mum distance is returned as the output of MoveAndCompute. Function Move-

AndCompute is used in Rendezvous-T as follows: In Phase 1, the agent executes
MoveAndCompute(1, 0) at a start node s to compute r(s) by visiting all nodes and
to return to s. And in Phase 2, it moves to v′ with dist(s, v′) = r(s) by calling
MoveAndCompute(0, r(s)) at s. In Phase 3, MoveAndCompute(1, 0) is executed
just like Phase 1. In Phase 4 and 5, by calling MoveAndCompute(D, ⌈D

2 ⌉) at the
second node v′, the agent moves to the third node and moves back to center c.
Function Choose chooses a rendezvous point from two centers, and it is used to
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achieve Phase 6 when there exist two centers.
In the function MoveAndCompute, the agent has to compute the distance from

its initial node v to a current node. To compute the distance in the anonymous
networks, the agent uses the port numbers for the following strategy: Whenever
the agent leaves a node u and moves to the adjacent node, it checks whether the
step leads it close to or away from its initial node v. The following lemma implies
that the agent can decide it by checking the port number the agent will move to.
From the property of trees, the lemma clearly holds.

Lemma 1 Let v be an initial node of MoveAndCompute. Assume that an
agent has arrived at u for the first time through the port i. When the agent
leaves u through the port i′, the agent gets close to v if i = i′, and it gets away
from v otherwise. ¥

3.2.2 Implementation of MoveAndCompute
In this subsection, we explain how to implement MoveAndCompute in

Rendezvous-T. By Lemma 1, the agent can calculate the distance from the initial
node v to the current node u by computing whether the following condition is
satisfied or not: The port through which the agent will pass to leave u is the
same as the one through which it first visited u. To compute it correctly, the
agent keeps the sequence H = h1h2 . . . called history. The i-th element hi of the
history indicates the i-th movement of the basic steps. Each movement is kept
by the fact whether the agent gets close to the initial node v or gets away from v.
In more detail, hi =’+’ if the agent gets away from v in the i-th movement, and
hi =’−’ otherwise. Note that, since each movement is kept with one bit and the
agent moves at most 2(n−1) times in each MoveAndCompute, the agent requires
at most O(n) memory space to keep the history. By using the history, when the
agent leaves a node, it calculates whether it gets close to the initial node v or
away from v from the following lemma.

Lemma 2 We assume that an agent visits a node u through the port i′ after
l basic steps in MoveAndCompute, and its history is H0 = h1, h2, . . . , hl. Let i

be the one through which the agent first visits u in the MoveAndCompute. Then,
the followings hold.
Case1: If hl =’+’ holds, i′ = i holds.
Case2: If hl =’−’ holds, we define H1,H2, . . . as follows: Let S0 be the mini-

mum suffix of H0 in which the number of ’+’ is equal to the number of ’−’.
Then, we define H1 as the prefix of H0 such that H0 = H1S0. If the last
element of H1 is ’−’, we can define H2 in similar way. We continue the
definitions, and assume the last element of Ht is ’+’. Then, i = (i′ − t)
mod δ(u) holds. ¥

From Lemma 2, when the agent visits u, it can locally compute the port passed
when it first visited u. Thus, the agent can determine whether it gets away from
the initial node v or close to v in the next step locally at u.

We explain the implementation of MoveAndCompute(h1, h2) as follows. Let d be
the distance from an initial node v to a current node and dmax be the maximum
number of d the agent has computed. The agent prepares an empty history
and sets two variables d and dmax to be 0 at v. In MoveAndCompute(h1, h2), it
performs the following three operations when the agent leaves u: 1) By using the
history, the agent determines whether it gets close to the initial node v or away
from v in the next step. 2) Next, it moves to the neighboring node by the basic
step. 3) After that, it updates the history and two values d and dmax. The agent
can calculate the distance from v to each node it has visited by performing above
three operations repeatedly. If d becomes h2 after d becomes h1 once, the agent
stops the execution of MoveAndCompute.

3.2.3 Implementation of Choose
Here, we explain the implementation of Choose in Rendezvous-T. If the diameter

D is even, the algorithm Rendezvous-T is terminated without executing Choose

because there is only one center in this case. Thus, we assume that D is odd, i.e.,
there are two centers in the tree. Let the agent exist at node c, which is one of the
centers, after it has completed the execution in Phase 5. Let c′ be another center
and e be the edge that connects two centers c and c′. When the agent starts the
execution of Choose, the agent knows the value of n and D, and it recognizes e

in the execution of MoveAndCompute. These values are computed in Phase 1,
Phase 3, and Phase 5, respectively. We consider the two connected components
Tc and Tc′ by removing edge e from T which include c and c′ respectively.

To choose one of the centers as the rendezvous point, each agent compares Tc

with Tc′ . However, if the agent keeps the complete map of Tc and Tc′ , it requires
Ω(n log n) bits. Fortunately, we have a strategy to identify a tree Tc with only
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Fig. 3 An example of execution Choose

O(n) bits. In this strategy, the agent keeps only the degree and the port number
of one edge for every node in Tc. The port number λu(e) kept by the agent on
node u is the one connecting the first edge on path P (u, c).

To realize above strategy, the agent prepares two sequences Dc and Pc. These
sequences are used to keep the value δ(u) and λu(e′) for every node in Tc (See
Fig. 3). Initially, both Dc and Pc are empty words. These sequences are updated
whenever the agent makes a movement: When the agent arrives at a node u

through an edge e′, it adds the value δ(u) (resp. λu(e′)) if it visits u for the first
time, and otherwise it adds a symbol ∗. In our algorithm, the sequences Dc and
Pc are kept by the agent as a string over alphabet Σ = {0, 1, |, ∗}. Symbols 0 and
1 are used to represent a degree or a port number as a binary value, and symbol
| is inserted between numbers as a separator. For example, sequence 31 ∗ 2 is
represented by 11|1| ∗ |10. When the agent explores the whole of tree Tc from c

using basic steps, it can identify the tree Tc from the tuple (Dc, Pc).
The algorithm of Choose consists of three operations: 1) The agent explores

the whole of tree Tc using basic steps, and gets the tuple (Dc, Pc). 2) It moves
another center c′, explores the whole of tree Tc′ , and gets the tuple (Dc′ , Pc′). 3)
It compares the tuple (Dc, Pc) with (Dc′ , Pc′) lexicographically. If these tuples
are different, it terminates at the smaller node (c or c′), otherwise it terminates
at c′ because the tree is symmetric.

3.2.4 Efficiency of the algorithm
From the proposed algorithm Rendezvous-T, we can state the following theorem.
Theorem 6 The rendezvous problem in a tree network with n nodes is solved

in O(n) time with O(n) memory space on each agent. ¥
Proof. The time complexity of Rendezvous-T is clearly O(n) because the

agent makes at most 2(n− 1) basic steps in each execution of MoveAndCompute

or Choose. Thus, we focus on the space complexity in the followings.
In MoveAndCompute, the agent keeps its history whose length is at most 2(n−1)
because the number of steps the agent makes is at most 2(n−1). Other variables
the agent keeps are clearly at most O(log n) bits each. Thus, it suffices O(n)
memory space to execute MoveAndCompute.
Next, we show the space complexity of Choose. To keep all the variables except
for the sequences Dc, Pc, Dc′ and Pc′ , O(n) memory space is sufficient. Thus,
we show the number of bits to keep these sequences in the followings.
First we consider the number of bits to keep the sequence Dc. Since the num-
ber of nodes included in Tc is lower than n, both of the number of symbol |
and that of symbol ∗ included in Dc are at most n − 1. Let dc be the sum of
symbol 0 and symbol 1 included in Dc. Since symbols 0 and 1 are used in Dc

to represent a degree as a binary value for every node u in Tc, the inequality
dc =

∑
v∈Tc

(⌊log δ(v)⌋ + 1) ≤
∑

v∈Tc
δ(v) ≤ 2(n − 1) holds. Thus, the length of

Dc is at most 4(n − 1). Note that since Σ has four symbols, the sequence Dc is
stored using at most 8(n− 1) bits. Next, we consider the number of bits to keep
the sequence Pc. By the definition of labeling function λv, each port number on
node u is lower than δ(u) and the number of bits to keep the sequence Pc is not
larger than that of Dc. The numbers of bits required for other sequences are
shown in the same way and the space complexity of Choose is also O(n). ¤

4. Asymptotically Space-optimal Rendezvous Algorithm

4.1 The Algorithm with O(log n) Memory Space
In this subsection, we present an asymptotically space-optimal rendezvous al-

gorithm Rendezvous-S which uses O(log n) memory space per agent. The idea of
the algorithm is the same as that of previous algorithm Rendezvous-T: The agent
moves to a center by executing MoveAndCompute four times, and then chooses
one of the centers as the rendezvous point by executing Choose. Moreover, the
idea of MoveAndCompute is almost same. Whenever the agent moves to the adja-
cent node, it computes the distance from the initial node v to the current node u.
However, two points are significantly different. One is how the agent determines
whether the next step makes it close to or away from v in MoveAndCompute.
The other is how the agent chooses one of the centers as the rendezvous point.
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Because the agent can use only O(log n) memory space, it can keep none of the
history, the sequence Dc, nor the sequence Pc. Thus, we focus on only these two
points in the followings.

Before we provide solutions to them, we need to explain two existing functions
LogExploration and MatchingEdge, which are proposed to solve the exploration
problem for trees7). The space complexity of LogExploration is proved to be
O(log n), and the time complexity to be O(∆n7)7), where ∆ is the maximum
degree of nodes in the network. We use these functions as subroutines in Move-

AndCompute. These functions are proposed in the symmetric-label tree, where
each edge has the same label in both sides. Thus, in the followings, we consider
only symmetric-label trees. Note that, however, this restriction is removed in
Section 4.2.

Function LogExploration is the one to realize the exploration in arbitrary trees:
The agent traverses all the edges and all the nodes in a tree started at its home
node v. After the execution of LogExploration, the agent returns back to v. More-
over, the agent can recognize whether the tree is symmetric or not by executing
LogExploration. If and only if the tree is symmetric, there exists exactly one edge
called orphan edge defined by the topology of the tree. In fact, the orphan edge
corresponds to an edge connecting two centers in a symmetric tree. Therefore, the
agent can check whether the tree is symmetric or not by checking whether there
is an orphan edge. As a subroutine in LogExploration, function MatchingEdge is
presented. Let S = e1e2 . . . e2(n−1) be a sequence of edges that an agent passes
through when the agent explores whole of the tree from node v using basic steps.
Since basic steps realize DFS-traversal, each edge is included in S exactly twice.
By calling MatchingEdge(i) at v, the agent can compute j(̸= i) satisfying ei = ej

in S if the tree is not symmetric.
Now, we are ready to settle the first problem: How the agent determines

whether the next step makes it close to or away from the initial node v in Move-

AndCompute? The approach explained from now is available only if the tree is
not symmetric. However, this never causes a problem: Before the agent starts
MoveAndCompute (i.e., before Phase 1 in Section 3.2.1), it executes LogExplo-

ration to check whether the tree is symmetric or not. If the tree is symmetric, the
agent moves to a node adjacent to the orphan edge and terminates there. Thus,

the agent executes MoveAndComute only if the tree is not symmetric. Assume
the agent visits node u on its (l − 1)-th basic step. Let S = e1e2 . . . e2(n−1) be
the sequence of edges that the agent will pass through in 2(n − 1) basic steps
from its initial node v. The behavior of the agent consists of the following three
operations: 1) The agent returns to v by using (l−1) reverse steps. 2) By calling
MatchingEdge(l) at v, it computes j satisfying ej = el in S. If l < j holds, the
agent passes e for the first time at the l-th step and thus the l-th step makes
the agent away from v. Otherwise, since the agent has passed e before the l-th
step, the l-th step makes the agent close to v. Note that, only when the agent
executes MatchingEdge(l) at v, it can compute whether it passes through e for
the first time or not by this way. 3) After the computation, the agent gets back
to u by (l − 1) basic steps and makes l-th step.

Next, we explain the implementation of Choose to settle the second problem:
How the agent chooses one of the centers as the rendezvous point? When the
agent starts Choose, it stays at a center c with recognizing another center c′, the
edge e connecting c and c′, and the value of f = 2(n−1). Besides, the tree T is not
symmetric (Otherwise, the agent terminates before it starts MoveAndCompute).
Let tc[1..j] = p1, . . . , pj be the sequence of port numbers the agent has left
during j basic steps from c. In Choose, the agent compares tc[1..f ] with tc′ [1..f ]
lexicographically and terminates at a center with the smaller one.

The detail of Choose in Rendezvous-S is described as follows. Initially, the agent
sets the variable i to be 1. The agent makes i basic steps from c and gets the
value tc[i]. Next, it returns to c by i reverse steps and moves to c′. Similarly, it
gets the value of tc′ [i]. If tc[i] is different from tc′ [i], then it terminates at the
node with the smaller one. Otherwise, the variable i is incremented by one and
compares tc[i] with tc′ [i] repeatedly. Since the tree is not symmetric, there is an
integer i such that tc[i] ̸= tc′ [i].

Since the space complexity of LogExploration is O(log n) and the time complex-
ity of it is O(∆n7), we can state the following theorem.

Theorem 7 The rendezvous problem in a tree network with n nodes is solved
in O(∆n8) time with O(log n) memory space on each agent. ¥

4.2 Extension from symmetric-label trees to general trees
In the previous subsection, we consider only symmetric-label trees. How-
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ever, our algorithm works for general trees. The method to obtain a virtual
(symmetric-label) tree T ′ from an original (general) tree T has been introduced7).
In this method, a virtual node x is put on every edge e = {u,w} such that
λu(e) ̸= λw(e), and port numbers λu(e) and λw(e) are assigned to λx({x, u})
and λx({x,w}). Since virtual tree T ′ is a symmetric-label tree, the agent can
solve the rendezvous problem by executing Rendezvous-S in T ′.

We should handle two troubles caused by using the method. First, when the
rendezvous point is a virtual node, the agent moves the neighboring real node.
That is, if center c is a virtual and the only center, it leaves c through the port
1 and terminates at the arrival node. If there are two centers and one of them
is a virtual node, the agent terminates at the real one. Second, when the agent
recognizes that virtual tree T ′ is symmetric and it moves to one of nodes w and w′

adjacent to the orphan edge on T ′, the agent should check whether the real tree T

is symmetric or not: Let vw(i) be true (resp. false) if the agent visits a real (resp.
virtual) node after i basic steps from w. If vw(j) = vw′(j) holds for all j < i and
vw(i) ̸= vw′(i) for some i, the agent can terminate at w (resp. w′) if vw(i) =true
(resp. vw′ =true). If vw(i) = vw′(i) holds for all the integer i (1 ≤ i ≤ 2(n′ − 1),
where n′ is the number of nodes in T ′ computed in LogExploration), T is also
symmetric and terminate at w without meeting there.

5. Conclusion

In this paper, we have presented two rendezvous algorithms which work with
any number of agents in any asynchronous trees. One is the asymptotically time-
optimal algorithm and the other is the space-optimal one. The space complexity
of first algorithm is also asymptotically optimal on the condition that the time
complexity is asymptotically optimal.

However, our current study does not deal with the solvability in the case that
the tree is symmetric and the initial locations of agents is asymmetric. It would
be an interesting problem whether all the agents can meet at a single node or
not in that case. If it is possible, how much is its time and memory cost?
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