
IPSJ SIG Technical Report

Adaptive One-Step Byzantine Consensus

Nazreen Banu,†1 Taisuke Izumi†1 and Koichi Wada †1

It is known that Byzantine consensus algorithms guarantee one-step decision
only in favorable situations (e.g. when all processes propose the same value)
and no one-step algorithm can support two-step decision. In this paper, we
present a novel one-step Byzantine algorithm DEX based on the condition-
based approach that circumvents the above impossibilities. Algorithm DEX is
adaptive in the sense that it is sensitive to only actual number of failures, and
hence achieves fast termination for large number of inputs when less number of
processes are faulty. In addition, it also has double-expedition property, so that
it allows two-step decision in addition to one-step decision by introducing two
condition-based mechanisms running concurrently. To the best of our knowl-
edge, double-expedition property is a new concept introduced by this paper and
DEX is the first algorithm having such a feature. Even though DEX takes four
steps at worst in well-behaved runs while existing algorithms takes only three,
it provides fast termination for large number inputs, which makes us to expect
that our algorithm works faster in average in practical situations.

1. Introduction

1.1 Background

The consensus problem plays an important role in the construction of fault-

tolerant distributed systems. In the consensus problem, each process proposes a

value, and all non-faulty processes have to agree on a common value which is one

of the proposed values. Several practical agreement problems (such as atomic

broadcast, view synchrony, state-machine replication, etc.) can be implemented

using a solution to the consensus problem, and thus the consensus algorithm is

an important building block in designing distributed systems.

The consensus problem has been studied with various failure models and differ-

ent synchrony assumptions. This paper is concerned with Byzantine consensus

in asynchronous distributed systems, where faulty processes can behave in arbi-

†1 Nagoya Institute of Technology

trary way, and there are no assumptions on relative speed of processes nor timely

delivery of messages.

To reach a single decision value, consensus protocols need to exchange mes-

sages. Each message exchange constitutes a communication step. The number

of communication steps taken for reaching agreement is an important measure

to evaluate the efficiency of consensus algorithms. In previous works, it has been

proved that any consensus algorithm requires at least two communication steps

for decision even in failure-free executions1). This lower bound often becomes a

dominant part of the performance overhead imposed to consensus-based appli-

cations. However, this fact does not implies that the two-step lower bound is

always incurred for any inputs (an input to consensus algorithms is defined as an

n-tuple consisting of all proposed values). Actually, for example, it does not hold

in the case where all processes propose the same value. Furthermore, in typi-

cal runs of consensus-based applications, the consensus algorithm often receives

such “good” inputs. Let us take an example of the state-machine replication: In

the state-machine replication approach, the consensus algorithm is used to agree

with the processing order of update requests. If some update request arises, it

is broadcast to all replicated servers. The server receiving the update request

proposes a received request as the candidate it will handle next. Then, without

contention (that is, there is no other concurrent update request), all servers pro-

pose the same request. Practically, it is not so often the case that two or more

requests concurrently updates the same data object.

This observation raises up the interest of one-step decision in the case of

good inputs. The attempts to circumvent two-step lower bound is initiated by

Brasileiro et al.2). It proposes a general framework to convert any crash-tolerant

algorithm into the one that solves the consensus for any input, and especially

terminates in one step when all processes propose the same value. In following

literatures4),5), the notion of one-step decision is considered in combination with

other schemes such as randomization and failure detectors.

An interesting aspect of one-step decision schemes is to characterize the situa-

tions where one-step decision is possible. The first investigation from that aspect

is considered by Mostefaoui et.al.7), which applies the condition-based approach

for obtaining a good one-step decision scheme. In general, the condition-based

1 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

approach defines a set of inputs, called condition, for which the algorithm guar-

antees a certain kind of good property. The first result with this approach7) gives

a sufficient class of conditions such that we can construct the algorithm guaran-

teeing one-step decision for any input in the condition. This result is extended

by Izumi and Masuzawa6). It gives the complete characterization of conditions

that makes one-step decision possible.

While all of the above results are considered on crash-failure models, a recent

work3) devises one-step consensus algorithms on Byzantine failure models. They

show two variants of one-step Byzantine consensus problem, weak and strong

ones. The weak one-step Byzantine consensus guarantees one-step decision in

any situation where all processes propose the same value and no process is faulty,

but the strong must guarantee it in the situation only with a common proposed

value, regardless of the number of faulty processes. They propose two algorithms

for those variants, and also prove the assumption n > 5t and n > 7t is necessary

for weak and strong one-step Byzantine consensus respectively, where n is the

number of processes and t is the maximum number of faulty processes.

1.2 Our Contribution

As seen in the above, the research challenge centered in one-step consensus is

to enhance and clarify the situations making the system reach one-step decision.

With the same research direction, this paper also explores Byzantine consensus

algorithms with better one-step decision schemes. In particular, we focus on two

features for one-step decision schemes shown as follows:

Adaptive Condition-Based Approach Most of one-step decision scheme

is designed so that it never violates the agreement even if the number of faulty

processes is at the maximum. However, such a design works as a pessimistic ap-

proach when actual number of faulty processes are small, which is the usual case

in real systems. An approach to circumvent this drawback is the use of adap-

tive condition-based approach. Informally, the adaptive condition-based approach

handles the condition that dynamically changes according to the actual number

of faulty processes (typically, less faults allows the condition with larger number

of inputs). In the context of one-step consensus, it means that the algorithm

can terminate in one-step for large number of inputs when less processes are

faulty. The notion of the adaptive condition-based approach is first introduced

by Izumi and Masuzawa8), and applied to one-step consensus problem in crash-

failure models6). However, there is no results to apply it in Byzantine-failure

models.

Double Expedition of One-Step Consensus One of serious drawback in-

curred by one-step decision schemes is the impossibility of zero-degradation4),9).

Informally, the zero-degradation is one of important features of consensus algo-

rithms based on failure detectors, which always guarantees the best complexity

(i.e., two steps) in stable runs where the failure detector does not mistake and its

output is stable. The intuition of this result is that, to achieve one-step decision,

any algorithm must sacrifice the decision at the end of the second step. It is also

shown that achieving both one-step decision and zero-degradation needs more

stronger assumption about failure detections such as eventually perfect failure

detectors ⋄P . However, similar with the impossibility of one-step decision, this

result does not necessarily imply the impossibility of two-step decision for any in-

puts. Thus, it yields an interest to realize a doubly-expedited consensus algorithm,

which equips a “conditional” two-step decision scheme combined with one-step

decision.

The contribution of this paper is to propose a doubly-expedited Byzantine con-

sensus algorithm based on the adaptive condition-based approach. The distin-

guished features of the proposed algorithm can be summarized as follows:

• In our construction, we show a generic framework of the algorithm based on

the notion of the adaptive condition-based approach. Generally, the adap-

tiveness property in the condition-based approach can be characterized by a

condition sequence, which is defined as a sequence of t conditions such that

the k-th condition is valid when the actual number of correct processes is k.

To handle double-expedition property in adaptive manner, the framework is

instantiated by a pair of condition sequences, each of which corresponds to

the situations of one-step and two-step decision respectively. We also show

a sufficient criteria, say legality, of condition-sequence pair for which doubly-

expedited algorithms can be instantiated.

• Two examples of legal condition-sequence pairs are proposed, called

2 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

frequency-based pair and privileged-value-based pair. They have distinct ad-

vantages in the sense that the expedited situations corresponding to each pair

is complementary. Interestingly, the algorithm instantiated by the frequency-

based pair takes more chances to decide in one or two steps, compared to

existing one-step Byzantine consensus algorithms.

• One drawback of the proposed framework is that it trades the decision scheme

at third step for double-expedition property. This drawback may causes

a performance degradation of consensus-based applications if we consider

pessimistic runs (that is, the given input is out of the condition). However,

standing on its optimistic counterpart, we make more inputs belong to the

conditions, which implies that the algorithm decides in two steps for many

cases, and totally achieves better performance in average.

To the best of our knowledge, the property of double expedition is the concept

newly introduced in this paper. Hence, this paper is the first result showing the

feasibility of taking both one- and two-step decision schemes simultaneously with

no help of additional stronger assumptions.

1.3 Roadmap

The paper is organized as follows: Section 2 presents the system model, the

definitions of Byzantine consensus problem, and other necessary formalizations.

Section 3 provides the legality criteria for doubly-expedited consensus and its

examples. In Section 4, we present our generic framework of doubly-expedited

one-step consensus algorithms. Section 5 provides our final remarks.

2. Preliminaries

2.1 System model

An asynchronous distributed system consists of n processes
∏

= {p1, p2, ...pn}.
Each pair of processes can communicate with each other by sending messages

over a reliable link where neither message loss, creation nor corruption occurs.

Since we assume asynchronous systems, there is no assumption on relative speed

of processes or message delay.

As we consider the Byzantine failure model, a faulty process can behave arbi-

trarily, which means that even it is allowed not to follow the deployed algorithm.

A process that is not faulty is said to be correct. We assume the upper bound on

the number of faulty processes, which is denoted by t. Every process knows the

value of t in advance. Throughout this paper, we assume 5t < n, which is the

necessary assumption to make one-step decision possible. We also denote by f ,

the actual number of failures during executions. Notice that each process cannot

be aware of the value of f .

2.2 Byzantine Consensus and Underlying Consensus Primitive

The Byzantine consensus problem has been informally stated in the introduc-

tion: Each process proposes a value, and all correct processes have to decide a

common value which is proposed by at least one process. Formally, the Byzantine

consensus is defined by the following requirements.

Termination Each correct process eventually decides a value.

Agreement If two correct processes decide, they must decide the same value.

Unanimity If all correct processes propose the same value v, then no correct

process decides the value different from v.

In general, Byzantine consensus is not solvable in the asynchronous system

with no additional assumption. Thus, we need some assumptions to guarantee

correct termination for arbitrary inputs. While many kinds of assumptions are

considered in past literatures, our research objective is finding the feasibility of

one-step decision, and thus we simply assume an abstraction of them. More

precisely, the system is assumed to be equipped with the underlying consensus

primitive. This primitive ensures agreement, termination, and unanimity, but

has no guarantees about its running time.

2.3 Condition-Based Approach

In the condition-based approach, an input vector is a n dimensional vector,

whose i-th entry contains the value proposed by process pi. A condition defined

for n processes is a subset of all possible input vectors. Adaptiveness in the

condition-based approach is the property that a condition can change dynamically

according to the actual number of faulty processes. Thus, it is defined by a

condition sequence (C0, C1, ...Ck...Ct) satisfying Ck ⊇ Ck+1 for any k(0 ≤ k ≤
t− 1), where k-th condition corresponds to the set of input vectors that is valid

when actual number of faults is equal to k.

2.4 Doubly-Expedited Consensus

In this subsection, we introduce a novel feature of consensus algorithms, called

3 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

double-expedition property. In the execution of doubly-expedited algorithms, each

process has two chances for faster decision by running one-step and two-step

decision schemes concurrently. Since both decision schemes guarantees faster

decision only for good inputs, we can characterize their property by a pair of

condition sequences: Throughout this paper, we introduce a pair of condition

sequences (S1, S2) = ((C1
0 , C

1
1 , · · ·C1

k , · · ·C1
t), (C

2
0 , C

2
1 , · · ·C2

k , · · ·C2
t)), where S1

and S2 correspond to the condition sequences identifying the situations that

guarantee one-step and two-step decisions respectively. For example, consider

the input vector I such that I ̸∈ C1
k , I ∈ C1

k−1 and I ∈ C2
k hold. Then, if I is

given to the consensus algorithm and the number of faulty processes is less than

k, all processes decide in one step because I ∈ C1
k−1. If (exactly) k processes

are faulty, one-step decision is no more guaranteed, but all processes necessarily

decide within two steps because of I ∈ C2
k .

3. Legality for Double Expedition

It is clear that we cannot design the doubly-expedited consensus algorithm

for any pair of condition sequences. In this section, we propose a sufficient

criteria such that we can construct the doubly-expedited algorithm characterized

by the condition-sequence pair satisfying it. It is also shown that two examples

of condition-sequence pairs satisfying the criteria.

3.1 Notations

Let V be the domain of possible proposed values. We introduce the default

value ⊥ not in V. Letting I be an input vector in Vn, we define a view J of I

to be a vector in (V ∪ {⊥})n which is obtained by replacing at most t entries in

I by ⊥. As well as, we define ⊥n be a vector with all entries equal to ⊥. The

number of occurrences of value v in a view J is denoted by #v(J). For two views

J1 and J2, let dist(J1, J2) be the Hamming distance between J1 and J2 (that is,

dist(J1, J2) = |{k ∈ {1, 2, ..n}|J1[k] ̸= J2[k]}|). As well as Vn
k denotes the set of

all views where ⊥ values appears at most k times. The number of non-default

values in J is denoted by |J |. We define Ik as the set of all possible views J such

that dist(J, I) ≤ k.

3.2 Legality Criteria

Given a pair of condition sequences (S1
, S

2), we consider two predicates P1, P2

: Vn
t → {True,False}⋆1 and a function F : Vn

t → V. Then, (S1, S2) is said to be

legal if we can define P1, P2 and F satisfying the following five properties:

• LT1: ∀J ∈ Vn
t : ∃I : I ∈ C1

k ∧ dist(J, I) ≤ k ⇒ P1(J).

• LT2 :∀J ∈ Vn
t : ∃I : I ∈ C2

k ∧ dist(J, I) ≤ k ⇒ P2(J).

• LA3 : ∀J, J ′ ∈ It : P1(J) ∧ dist(J, J ′) ≤ t + #⊥(J) + #⊥(J
′) ⇒ F (J) =

F (J ′).

• LA4 : ∀J, J ′ ∈ It : P2(J)∧ dist(J, J ′) ≤ #⊥(J) +#⊥(J
′) ⇒ F (J) = F (J ′).

• LV5 : ∀J ∈ Vn
t ⇒ F (J) = (the most common non ⊥ value in J) ∨F (J) =

a : #a(J) > t.

These properties are used to enforce the basic requirements of the doubly-

expedited Byzantine consensus. Informally, P1 and P2 are the predicates to test

whether the current view contains sufficient information to decide in one or two

step(s) respectively, and F is the function to obtain the decision from the current

view. Thus, the first property LT1 is for imposing one-step termination. The

predicate P1 must allow each correct process to decide in one step if its own

view has the possibility to come from an input vector included in the condition.

Similarly, the property LT2 corresponds to two-step decision. The property LA3

(or LA4) implies the agreement between one-step (or two-step) decision and

others. The last property LV5 is the one to guarantee unanimity.

3.3 Example 1: Construction by the Frequency-Based Condition

This subsection introduces a legal condition-sequence pair that is based on

frequency-based conditions and prove its legality. Let 1st(J) be a non ⊥ value

that appears most often in a vector J . If two or more values appear most often

in J , then the largest one is selected. Let Ĵ be the vector obtained by replacing

1st(J) from J by ⊥, and we define 2nd(J) = 1st(Ĵ). That is, 2nd(J) is the

second most frequent value in J . The frequency-based condition Cfreq
d is defined

as follows:

Cfreq
d = {I ∈ Vn|#1st(I)(I)−#2nd(I)(I) > d}

It is known that Cfreq
d belongs to d-legal conditions7), which are necessary and

sufficient to solve the consensus in failure prone asynchronous systems, where at

most d processes can crash.

⋆1 In what follows P1(J) = true is abbreviated as P1(J)

4 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

Using this condition, we can construct a legal condition-sequence pair

(Sfreq1, Sfreq2) = ((Cfreq1
0 ,Cfreq1

1 ,...Cfreq1
k ...Cfreq1

t), (Cfreq2
0 ,Cfreq2

1 ...Cfreq2
k

...Cfreq2
t)) with the associated parameters P1freq, P2freq and F freq as follows:

Cfreq1
k = Cfreq

4t+2k

Cfreq2
k = Cfreq

2t+2k

• P1freq(J) ≡ #1st(J)(J)−#2nd(J)(J) > 4t.

• P2freq(J) ≡ #1st(J)(J)−#2nd(J)(J) > 2t.

• F freq(J) = 1st(J).

Notice that, since there are at most t Byzantine processes, the stronger as-

sumption n > 7t is required to construct (Sfreq1, Sfreq2).

Theorem 1 Let n > 7t. The condition-sequence pair (Sfreq1, Sfreq2) is legal.

Proof LT1: We show that #1st(I)(I)−#2nd(I)(I) > 4t+2k∧dist(J, I) ≤ k ⇒
#1st(J)(J)−#2nd(J)(J) > 4t.

Assume I satisfies #1st(I)(I) − #2nd(I)(I) > 4t + 2k. Since dist(J, I) ≤ k,

#1st(I)(J) ≥ #1st(I)(I)− k. Also, for any value x ̸= 1st(I) , #x(J) ≤ #x(I)+ k.

Since 2nd(I) is the second most frequent value in I, #x(J) ≤ #2nd(I)(I) + k.

Hence, #1st(I)(J) − #x(J) > #1st(I)(I) − k − #2nd(I)(I) − k. Thus, we get

#1st(I)(J) − #x(J) > 4t. It implies that 1st(I) = 1st(J), and thus we obtain

#1st(J)(J)−#2nd(J)(J) > 4t.

LT2: We show that #1st(I)(I) − #2nd(I)(I) > 2t + 2k ∧ dist(J, I) ≤ k ⇒
#1st(J)(J)−#2nd(J)(J) > 2t.

The proof is exactly the same as the proof LT1 with only replacing 4t by 2t.

LA3: Consider J, J ′ ∈ It. We show that if P1freq(J) ∧ dist(J, J ′) ≤ t +

#⊥(J) + #⊥(J
′), 1st(J) = 1st(J ′) holds.

Since P1freq(J), we have #1st(J)(J) − #2nd(J)(J) > 4t. Let x be any value

such that x ̸= 1st(J). Since dist(J, J ′) ≤ t+#⊥(J) +#⊥(J
′), J ′ can contain at

most t entries with the value x, which are occupied by the value 1st(J) in J (due

to Byzantine). In addition, J ′ can contain #⊥(J
′) entries with the default value,

which are also occupied by 1st(J) in J (due to asynchrony) and at most #⊥(J)

entries of J ′ can contain the value x, which are occupied by ⊥ in J . Hence,

#1st(J)(J
′) ≥ #1st(J)(J)− t−#⊥(J

′) and #x(J
′) ≤ #x(J) + t+#⊥(J). Since

2nd(J) is the most frequent value in J except for 1st(J), #x(J
′) ≤ #2nd(J)(J)+

t+#⊥(J). Hence, #1st(J)(J
′)−#x(J

′) > #1st(J)(J)−t−#⊥(J
′)−#2nd(J)(J)−

t−#⊥(J). Since J, J
′ ∈ It, #⊥(J) ≤ t and #⊥(J

′) ≤ t. Consequently, we obtain

#1st(J)(J
′)−#x(J

′) > 0. It implies that 1st(J ′) = 1st(J).

LA4: Consider J, J ′ ∈ It. It suffices to show that if P2freq(J) ∧ dist(J, J ′) ≤
#⊥(J) + #⊥(J

′), 1st(J) = 1st(J ′) holds.

Since P2freq(J), we have #1st(J)(J)−#2nd(J)(J) > 2t. Let x be any value such

that x ̸= 1st(J). Since dist(J, J ′) ≤ #⊥(J) + #⊥(J
′), at most #⊥(J) entries of

J ′ can contain the value x, which are occupied by ⊥ in J . In addition, at most

#⊥(J
′)

entries of J ′ can contain ⊥, which are occupied by 1st(J) in J (due to

asynchrony). As a result, #1st(J)(J
′) ≥ #1st(J)(J) − #⊥(J

′) and #x(J
′) ≤

#x(J) + #⊥(J). Since 2nd(J) is the most frequent value in J except 1st(J),

#x(J
′) ≤ #2nd(J)(J) + #⊥(J). Therefore, #1st(J)(J

′)−#x(J
′) > #1st(J)(J)−

#⊥(J
′) − #2nd(J)(J) − #⊥(J). Since J, J ′ ∈ It, #⊥(J) ≤ t and #⊥(J

′) ≤ t.

Hence, we obtain #1st(J)(J
′)−#x(J

′) > 0. It implies that 1st(J ′) = 1st(J).

LV5: This property is trivially satisfied since F freq(J) = the most frequent

non ⊥ value in J . 2

3.4 Example 2: Construction by the Privileged-Value-Based Condi-

tion

In this subsection, we present another legal condition-sequence pair

(Sprv1, Sprv2) constructed from privileged-value-based conditions, and prove its

legality. In some practical agreement problems such as atomic commitment, a

single value (i.e., Commit) is often proposed by most of the processes. The pre-

vious results2) have showed that, if this value is assigned some privilege, it is

possible to expedite the decision. Let us assume that there is a value (say m)

that is privileged among the set of all proposal values. Each process knows the

value m a priori. Then, the privileged-based condition C
prv(m)
d can be defined as

5 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

follows:

C
prv(m)
d = {I ∈ Vn|#m(I) > d}

Note that C
prv(m)
d also belongs to d-legal conditions7), which are necessary and

sufficient to solve the consensus in failure prone asynchronous systems where at

most d processes can crash.

Using this condition, we can construct the privileged-value-based condition-

sequence pair (Sprv1, Sprv2)= ((Cprv1
0 ,Cprv1

1 ,...Cprv1
k ...Cprv1

t), (Cprv2
0 ,Cprv2

1 ...Cprv2
k

...Cprv2
t)) with the associated parameters P1prv, P2prv and F prv as follows:

Cprv1
k = C

prv(m)
3t+k

Cprv2
k = C

prv(m)
2t+k

• P1prv(J) ≡ #m(J) > 3t.

• P2prv(J) ≡ #m(J) > 2t.

F prv(J) ≡

{
m if #m(J) > t

the most freq.val.in J otherwise

Notice that, since there are at most t Byzantine processes, the assumption

n > 5t is required to make (Sprv1, Sprv2) meaningful.

• Theorem 2 Let n > 5t. The condition-sequence pair (Sprv1, Sprv2) is legal.

Proof LT1: We show that #m(I) > 3t+ k ∧ dist(J, I) ≤ k ⇒ #m(J) > 3t.

Let I satisfies #m(I) > 3t + k. Since dist(J, I) ≤ k, #m(J) ≥ #m(I) − k.

Hence #m(J) > 3t+ k − k. Thus we obtain #m(J) > 3t.

LT2: We show that #m(I) > 2t+ k ∧ dist(J, I) ≤ k ⇒ #m(J) > 2t.

This proof is exactly the same as the proof of LT1 (with only replacing 3t by

2t).

LA3: Consider J, J ′ ∈ It. It suffices to show that if P1prv(J) ∧ dist(J, J ′) ≤
t+#⊥(J) + #⊥(J

′), F prv(J) = F prv(J ′) holds.

Since P1prv(J), we have #m(J) > 3t and F prv(J) = m. Since dist(J, J ′) ≤
t+#⊥(J) +#⊥(J

′), J ′ can contain at most t entries with some values different

from m, which are occupied by the value m in J(due to Byzantine). In addition,

at most #⊥(J
′) entries of J ′ can contain ⊥ value, which are also occupied by the

value m in J(due to asynchrony) and at most #⊥(J) entries of J ′ can contain

some values, which are occupied by ⊥ in J . Thus, #m(J ′) ≥ #m(J)−t−#⊥(J
′).

Since #m(J) > 3t and #⊥(J
′) ≤ t, we obtain #m(J ′) > t. This implies that,

F prv(J ′) = m = F prv(J).

LA4: Consider J, J ′ ∈ It. We show that if P2prv(J) ∧ dist(J, J ′) ≤ #⊥(J) +

#⊥(J
′), F prv(J) = F prv(J ′) holds.

Since P2prv(J), we have #m(J) > 2t and F prv(J ′) = m. Since dist(J, J ′) ≤
#⊥(J) + #⊥(J

′) and Byzantine failures appear as crash failures, J ′ can contain

at most #⊥(J
′) entries with the default value, which are occupied by the value

m in J . As well as, at most #⊥(J) entries of J
′ can contain some values different

from m, which are occupied by ⊥ in J . Thus, #m(J ′) ≥ #m(J) − #⊥(J
′).

Since #m(J) > 2t and #⊥(J
′) ≤ t, we get #m(J ′) > t. This implies that,

F prv(J) = m = F prv(J ′).

LV5: This property is trivially satisfied because F prv(J) is either m (when

#m(J) > t) or the most frequent value in J . 2

4. Algorithm DEX

In this section, we present a generic doubly-expedited algorithm DEX for one-

step Byzantine consensus. The algorithm can be instantiated with any legal

condition-sequence pair.

Figure 1 provides the pseudocode of the algorithm. It uses an extra communi-

cation primitive, called identical broadcast, which corresponds to the primitives

Id-Send() and Id-Receive() in Figure 1. In contrast, P-Send() and P-Receive()

correspond to the standard send/receive primitives. The underlying consensus is

served by two primitives UC propose(v) and UC decide(v), each of which corre-

sponds to proposal of value v and decision by v.

Informally, the identical broadcast guarantees the delivery of the same message

to all processes, even if the message is sent by a faulty process. Its formal

specification is described as follows:

6 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

Function Consensus(vi)

init: J1i, J2i ←⊥n , decidedi ← False , proposedi ← False

begin

1 : Upon Propose(vi) do:

2 : J1i[i]← vi ; J2i[i]← vi
3 : P-Send(vi) to all processes;

4 : Id-Send(vi) to all processes;

5 : Upon P-Receive(vj) from any process pj do:

6 : J1i[j]← vj ;

7 : if |J1i| ≥ n− t and P1(J1i) and decidedi = False then

8 : Decidei(F (J1i)); decidedi = True

9 : end if

10 : Upon Id-Receive(vj) from any process pj do:

11 : J2i[j]← vj ;

12 : if |J2i| ≥ n− t and proposedi = False then

13 : UC propose (F (J2i));

14 : proposedi = True;

15 : end if

16 : if |J2i| ≥ n− t and P2(J2i) and decidedi = False then

17 : Decidei(F (J2i)); decidedi = True

18 : end if

19 : Upon UC decide(v) do:

20 : if decidedi = False then

21 : Decidei(v) and decidedi = True;

22 : end if

end

Fig. 1 Algorithm DEX: Doubly-Expedited Adaptive algorithm
for Byzantine Consensus

Termination If a correct process invokes Id-Send(m), Id-Receive(m) occurs on

all correct processes.

Agreement If two processes invoke Id-Receive(m1) and Id-Receive(m2) for the

same sender, m1 = m2 holds.

Validity If a correct process invokes Id-Receive(m) for a correct sender pi, pi
invokes Id-Send(m) exactly at once.

Notice that the use of the identical broadcast does not imply introducing addi-

tional assumptions to the system. The identical broadcast can be implemented

by using only the standard send/receive primitives. The implementation is easily

obtained as a weaker form of simulating identical Byzantine failure on the top of

general Byzantine failure models10). It should be noted that in that simulation,

a single communication step of the identical broadcast is realized by two com-

munications steps of the standard send/receive primitive. Our algorithm uses

the identical broadcast to develop the two-step decision scheme. In that sense,

our two-step decision scheme can be regarded as a one-step decision scheme in

identical Byzantine failure models.

In our algorithm, the part made up of lines 5-9 corresponds to one-step decision,

and the another one made up of lines 10-18 corresponds to two-step decision. The

algorithm works as follows: Each process pi starts a consensus execution with

invocation of Consensus(vi) where vi is its initial proposal value. The process pi
sends vi to other processes by using both P-send() and Id-send() concurrently,

and wait for receiving messages from other processes. By receiving messages,

each process constructs views J1i and J2i, which correspond to one- and two-

step decision. The views J1i and J2i are maintained incrementally. That is, they

are updated by the reception of a message. When at least n − t messages are

received in J1i, pi tries to make a decision by evaluating P1(J1i). If P1(J1i) is

true, pi immediately decides F (J1i), that is, decides in one-step. Otherwise, pi
continues to update J1i. Similarly, when pi receives at least n − t messages at

J2i, it activates the underlying consensus with F (J2i). In addition, pi evaluates

P2(J2i) to check whether J2i is sufficient for taking decision. If P2(J2i) is

true, pi immediately decides F (J2i), that is, decides in two steps. Otherwise,

pi repeats the check of J2i with update of J2i. When the underlying consensus

decides, each pi simply borrows the decision of the underlying consensus unless

it has decided already.

4.0.1 Correctness.

We prove the correctness of our algorithm by showing that it provides one-step

or two-step decision when it is instantiated with any legal condition-sequence

pair (S1, S2).

Lemma 1 (Termination) Each correct process pi eventually decides.

7 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

Proof Since there are at most t Byzantine processes, each correct process pi
receives messages from at least n−t processes. It implies that |J2i| > n−t. Hence,

pi certainly initiates the underlying consensus. Since the underlying consensus

guarantees termination, pi can decide when the underlying consensus decides. It

follows that each process eventually decides.

Lemma 2 (Agreement) No two correct processes decide different values.

Proof Let two correct processes pi and pj decide vi and vj respectively. Then

we prove vi = vj . Consider the following six cases.

• (Case 1:) When both pi and pj decide in one step at line 8.

Since pi and pj decide in one step, P1(J1i) and P1(J1j) hold. Since there

are at most t Byzantine processes, we obtain dist(J1i, J1j) ≤ t+#⊥(J1i) +

#⊥(J1j). From property LA3, it follows that vi = F (J1i) = F (J1j) = vj .

• (Case 2:) When pi decides in one step at line 8 and pj decides in two steps

at line 17.

As pi decides in one step, P1(J1i) holds. In any view J2j , since there are

at most t Byzantine processes, dist(J1i, J2j) ≤ t+#⊥(J1i) +#⊥(J2j). By

property LA3, it is clear vi = F (J1i) = F (J2j) = vj . Hence, if pj decides in

two steps using J2j , then its decision value vj = vi.

• (Case 3:) When both pi and pj decide in two steps at line 17.

Since pi and pj decide in two steps, P2(J2i) and P2(J2j) hold. From the

agreement property of the identical broadcast primitive, if an entry in J2i
contains a non-default value v, then the same entry in J2j also contains v.

Thus, we obtain dist(J2i, J2j) ≤ #⊥(J2i) + #⊥(J2j). Because of property

LA4, if pi and pj decide in two steps, then vi = vj holds.

• (Case 4:) When pi decides in one step at line 8 and pj decides using

underlying consensus at line 21.

Since pj decides vi by the underlying consensus and the underlying consensus

satisfies unanimity, it suffices to show that every correct process pk proposes

vi at line 13. Since pi decides in one step, P1(J1i) becomes true. In addition,

dist(J1i, J2k) ≤ t + #⊥(J1i) + #⊥(J2k) because at most t processes are

Byzantine. By property LA3, vk = F (J2k) = F (J1i) = vi. It implies that

every process pk proposes vi.

• (Case 5:) When pi decides in two steps at line 17 and pj decides using

underlying consensus at line 21.

Since pj decides by the underlying consensus, similar to Case 4, we have to

show that every correct process pk proposes vi to the underlying consensus

at line 13. Since pi decides in two steps, P2(J2i) holds. In addition, by the

same way as the case 3, we obtain dist(J2i, J2k) ≤ #⊥(J2i) + #⊥(J2k) for

any view J2k. By property LA4, F (J2i) = F (J2k). It implies that every

process pk proposes vi to the underlying consensus.

• (Case 6:) When both pi and pj decide at line 21: Since the underlying

consensus guarantees agreement property, we can conclude vi = vj .

Lemma 3 (Unanimity) If all correct processes propose the same value v, then

no correct process decides the value different from v.

Proof Let f be the actual number of Byzantine processes, and all correct pro-

cesses propose the same value v. Since f ≤ t, in each correct process pi, the

views J1i and J2i contain no value except v more than t times. If pi decides at

line 8 or 17, its decision value is either F (J1i) or F (J2i). From the definition of

LV5, it is clear that it decides only v. Similarly, since each pi proposes F (J2i) to

the underlying consensus, and the underlying consensus satisfies unanimity, any

correct process that decides using underlying consensus decides only v. Hence,

the unanimity holds.

Lemma 4 The algorithm DEX guarantees one-step decision for any input vec-

tor I, I ∈ C1
k if at most k processes exhibit Byzantine behavior.

Proof Since there are at most k Byzantine processes, each correct process pi
receives messages from all (n−k) correct processes. Thus, eventually J1i becomes

a member of [C1
k]k. This implies that pi decides in one step.

Lemma 5 The algorithm DEX guarantees two-step decision if the input vector

I belongs to C2
k and at most k processes are Byzantine.

8 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

IPSJ SIG Technical Report

Proof Since there are at most k Byzantine processes each correct process pi
receives messages from all (n−k) correct processes. Thus, eventually J2i becomes

a member of [C2
k]k. This implies that pi decides in two steps.

The above lemmas imply the following theorem:

Theorem 3 For any instantiation with legal condition-sequence pairs, the algo-

rithm DEX is a doubly-expedited one-step consensus algorithm.

5. Conclusion

We proposed a novel one-step Byzantine algorithm DEX has two distinguished

features: Adaptiveness and double-expedition property. Due to adaptiveness, its

condition is sensitive to the actual number of failures, and hence achieves fast

termination for large number of inputs when less number of processes are faulty.

In addition, due to double-expedition property, it supports two-step decision in

addition to one-step decision. Even though DEX takes four steps at worst in

well-behaved runs while existing algorithms takes only three, it provides fast ter-

mination for large number inputs. Practically, this is a favorable feature because

the worst case is not so often in real systems, and thus our algorithm can work

efficiently in average.

Acknowledgments This work is supported in part by the Japan Society for

the Promotion Of Science Grant-in-Aid for Scientific Research(C) 21500013, and

the Telecommunication Advancement Foundation.

References

1) I. Keider and S. Rajsbaum : On the cost of fault-tolerant consensus when there
are no faults, SIGACT News, Vol.32(9), pp.45–63 (2001)

2) V.F Brasileiro, F. Greve, A. Mostéfaoui and M.Raynal : Consensus in One Commu-
nication Step, In proc. of the 6th International Conference on Parallel Computing
Technologies, Vol.2127 of LNCS, pp.42–50, Springer-Verlag (2001)

3) Y.J. Song and R.V. Renesse : Bosco: One-Step Byzantine Asynchronous Con-
sensus, In proc. of the 22nd international symposium on Distributed Comput-
ing(DISC’08), Vol.5218 of LNCS, pp.438–450, Springer-Verlag (2008)

4) D.Dobre and N. Suri : One-step Consensus with Zero-Degradation, In proc. of
the International Conference on Dependable Systems and Networks(DSN’06), pp.
137–146 (2006)

5) P. Dutta and R. Guerraoui : Fast Indulgent Consensus with Zero Degradation,
In proc. of the 4th European Dependable Computing Conference on Dependable
Computing, Vol. 2485 of LNCS, pp.191–208, Springer-Verlag (2002)

6) T. Izumi and T. Masuzawa : One-Step Consensus Solvability, In proc. of the 22nd
international symposium on Distributed Computing(DISC’06), Vol.4167 of LNCS,
Springer, pp.224–237 (2006)

7) A. Mostefaoui, S. Rajsbaum and M. Raynal : Conditions on input vectors for
consensus solvability in asynchronous distributed systems, In proc. of the thirty-
third annual ACM symposium on Theory of computing (STOC’01), pp.153–162
(2001)

8) T. Izumi and T. Masuzawa : Condition Adaptation in Synchronous Consensus,
IEEE Transactions on Computers, Vol.55(7), pp.843–853 (2006)

9) R. Guerraoui and M. Raynal : The Information Structure of Indulgent Consensus,
IEEE Transactions on Computers, Vol.53(4), pp.453–466 (2004)

10) H. Attiya and J. Welch : Distributed Computing: Fundamentals, Simulations and
Advanced Topics, Wiley (2004)

9 c⃝ 2010 Information Processing Society of Japan

Vol.2010-AL-128 No.2
2010/1/26

