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Estimating the conditional mean of an input-output relation is the goal of
regression. However, regression analysis is not sufficiently informative if the
conditional distribution has multi-modality, is highly asymmetric, or contains
heteroscedastic noise. In such scenarios, estimating the conditional distribution
itself would be more useful. In this paper, we propose a novel method of
conditional density estimation that is suitable for multi-dimensional continuous
variables. The basic idea of the proposed method is to express the conditional
density in terms of the density ratio and the ratio is directly estimated without
going through density estimation.

1. Introduction

Regression is aimed at estimating the conditional mean of output y given input

x. When the conditional density p(y|x) is unimodal and symmetric, regression

would be sufficient for analyzing the input-output dependency. However, esti-

mating the conditional mean may not be sufficiently informative, when the con-

ditional distribution possesses multi-modality (e.g., inverse kinematics learning of

a robot3)) or a highly skewed profile with heteroscedastic noise (e.g., biomedical

data analysis10)). In such cases, it would be more informative to estimate the con-

ditional distribution itself. In this paper, we address the problem of estimating

conditional densities when x and y are continuous and multi-dimensional.
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When the conditioning variable x is discrete, estimating the conditional density

p(y|x = x̃) from samples {(xi,yi)}ni=1 is straightforward—by only using samples

{yi}ni=1 such that xi = x̃, a standard density estimation method gives an esti-

mate of the conditional density. However, when the conditioning variable x is

continuous, conditional density estimation is not straightforward since no sample

exactly matches the condition xi = x̃. A naive idea for coping with this problem

is to use samples {yi}ni=1 that approximately satisfy the condition: xi ≈ x̃. How-

ever, such a naive method is not reliable in high-dimensional problems. Slightly

more sophisticated variants have been proposed based on weighted kernel density

estimation8),32), but they still share the same weakness.

The mixture density network (MDN)3) models the conditional density by a

mixture of parametric densities, where the parameters are estimated by a neural

network. MDN was shown to work well, although its training is time-consuming

and only a local optimal solution may be obtained due to the non-convexity of

neural network learning. Similarly, a mixture of Gaussian processes was explored

for estimating the conditional density28). The mixture model is trained in a

computationally efficient manner by an expectation-maximization algorithm6).

However, since the optimization problem is non-convex, one may only access to

a local optimal solution in practice.

The kernel quantile regression (KQR) method17),26) allows one to predict per-

centiles of the conditional distribution. This implies that solving KQR for all

percentiles gives an estimate of the entire conditional cumulative distribution.

KQR is formulated as a convex optimization problem, and therefore a unique

global solution can be obtained. Furthermore, the entire solution path with re-

spect to the percentile parameter, which was shown to be piece-wise linear, can

be computed efficiently27). However, the range of applications of KQR is limited

to one-dimensional output and solution path tracking tends to be numerically

rather unstable in practice.

In this paper, we propose a new method of conditional density estimation

named least-squares conditional density estimation (LS-CDE), which can be ap-

plied to multi-dimensional inputs and outputs. The proposed method is based on

the fact that the conditional density can be expressed in terms of unconditional

densities as p(y|x) = p(x,y)/p(x). Our key idea is that we do not estimate the
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two densities p(x,y) and p(x) separately, but we directly estimate the density

ratio p(x,y)/p(x) without going through density estimation.

2. A New Method of Conditional Density Estimation

In this section, we formulate the problem of conditional density estimation and

give a new method.

2.1 Conditional Density Estimation via Density Ratio Estimation

Let DX (⊂ RdX) and DY (⊂ RdY) be input and output data domains, where dX
and dY are the dimensionality of the data domains, respectively. Let us consider

a joint probability distribution on DX × DY with probability density function

p(x,y), and suppose that we are given n independent and identically distributed

(i.i.d.) paired samples of input x and output y:

{zi | zi = (xi,yi) ∈ DX ×DY}ni=1.

The goal is to estimate the conditional density p(y|x) from the samples {zi}ni=1.

Our primal interest is in the case where both variables x and y are continuous.

In this case, conditional density estimation is not straightforward since no sample

exactly matches the condition.

Our proposed approach is to consider the ratio of two densities:

p(y|x) = p(x,y)

p(x)
:= r(x,y),

where we assume p(x) > 0 for all x ∈ DX. However, naively estimating two

densities and taking their ratio can result in large estimation error. In order

to avoid this, we propose to estimate the density ratio function r(x,y) directly

without going through density estimation of p(x,y) and p(x).

2.2 Linear Density-ratio Model

We model the density ratio function r(x,y) by the following linear model:

r̂α(x,y) := α⊤ϕ(x,y), (1)

where ⊤ denotes the transpose of a matrix or a vector,

α = (α1, α2, . . . , αb)
⊤

are parameters to be learned from samples, and

ϕ(x,y) = (ϕ1(x,y), ϕ2(x,y), . . . , ϕb(x,y))
⊤

are basis functions such that

ϕ(x,y) ≥ 0b for all (x,y) ∈ DX ×DY.

0b denotes the b-dimensional vector with all zeros. The inequality for vectors is

applied in an element-wise manner.

Note that the number b of basis functions is not necessarily a constant; it can

depend on the number n of samples. Similarly, the basis functions ϕ(x,y) could

be dependent on the samples {xi,yi}ni=1. This means that kernel models (i.e.,

b = n and ϕi(x,y) is a kernel function ‘centered’ at (xi,yi)) are also included in

the above formulation. We explain how the basis functions ϕ(x,y) are practically

chosen in Section 2.6.

2.3 A Least-squares Approach to Conditional Density Estimation

We determine the parameter α in the model r̂α(x,y) so that the following

squared error J0 is minimized:

J0(α) :=
1

2

∫∫
(r̂α(x,y)− r(x,y))

2
p(x)dxdy.

This can be expressed as

J0(α) =
1

2

∫∫
r̂α(x,y)

2p(x)dxdy −
∫∫

r̂α(x,y)r(x,y)p(x)dxdy + C

=
1

2

∫∫ (
α⊤ϕ(x,y)

)2
p(x)dxdy −

∫∫
α⊤ϕ(x,y)p(x,y)dxdy + C,

(2)
where

C :=
1

2

∫∫
r(x,y)p(x,y)dxdy

is a constant and therefore can be safely ignored. Let us denote the first two

terms of Eq.(2) by J :

J(α) := J0(α)− C

=
1

2
α⊤Hα− h⊤α,

where

H :=

∫
Φ(x)p(x)dx,

h :=

∫∫
ϕ(x,y)p(x,y)dxdy,

Φ(x) :=

∫
ϕ(x,y)ϕ(x,y)⊤dy. (3)

H and h included in J(α) contain the expectations over unknown densities p(x)

and p(x,y), so we approximate the expectations by sample averages. Then we
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have

Ĵ(α) :=
1

2
α⊤Ĥα− ĥ

⊤
α,

where

Ĥ :=
1

n

n∑
i=1

Φ(xi), (4)

ĥ :=
1

n

n∑
i=1

ϕ(xi,yi).

Note that the integral over y included in Φ(x) (see Eq.(3)) can be computed in

principle since it does not contain any unknown quantity. As shown in Section 2.6,

this integration can be computed analytically in our basis function choice.

Now our optimization criterion is summarized as

α̃ := argmin
α∈Rb

[
Ĵ(α) + λα⊤α

]
, (5)

where a regularizer λα⊤α (λ > 0) is included for stabilization purposes⋆1. Taking

the derivative of the above objective function and equating it to zero, we can see

that the solution α̃ can be obtained just by solving the following system of linear

equations.

(Ĥ + λIb)α = ĥ,

where Ib denotes the b-dimensional identity matrix. Thus, the solution α̃ is given

analytically as

α̃ = (Ĥ + λIb)
−1ĥ. (6)

Since the density ratio function is non-negative by definition, we modify the

solution α̃ as

α̂ := max(0b, α̃), (7)

where the ‘max’ operation for vectors is applied in an element-wise manner.

Thanks to this rounding-up processing, the solution α̂ tends to be sparse, which

contributes to reducing the computation time in the test phase.

In order to assure that the obtained density-ratio function is a conditional

density, we renormalize the solution in the test phase—given a test input point

⋆1 We may also use λα⊤Rα as a regularizer for an arbitrary positive symmetric matrix R
without sacrificing the computational advantage.

x̃, our final solution is given as

p̂(y|x = x̃) =
α̂⊤ϕ(x̃,y)∫
α̂⊤ϕ(x̃,y′)dy′

. (8)

We call the above method Least-Squares Conditional Density Estimation (LS-

CDE). LS-CDE can be regarded as an application of the direct density ratio

estimation method called the unconstrained Least-Squares Importance Fitting

(uLSIF)12),13) to the problem of density ratio estimation.

A MATLAB R⃝ implementation of the LS-CDE algorithm is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSCDE/

2.4 Convergence Analysis

Here, we show a non-parametric convergence rate of the LS-CDE solution.

Those who are interested in practical issues of the proposed method may skip

this subsection.

Let G be a general set of functions on DX×DY. Note that G corresponds to the

span of our model, which could be non-parametric (i.e., an infinite dimensional

linear space⋆2). For a function g (∈ G), let us consider a non-negative function

R(g) such that

max

{
sup
x

[∫
g(x,y)dy

]
, sup

x,y
[g(x,y)]

}
≤ R(g).

Then the problem (5) can be generalized as

r̂ := argmin
g∈G

[
1

2n

n∑
i=1

∫
g(xi,y)

2dy − 1

n

n∑
i=1

g(xi,yi) + λnR(g)
2

]
,

where λn is the regularization parameter depending on n. We assume that the

true density ratio function r(x,y) is contained in G and there exists M (> 0)

such that R(r) < M . We also assume that there exists γ (0 < γ < 2) such that

H[](GM , ϵ, L2(px × µY)) = O
((

M

ϵ

)γ)
,

where

GM := {g ∈ G | R(g) ≤M}.
µY is the Lebesgue measure on DY, px × µY is a product measure of px and µY,

⋆2 If a reproducing kernel Hilbert space is chosen as G and the regularization term R(g) is
chosen appropriately, the optimization problem in the infinite dimensional space is reduced
to a finite dimensional one. Then the optimal approximation can be found in the form
of r̂α(x,y) when kernel functions centered at the training samples are used as the basis
functions14).
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and H[] is the bracketing entropy of GM with respect to the L2(px×µY)-norm
31).

Intuitively, the bracketing entropy H[](GM , ϵ, L2) expresses the complexity of

the model GM , and ϵ is a precision measure of the model complexity. The larger

the bracketing entropyH[](GM , ϵ, L2) is for a certain precision ϵ, the more complex

the model is for that precision level. As the precision is increased (i.e., ϵ → 0),

the bracketing entropy measured with precision ϵ typically diverges to infinity.

The “dimension” of the model is reflected in the divergence rate of the bracketing

entropy when ϵ→ 0. See the book31) for details.

When the set GM is the closed ball of radius M centered at the origin of a

Sobolev space, γ is given by (dX + dY)/p, where p is the order of differentiability

of the Sobolev space (see page 105 of the book7) for details). Hence, γ is small

for a set of smooth functions with few variables. The reproducing kernel Hilbert

spaces with Gaussian kernel

exp

(
−||x− x′||2

2σ2

)
exp

(
−||y − y′||2

2σ2

)
,

which we will use in our practical implementation (see Section 2.6) satisfy the

above entropy condition for any small γ > 034). On the other hand, in the

above setup, the bracketing entropy is lower-bounded by K(M/ϵ)(dX+dY)/p with

a constant K depending only on p, dX, and dY
15). Therefore, if the dimension

of the domains DX and DY is so large that (dX + dY)/p > 2, γ should be larger

than 2. This means that a situation where p is small and dX and dY are large

is not covered in our analysis; such a model is too complex to deal with in our

framework. Fortunately, it is known that the Gaussian kernel satisfies γ ∈ (0, 2).

Hence, the Gaussian kernel as well as Sobolev spaces with large p and small dX
and dY is included in our analysis.

Under the above assumptions, we have the following theorem (its proof is omit-

ted since it follows essentially the same line as the references19),25)).

Theorem 1 Under the above setting, if λn → 0 and λ−1
n = o(n2/(2+γ)), then

||r̂ − r||2 = Op(λ
1/2
n ),

where || · ||2 denotes the L2(px ×µY)-norm and Op denotes the asymptotic order

in probability.

Note that the conditions λn → 0 and λ−1
n = o(n2/(2+γ)) intuitively means that

λn should converge to zero as n tends to infinity but the speed of convergence

should not be too fast.

2.5 Cross-validation for Model Selection

We elucidated the convergence rate of the LS-CDE solution. However, its

practical performance still depends on the choice of model parameters such as

the basis functions ϕ(x,y) and the regularization parameter λ.

Here we show that cross-validation (CV) is available for model selection. CV

should be carried out in terms of the error metric used for evaluating the test

performance. Below, we investigate two cases: the squared (SQ) error and the

Kullback-Leibler (KL) error. The SQ error for a conditional density estimator

p̂(y|x) is defined as

SQ0 :=
1

2

∫∫
(p̂(y|x)− p(y|x))2 p(x)dxdy

= SQ+ CSQ,

where

SQ :=
1

2

∫∫
(p̂(y|x))2 p(x)dxdy −

∫∫
p̂(y|x)p(x,y)dxdy,

and CSQ is the constant defined by

CSQ :=
1

2

∫∫
p(y|x)p(x,y)dxdy.

The KL error for a conditional density estimator p̂(y|x) is defined as

KL0 :=

∫∫
p(x,y) log

p(x,y)

p̂(y|x)p(x)
dxdy

= KL + CKL,

where

KL := −
∫∫

p(x,y) log p̂(y|x)dxdy,
and CKL is the constant defined by

CKL :=

∫∫
p(x,y) log p(y|x)dxdy.

The smaller the value of SQ or KL is, the better the performance of the condi-

tional density estimator p̂(y|x) is.
For the above performance measures, CV is carried out as follows. First, the

samples

Z := {zi | zi = (xi,yi)}ni=1

are divided into K disjoint subsets {Zk}Kk=1 of approximately the same size.

Let p̂Z\Zk
be the conditional density estimator obtained using Z\Zk (i.e., the
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estimator obtained without Zk). Then the target error values are approximated

using the hold-out samples Zk as

ŜQZk
:=

1

2|Zk|
∑
x̃∈Zk

∫ (
p̂Z\Zk

(y|x̃)
)2

dy − 1

|Zk|
∑

(x̃,ỹ)∈Zk

p̂Z\Zk
(ỹ|x̃),

K̂LZk
:= − 1

|Zk|
∑

(x̃,ỹ)∈Zk

log p̂Z\Zk
(ỹ|x̃),

where |Zk| denotes the number of elements in the set Zk. This procedure is

repeated for k = 1, 2, . . . ,K and its average is computed:

ŜQ :=
1

K

K∑
k=1

ŜQZk
,

K̂L :=
1

K

K∑
k=1

K̂LZk
.

We can show that ŜQ and K̂L are almost unbiased estimators of the true costs

SQ and KL, respectively; the ‘almost’-ness comes from the fact that the number

of samples is reduced in the CV procedure due to data splitting18),22).

2.6 Basis Function Design

A good model may be chosen by CV, given that a family of promising model

candidates is prepared. As model candidates, we propose to use a Gaussian

kernel model: for z = (x⊤,y⊤)⊤,

ϕℓ(x,y) = exp

(
−||z −wℓ||2

2σ2

)
= exp

(
−||x− uℓ||2

2σ2

)
exp

(
−||y − vℓ||2

2σ2

)
, (9)

where

{wℓ | wℓ = (u⊤
ℓ ,v

⊤
ℓ )

⊤}bℓ=1

are center points randomly chosen from

{zi | zi = (x⊤
i ,y

⊤
i )

⊤}ni=1.

We may use different Gaussian widths for x and y. However, for simplicity, we

decided to use the common Gaussian width σ for both x and y under the setting

where the variance of each element of x and y is normalized to one.

An advantage of the above Gaussian kernel model is that the integrals over

y in matrix Φ (see Eq.(3)) and in the normalization factor (see Eq.(8)) can be

computed analytically; indeed, a simple calculation yields

Φℓ,ℓ′(x) =

∫
ϕℓ(x,y)ϕℓ′(x,y)dy

= (
√
πσ)dY exp

(
−ξℓ,ℓ

′(x)

4σ2

)
,∫

α̂⊤ϕ(x̃,y)dy = (
√
2πσ)dY

b∑
ℓ=1

α̂ℓ exp

(
−||x− uℓ||2

2σ2

)
,

where

ξℓ,ℓ′(x) := 2||x− uℓ||2 + 2||x− uℓ′ ||2 + ||vℓ − vℓ′ ||2.
In practice, we may fix the number of basis functions to

b = min(100, n),

and choose the Gaussian width σ and the regularization parameter λ by CV from

σ, λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.
2.7 Extention to Semi-supervised Scenarios

Another potential advantage of LS-CDE lies in the semi-supervised learning

setting4)—in addition to the labeled samples {(xi,yi)}ni=1, unlabeled samples

{x′
i}

n+n′

i=n+1 which are drawn independently from the marginal density p(x) are

available.

In conditional density estimation, unlabeled samples {x′
i}

n+n′

i=n+1 are not gener-

ally useful since they are irrelevant to the conditional density p(y|x). However, in
LS-CDE, unlabeled samples could be used for improving the estimation accuracy

of the matrix H. More specifically, instead of Eq.(4), the following estimator

may be used:

Ĥ =
1

n+ n′

n+n′∑
i=1

Φ(xi).

3. Discussions

In this section, we discuss the characteristics of existing and proposed methods

of conditional density estimation.

3.1 ϵ-neighbor Kernel Density Estimation (ϵ-KDE)

For estimating the conditional density p(y|x), ϵ-neighbor kernel density esti-

mation (ϵ-KDE) employs the standard kernel density estimator using a subset of

samples, {yi}i∈Ix,ϵ for some threshold ϵ (≥ 0), where Ix,ϵ is the set of sample
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indices such that

||xi − x|| ≤ ϵ.

In the case of Gaussian kernels, ϵ-KDE is expressed as

p̂(y|x) = 1

|Ix,ϵ|
∑

i∈Ix,ϵ

N(y;yi, σ
2IdY),

where N(y;µ,Σ) denotes the Gaussian density with mean µ and covariance ma-

trix Σ. The threshold ϵ and the bandwidth σ may be chosen based on CV9).

ϵ-KDE is simple and easy to use, but it may not be reliable in high-dimensional

problems. Slightly more sophisticated variants have been proposed based on

weighted kernel density estimation8),32), but they may still share the same weak-

ness.

3.2 Mixture Density Network (MDN)

The mixture density network (MDN) models the conditional density by a mix-

ture of parametric densities3). In the case of Gaussian densities, MDN is ex-

pressed as

p̂(y|x) =
t∑

ℓ=1

πℓ(x)N(y;µℓ(x), σ
2
ℓ (x)IdY),

where πℓ(x) denotes the mixing coefficient such that
t∑

ℓ=1

πℓ(x) = 1 and 0 ≤ πℓ(x) ≤ 1 for all x ∈ DX.

All the parameters {πℓ(x),µℓ(x), σ
2
ℓ (x)}tℓ=1 are learned as a function of x by a

neural network with regularized maximum likelihood estimation. The number t

of Gaussian components, the number of hidden units in the neural network, and

the regularization parameter may be chosen based on CV. MDN has been shown

to work well, although its training is time-consuming and only a local solution

may be obtained due to the non-convexity of neural network learning.

3.3 Kernel Quantile Regression (KQR)

Kernel quantile regression (KQR) allows one to predict the 100τ -percentile of

conditional distributions for a given τ (∈ (0, 1)) when y is one-dimensional17),26).

For the Gaussian kernel model

f̂τ (x) =

n∑
i=1

αi,τϕi(x) + bτ ,

where

ϕi(x) = exp

(
−||x− xi||2

2σ2

)
,

the parameters {αi,τ}ni=1 and bτ are learned by

min
{αi,τ}n

i=1
,bτ

 n∑
i=1

ψτ (yi − f̂τ (xi))+λ

n∑
i,j=1

ϕi(xj)αi,ταj,τ

,
where ψτ (r) denotes the pin-ball loss function defined by

ψτ (r) =

{
(1− τ)|r| (r ≤ 0),

τ |r| (r > 0).
Thus, solving KQR for all τ ∈ (0, 1) gives an estimate of the entire conditional

distribution. The bandwidth σ and the regularization parameter λmay be chosen

based on CV.

A notable advantage of KQR is that the solution of KQR is piece-wise linear

with respect to τ , so the entire solution path can be computed efficiently27). This

implies that the conditional cumulative distribution can be computed efficiently.

However, solution path tracking tends to be numerically rather unstable and

the range of applications of KQR is limited to one-dimensional output y. Fur-

thermore, some heuristic procedure is needed to convert conditional cumulative

distributions into conditional densities, which can cause additional estimation

errors.

3.4 Other Methods of Density Ratio Estimation

A naive method for estimating the density ratio p(x,y)/p(x) is to first approx-

imate the two densities p(x,y) and p(x) by standard kernel density estimation

and then taking the ratio of the estimated densities. We refer to this method as

the ratio of kernel density estimators (RKDE). In our preliminary experiments,

we found that RKDE does not work well since taking the ratio of estimated

quantities significantly magnifies the estimation error.

To overcome the above weakness, we decided to directly estimate the den-

sity ratio without going through density estimation under the squared-loss (see

Section 2.3). The kernel mean matching method11) and the logistic regression

based method2),5),21) also allow one to directly estimate a density ratio q(x)/q′(x).

However, the derivation of these methods heavily relies on the fact that the two

density functions q(x) and q′(x) share the same domain, which is not fulfilled
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in the current setting. For this reason, these methods may not be employed for

conditional density estimation.

Other methods of direct density ratio estimation19),20),24),25),29),30),33) employs

the Kullback-Leibler divergence16) as the loss function, instead of the squared-

loss. It is possible to use these methods for conditional density estimation in

the same way as the proposed method, but it is computationally rather ineffi-

cient12),13). Furthermore, in the context of density estimation, the squared-loss

is often preferred to the Kullback-Leibler loss1),23).

4. Conclusions

We proposed a novel approach to conditional density estimation called LS-CDE.

Our basic idea was to directly estimate the ratio of density functions without

going through density estimation. LS-CDE was shown to offer a sparse solution

in an analytic form and therefore is computationally efficient. A non-parametric

convergence rate of the LS-CDE algorithm was also provided.
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