Vol.2009-AL-127 No.7
oooooooooo 2009/11/27

IPSJ SIG Technical Report

1. Introduction

00 L2 1)-0000000000000D0000O00

Let G be an undirected graph. A2, 1)-labelingof a graphG is an assignment from the

0O 0O 0o o ooooaof
Oo0ooo™ ooooaofs

0000 kL(21)-000000000000 000 kOOODODOOOOOOO
000000000000000 2000 200000000000 1000000
000000002 1)-00000000000000000 kL(21)000000
00000 KkOOODOOODO0OO000000000000 20000000000 NP
0000000000000 000000000000000000000000O0
0000000000000 000000000000000000000000 10
000 O@* ) 00000000000ADDOCOOONDNDOOON0DOOOO0000
00000000000 ominnt™ ASn) 0000000000000 00000
00000000000000000000000000000 L(1)-000000
0000000000000000000

A linear time algorithm for L(2, 1)-labeling of trees

Toru Hasunuma , 1 Tosuimasa Isain 2 Hirotaka Ono 4
and Yusur Uno™

An L(2,1)-labeling of a grapks is an assignmenit from the vertex se¥/(G) to the set of
nonnegative integers such thégx) — f(y)| > 2 if xandy are adjacent and (x) - f(y)| > 1 if
x andy are at distance 2, for al andy in V(G). A k-L(2, 1)-labeling is arlL(2, 1)-labeling
f : V(G) - {0,...,k}, and theL(2, 1)-labeling problem asks the minimuky which we

vertex se/(G) to the set of nonnegative integers such thiét) — f(y)| > 2 if xandy are adjacent
and|f(x) — f(y)| = 1if xandy are at distance 2, for all andy in V(G). A k-L(2,1)-labeling is
anL(2,1)-labelingf : V(G) — {0,...,k}, and theL(2, 1)-labeling problemasks the minimunk
among all possible assignments. We call this invariant, the minimum kathe L(2, 1)-labeling
numberand is denoted by(G). Notice that we can ude+ 1 different labels when(G) = k since
we can use 0 as a label for conventional reasons.

The original notion ofL(2, 1)-labeling can be seen in the context of frequency assignment,
where ‘close’ transmitters must receivefdrent frequencies and ‘very close’ transmitters must
receive frequencies that are at least two frequencies apart so that they can avoid interference. Due
to its practical importance, the(2, 1)-labeling problem has been widely studied. From the graph
theoretical point of view, since this is a kind of vertex coloring problem, it has attracted a lot
of interes?»1013:18) |n this contextL(2, 1)-labeling is generalized intio(p, g)-labeling for arbi-
trary nonnegative integersandg, and in fact, we can see thiafl, 0)-labeling C(p, 0)-labeling,
actually) is equivalent to the classical vertex coloring. We can find a lot of related results on
L(p, g)-labelings in comprehensive surveys by Calamaharid by YeR".

Related Work: There are also a number of studies onlt{ 1)-labeling problem from the algo-
rithmic point of view?®15), It is known to be NP-hard for general graphsand it still remains
NP-hard for some restricted classes of graphs, such as planar graphs, bipartite graphs, chordal
graph®, and it turned out to be NP-hard even for graphs of treewidth [ contrast, only a

few graph classes are known to have polynomial time algorithms for this problem, e.g., we can

. A € ] 3 determine thé (2, 1)-labeling number of paths, cycles, wheels within polynomial tne
denote byl(G), among all possible assignments. It is known that this problem is NP-hard

even for graphs of treewidth 2, and tree is one of very few classes for which the problem
is polynomially solvable. The running time of the best known algorithm for trees had been
O(A*°n) for more than a decade, and an O(mitY>, AL5n})-time algorithm has appeared
recently, where\ is the maximum degree @f andn = [V(T)|, however, it has been open if

it is solvable in linear time. In this paper, we finally settle this problem{@; 1)-labeling

of trees by establishing a linear time algorithm.

10000 00000 0000000000 Department of Mathematical and Natural Sciences, The University of
Tokushima, Tokushima 770-8502, Japan. Entfakunuma@ias.tokushima-u.ac.jp

2000000 000 0000000 Department of Information and Management Science, Otaru University of Com-
merce, Otaru 047-8501, Japan. Emaihii@res.otaru-uc.ac.jp

3000000000 000000 00000000, Department of Mathematics and Information Sciences, Graduate
School of Science, Osaka Prefecture University, Sakai 599-8531, Japan. &md@lmi.s.osakafu-u.ac.jp

40000000 00000000000 0OO0ODDO, Department of Informatics, Kyushu University, Nishi-ku,
Fukuoka 819-0395, Japan. Emaiho@inf.kyushu-u.ac.jp

1 © 2009 Information Processing Society of Japan



Vol.2009-AL-127 No.7
oooooooooo 2009/11/27

IPSJ SIG Technical Report

As for trees, Griggs and YéH showed thati(T) is eitherA + 1 or A + 2 for any treeT, and linear time algorithm fok (2, 1)-labeling of trees, which finally settles this problem. It is based on
also conjectured that determiningT) is NP-hard, however, Chang and Kudisproved this by the similar DP approach to the preceding two polynomial time algorithifisIn our new algo-
presenting a polynomial time algorithm for computit@’). Their algorithm exploits the fact that rithm, besides using their ideas, we introduce the notion of “label compatibility”, which indicates
A(T) is eitherA + 1 or A + 2 for any treeT. Its running time is O§*°n), whereA is the max- how we flexibly change labels with preserving its€ 1)-L(2, 1)-labeling. Interestingly, we can
imum degree of a tre& andn = |[V(T)|. This result has a great importance because it initiates show that only O(logn) labels are essential far(2, 1)-labeling in any input tree by using this
to cultivate polynomially solvable classes of graphs for it 1)-labeling problem and related notion. By utilizing this fact, we can replace the bipartite matching of graphs with the maximum
problems. For example, Fiala et al. showed th@ 1)-labeling oft-almost trees can be solved flow of much smaller networks as an engine to find the assignments. Consequently, our algorithm
in O(12+45n) time for A given as an input, wheretaalmost tree is a graph that can be a tree by finally achieves its linear running time.
eliminatingt edge®. Also, it was shown that thie(p, 1)-labeling problem for trees can be solved
in O((p + A)*>>n) = O(15%n) time®). Both results are based on Chang and Kuo’s algorithm, which  Organization of this Paper: The rest of this paper is organized as follows. Section 2 gives basic
is called as a subroutine in the algorithms. Moreover, the polynomially solvable result for treesdefinitions and introduces as a warm-up the ideas of Chang and Kua®@)(time algorithm
holds for more general settings. The notiorLgp, 1)-labeling is generalized a$(p, 1)-labeling, and its improvement into @{7®) time. Section 3 introduces the crucial notion of label compati-
in which graphH defines the metric space of distances between two labels, whereas labels inbility that can bundle a set of compatible vertices and reduce the size of the graph constructed for
L(p, 1)-labeling (that is, ir(p, g)-labeling) take nonnegative integers; i.e., it is a special case that computing bipartite matchings. Moreover, this allows to use maximum-flow based computation
H is a path graph. R, it has been shown that thé(p, 1)-labeling problem of trees for arbitrary for them. In Section 4, we give precise analyses to achieve linear running time. Some parts of
graphH can be solved in polynomial time, which is also based on Chang and Kuo’s idea. In the detailed analyses are omitted due to space limitation. Interested readers can find them in the
passing, these results are unfortunately not applicable(fmm)-labeling problems for general technical report version of this papér
andg. Recently, Fiala et al? showed that thé&(p, g)-labeling problem for trees is NP-hardgiis .

- - . o . 2. Preliminaries
not a divisor ofp, which is contrasting to the positive results mentioned above.

As for L(2, 1)-labeling of trees again, Chang and Kuo’sA®{n) algorithm is the first poly- 2.1 Definitions and Notations
nomial time one. It is based on dynamic programming (DP) approach, and it checks whether A graphG is an ordered pair of its vertex s®{G) and edge seE(G) and is denoted by
(A + 1)-L(2,1)-labeling is possible or not from leaf vertices to a root vertex in the original tree G = (V(G), E(G)). We assume throughout this paper that all graphs are undirected, simple and
structure. The principle of optimality requires to solve at each vertex of the tree the assignments ofonnected, unless otherwise stated. Therefore, anedd&(G) is an unordered pair of vertices
labels to subtrees, and the assignments are formulated as the maximum matching in a certain hi-andv, which areend vertice®f e, and we often denote it by= (u, v). Two verticesu andv are
partite graph. Recently, an O(ntit ">, A*°n}) time algorithm has been propod&dIt is based on adjacentif (u,v) € E(G). A graphG = (V(G), E(G)) is calledbipartite if the vertex se¥/(G) can

the similar DP framework to Chang and Kuo’s algorithm, but achievedtitiency by reducing be divided into two disjoint setg; andV, such that every edge B(G) connects a vertex Ny

heavy computation of bipartite matching in Chang and Kuo’s and by using an amortized analysisand one inV; suchG is denoted by, V-, E).

We give a concise review of these two algorithms in Subsection 2.2. For a graphG, the pen neighborhoodf a vertexv € V(G) is the setNg(v) = {u € V(G) |
(u,v) € E(G)}, and theclosed neighborhoodf v is the setNg[v] = Ng(v) U {v}. Thedegreeof

Our Contributions:  Although there have been a few polynomial time algorithmsLf(®, 1)- a vertexv is [Ng(Vv)|, and is denoted bgg(v). We useA(G) to denote the maximum degree of a

labeling of trees, it has been open if it can be improved to lineafirirethis paper, we present a graphG. A vertex whose degree i§(G) is calledmajor. We often dropG in these notations if

2 © 2009 Information Processing Society of Japan



gpooooooobogo
IPSJ SIG Technical Report

there are no confusions. A vertex whose degree is 1 is calieaf aertex or simply aleaf.

Vo0l.2009-AL-127 No.7
2009/11/27

When we describe algorithms, it is convenient to regard the input tree to be rooted at a leaf ver-

texr. Then we can define the parent-child relationship on vertices in the usual way. For a rooted

tree, itsheightis the length of the longest path from the root to a leaf. For any vertthe set of
its children is denoted b§(v). For a vertew, defined’(v) = |C(V)|.

2.2 Chang and Kuo’s Algorithm and its Improvement

Before explaining algorithms, we give some significant propertiels(2nl)-labeling of graphs
or trees that have been used so far for desighif®)1)-labeling algorithms. We can see that
A(G) = A + 1 holds for any grapks. Griggs and Yet?) observed that any major vertex@must
be labeled 0 oA + 1 whenA(G) = A + 1, and that if2(G) = A + 1, thenNg[V] contains at most
two major vertices for any € V(G). Furthermore, they showed th¥(fT) is eitherA + 1 orA + 2
for any treeT. By using this fact, Chang and Kfigpresented an @(*°n) time algorithm for
computingA(T).

Chang and Kuo’s Algorithm Now, we first review the idea of Chang and Kuo’s dynamic pro-
gramming algorithm (CK algorithm) for the(2, 1)-labeling problem of trees, since our linear
time algorithm also depends on the same formula of the principle of optimality. The algorithm
determines ifi(T) = A + 1, and if so, we can easily construct the labeling wiffi) = A + 1.

To describe the idea, we introduce some notations. We assume for explanatibnsiabted
at some leaf vertex Given a vertex, we denote the subtree ©frooted atv by T(v). Let T (u, V)
be a tree rooted atthat formsT (u, v) = ({u} U V(T (V)), {(u,v)} U E(T(v))). Note that thisuis just
a virtual vertex for explanation ant(u, v) is uniquely determined by (v). ForT(u, v), we define

1
0,

if A(Tu,v)|f(u=af(vy=b)<A+1,
otherwise,

o((u.v), (a, b)) = {

whereA(T(u,V) | f(u) = a, f(v) = b) denotes thé& (2, 1)-labeling number offf (u, v) under the con-
dition thatf(u) = aand f(v) = b, i.e., the minimunk of k-L(2, 1)-labelings onT (u, v) satisfying
f(u) = aandf(v) = b. This¢ function satisfies the following formula:

1, ifthere is an injective assignmegt C(v) — {0,1,...,A+1}—{a,
6((u,v), (a, b)) = b-1,b,b+ 1} such thats((v, w), (b, g(w)) = 1 for eachw € C(v),
0, otherwise.

The existence of such an injective assignnigistformalized as the maximum matching problem:
For a bipartite grapl&(u,v,a,b) = (C(v), X, E(u,v,a,b)), whereX = {0,1,...,A,A + 1} and
E(u,v,a,b) = {(w,c) | 6((v,w), (b,c)) = 1,c € X—{a},w € C(v)}, we can see that there is an injec-
tive assignmeng: C(v) — {0,1,...,A+ 1} — {a,b— 1,b,b + 1} if there exists a matching of size
d’(v) in G(u, v, a,b). Namely, forT (u, v) and two labels andb, we can easily (i.e., in polynomial
time) determine the value @{(u, v), (a, b)) if the values ofs function forT(v,w),w € C(v) and
any two pairs of labels are given. Now I¢¢) be the time for calculating((u, v), (x, *)) for vertex

v. CK algorithm solves the bipartite matching problems oAD¢ertices and Qf?) edges O4?)
times for eacly, in order to obtai-values for all combinations of labetsandb. This amounts
t(v) = O(A%%) x O(A%) = O(A*5), where the first Of?°) is the time complexity of the bipartite
matching problerf). Thus the total running time ., t(v) = O(A*°n).

An O(n*™)-time Algorithm Next, we review the Q¢-"%)-time algorithm proposed i#%. The
running time OG7%) is roughly achieved by two strategies. One is that the problem can be solved
by a simple linear time algorithm i = Q(+/n), and the other is that it can be solved inA®¥n)

time for any input tree.

The first idea of the speedup is that for computif(u, v), (x, b)), the algorithm does not
solve the bipartite matching problems every time from scratch, but reuse the obtained match-
ing structure. More precisely, the bipartite matching problem is solvedG{orv, —,b) =
(C(v), X, E(u,v, —, b)) instead ofG(u,v,a,b) for a specifica, where E(u,v,—,b) = {(w,c) |
S((v,w), (b,c)) = 1,c € X,w € C(v)}. A maximum matching o6(u, v, —, b) is observed to satisfy
the following properties:

If G(u, Vv, —, b) has no matching of siz# (v), thens((u, v), (i, b)) = 0 for any label
i m]

Propertyl

Property2 6((u,Vv), (i,b)) = 1 if and only if vertexi can be reached by avi-alternating path
from some vertex irK unmatched by in G(u, v, —, b), whereM denotes a maximum matching

of G(u, v, —, b) (of sized’(v)). O

© 2009 Information Processing Society of Japan



Vol.2009-AL-127 No.7
oooooooooo 2009/11/27

IPSJ SIG Technical Report

From these properties((u, v), (x, b)) can be computed by a single bipartite matching and a sin- achieved on a maximum flow algorithm instead of a maximum matching algorithm. Seemingly,

gle graph search, and its total running time i&{’ (v)) + O(Ad’(v)) = O(AYSd’(Vv)) (for solving this sounds a bit strange, because the time complexity of the maximum flow problem is larger than
the bipartite matching o&(u, v, —, b), which has Of) vertices and Ofd’(v)) edges, and for a the one of the bipartite matching problem. The trick is that the new flow-based computation uses a
single graph search). Since this calculation is done fdy,alle havet(v) = O(A%5d’ (v)). smaller network (graph) by this notion than the gr&, v, —, b) used in the bipartite matching.

The other technique of the speedup introducéd) is based on preprocessing operations for 3.1 Label Compatibility and Neck/Head Levels
amortized analysis. By some preprocessing operations, the shape of input trees can be restrictedLet L, = (hh+ 1,...,A-h,A-h+ 1. LetT be a tree rooted at, andu ¢ V(T).
while preserving.(2, 1)-labeling number, and the input trees can be assumed to satisfy the fol- We say thafT is headL,-compatibleif §((u,v), (a, b)) = 6((u,v), (&', b)) for all a,a € L, and

lowing two properties. b e Lo with Ja—b| > 2 and|a’ — b| > 2. Analogously, we say that is neckLy,-compatible if
Property3 All vertices connected to a leaf vertex are major vertices. O 6((u,v), (& b)) = 5((u,v), (a, b)) for all a € Lo andb, by € L, with [a—b| > 2 andla—-b’| > 2. The
Property4 The size of any path componentDfis at most 3. O neck and head levels df are defined as follows:

Here, a sequence of verticeg Vs, ...,V, is called apath componenif (v,vi;;) € E for all Definitionl LetT be a tree rooted at andu ¢ V(T).

i=12,...,0-1andd(v) = 2foralli =1,2,...,¢, and( is called thesizeof the path component. (i) The neck level (resp., head level) @f is O if T is neckLy-compatible (resp., healdy
Furthermore, this preprocessing operations enable the following amortized analyis.aloet compatible). (ii) The neck level (resp., head level)fas h (> 1) if T is not neckky_;-compatible

Vg be the set of leaf vertices and the set of major vertices whose children are all leaf vertices(resp., heads,_;-compatible) but necks,-compatible (resp., headr-compatible).

respectively. Also, lett”(v) = |C(v) — V.| for v e V. (Note thatd”(v) = 0 forv e V_ U Vg.) An intuitive explanation of necks-compatibility (resp., headln-compatibility) of T is that if for
By Property 3, if we go down the resulting tree from a root, then we reach a major vertex in T(u,V), a label inL;, is assigned te (resp.,u) under A + 1)-L(2, 1)-labeling ofT (u, v), the label

Vq. Then, the following facts are observed: (i) foe Vg 6((u, V), (a, b)) = 1 if and only ifb = 0 can be replaced with another labellipwithout violating a properA + 1)-L(2, 1)-labeling; labels

orA+1andla-b| > 2, (i) Vol < n/A. Note that (i) implies that it is not required to solve the  in L, are compatible. The neck and head level§ akpresent the bounds bf-compatibility of

bipartite matching to obtai+-values. Also (ii) and Property 4 imply thit — Vo — Vi | = O(n/A) T. Thus, a trivial bound on neck and head levelsis-(1)/2.

(this can be obtained by pruning leaf vertices and regartfipgertices as new leaves). Since For the relationship between the ndudad levels and the tree size, we can show the following

it is not necessary to compute bipartite matchingsvfer V. U Vg, and this implies that the to- lemma, whose proof can be found in the technical report velRion

tal time to obtains-values for allv's is Y,y t(v) = O(ZVEV_VL_\,Q t(v)), which turned out to be Lemma2 LetT’ be a subtree of. If [V(T’)| < (A — 3 - 2h)"2 — 1 andA - 2h > 10, then the

0(A?S vev-v Vo d”(v)). SinceE\,d,_\,L_\,Q d’(v) = [V - VL - Vgl + Vgl - 1 = O(n/A), we obtain head level and neck level @f are both at most.

PIVEVEVERYS t(v) = O(A'®n). Since we have a linear time algorithmAf= Q(+/n) as mentioned By this lemma, we obtain the following theorem:

above, we can solve the problem inf®{®) time in total. Theorem3 For a tre€T, both the head and neck levelsTofire O(logV(T)|/ logA).

— ) 3.2 Flow-based Computation ofs
3. Label Compatibility and Flow-based Computation ofs ) )
We are ready to explain the faster computatiof-ghlues. Recall thai((u, v), (a, b)) = 1 holds

As reviewed in Subsection 2.2, one of keys of diiceent computation of-values is reusing if there exists a matching @&(u, v, a, b) in which all C(v) vertices are just matched; which vertex
the matching structures. In this section, for a further speedup of the computatierahfes, we is matched to a vertex iX does not matter. From this fact, we can treat verticeX icorre-
introduce a new novel notion, which we call ‘label compatibility’, that enables to treat several sponding td_,, equally in computing, if T is neck- and headl,-compatible. The idea of the fast
labels equivalently under the computatiorsefalues. Then, the faster computationsefalues is computation ob-values is that, by bundling compatible vertices<iof G, we reduce the size of

4 © 2009 Information Processing Society of Japan



Vol.2009-AL-127 No.7
oooooooooo 2009/11/27

IPSJ SIG Technical Report

a graph (or a network) to compute the assignments of labels, which is no longer the maximunmemma.

matching; the maximum flow. Lemmaé &((u, V), (x, %)) can be computed in @&3(h(v))2d”(v) log? A) time, that is,t(v) =
The algorithm introduced in Subsection 2.2 compu@ieglues not by solving the maximum O(AZ3(h(v))? d”(v) log? A). o
matchings ofG(u,v, a,b) for all pairs ofa andb but by finding a maximum matchinly! of Combining this withz\,e\,_\,L_\,Q d”(v)=0(n/A) shown in Subsection 2.2, we can show the total
G(u,v, —,b) once and then searching-alternating paths. In the new flow-based computa- running time for the(2, 1)-labeling is Of(maxh(v)})2(A~*3log? A)). By applying Theorem 3,
tion, we adopt the same strategy; for a tfig@) whose head and neck levels are at s}, we have the following theorem:
we do not prepare a network for a specific pairb), say N(u,v, a, b), but a general network Theorem?7 For trees, the (2, 1)-labeling problem can be solved in O(rtiilog? n, AL°n})
N, v,—b) = ({st} UC(V) U Xny, E(v) U Ex U Es,cap), whereXny = (Lo — Lnw)) U {h(V)}, time. Furthermore, in = O(AP°Y°9%) it can be solved in Q1) time. o
E(V) = {((sw) | we C(v)}, Ex = {(c,t) | c € Xy}, Es = {(w,0) | w e C(v),Cc € Xy}, and Corollaryl For a vertexv in a treeT, we haveX ey tw) = O(TV)) if [T(V) =
cap(e) function is defined as followsYe € E(v), cape) = 1, fore = (w,c) € E;, cape) = 1 O(APOMIogA)), o
if 6((v,w),(b,c)) = 1, caple) = 0 otherwise, and foe = (c,t) € Ex, caple) = 1 if c # h(v), Only by directly applying Theorem 3 (actually Lemma 2), we obtain much faster running time
cape) = |Lny) — {b, b+ 1,b -1} if c = h(v). than the previous one. In the following section, we present a linear time algorithm, in which
For a maximum flowy : e —» R*, we defineX’ as{c € X, | cap((c,t)) — ¢((c,t)) > 1}. By Lemma 2 is used in a filerent way.

the flow integrality and arguments similarly to Properties 1 and 2, we can obtain the following . . )
4. Proof of Linear Running Time

properties:
Lemma4 If N(u,v,—,b) has no flow of sizel'(v), thens((u, v), (i, b)) = O for any label. o As mentioned in Subsection 2.2, one of keys for achieving the running til&* @)Y= O(n*7)
Lemma5 4&((u,v), (i,b)) = 1 if and only if vertexi can be reached byyaalternating path from is equationy. .y, d”(v) = O(n/A), whereV; is the set of vertices in whicbi-values should be
some vertex irX’ in N(u,v, —, b). O computed via the matching-based algorithm; since the computati®nalfies for eaclv is done
Here, ay-alternating path is defined as follows: Given a fiowa path inE; is calledy-alternating in O(A%5d”(v)) time, it takesy, ., O(A%%d” (v)) = O(A™*n) time in total. This equation is derived

if its edges alternately satisfyap(e) — ¢(e) > 1 andy(e) > 1. By these lemmas, we can obtain  from the fact that in leaf vertices we do not need to solve the matching to cofyvataes, and
6((u, v), (x, b))-values forb by solving the maximum flow ofV(u, v, —, b) once and then applying any vertex with height 1 has — 1 leaves as its children after the preprocessing operation.

a single graph search. In our new algorithm, we generalize this idea: By replacing leaf vertices with subtrees with size
The current fastest maximum flow algorithm runs in O(miH2, N3} mlog(n?/m) logU) = at leastA” in the above argument, we can obtaip.,, d”(v) = O(n/A%), and in total, the running
O(n?®mlognlogU) time, whereU, n andm are the maximum capacity of edges, the number of  time 3.y, O(A%°d”(v)) = O(n) is roughly achieved. Actually, this argument contains a cheating,
vertices and edges, respectiRlyThus the running time of calculatingf(u, v), (a, b)) for a pair because a subtree with size at masis not always connected to a major vertex, whereas a leaf
(a,b)is is, which is well utilized to obtair},., d”(v) = O(n/A). Also, whereas we can neglect leaves to
O((h(v) + d”(v))¥3(h(v)d” (v)) log(h(v) + d”(v)) log A) = O(AZ3(h(v)d” (v)) log? A), computes-values, we cannot neglect such subtrees. We resolve these problems by best utilizing
sinceh(v) < A andd”’(v) < A (recall thatd’(v) = |C(v) — V.|). By using a similar the properties of ne¢kead levels and the maximum flow techniques introduced in Section 3.
technique of updating matching structures introduced,irwe can obtains((u, v), (x, b)) in 4.1 Hficient Assignment of Labels for Computings
O(AZ3(h(v)d” (v)) log?® A) + O(h(v)d” (v)) = O(AZ3(h(v)d”(v)) log? A) time. Since the number of In this section, by compiling observations and techniques for assigning labels in the computa-

candidates fob is also bounded bk(v) from the necfhead level property, we have the following tion of 6((u, v), (x, *)) for v € V, given in Sections 2 and 3, we will design an algorithm to run

5 © 2009 Information Processing Society of Japan



gpooooooobogo
IPSJ SIG Technical Report

in linear time within the DP framework. Throughout this section, we assume that an input tree

T satisfies Properties 3 and 4. Below, we first partition the verteX¥ seto five types of subsets
defined later, and give a linear time algorithm for computing the valédfictions, specified for
each type.

We here start with defining such five types of sub%&{s = 1,...,5). Throughout this section,
for a treeT’, we may denot¢/(T’)| simply by|T’|. LetVy be the set of verticeg € V such that
T(v) is a “maximal” subtree of with [T(v)| < AS; i.e., for the parent of v, |T(u)] > AS. Divide
Vi into two setsVy := (v e Vi | [TV = (A - 19)} andV? := (v e Viy | IT(V)] < (A - 19))
(notice thatv, € quMV(T(v))) Defined(v) := IC(V) — V& (= d'(v) - IC(v) n VZ)). Let

Vioi= Uy, V(T(V),

V, = {(veV-Vi|dv) =2},

Vi = {veV-Vi|dv)=1CV)n V2 -v)=0)

Vi = (veV—(ViUVs)|dV) =1, Zwecun@-v,) [TWI < A(A -~ 19)},
Vs VeV = (ViU V) [dW) = L 5 ecyno@-y,) T > AA - 19)).

Notice thatV = Vl UVaUVsUV4U Vs, andV; NV =
Here we describe an outline of the algorithm for computdit@, v), (x, *)), v € V, named

0 for eachl jwithi # j (see Figure 1).

Compute-6(V) (in Figure 2), which can be regarded as a subroutine of the DP framework. Be-
low, we show that for eacks;, 6((u, v), (x, %)), v € V; can be computed in linear time in total; i.e.,

O(Suey, t) =
Theorem8 For trees, thé (2, 1)-labeling problem can be solved in linear time.
We first show OF .y, t(v)) = O(V1|). For eachv € Vi, we have OF eyt tW)) = O(T(V))),
by Corollary 1 andT(v)] = O(A®). Hence, we have Qliev, V) = O vevy Zwevroy W) =
OQvevy [TMIN) = O(Va).

O(n). Namely, we have the following theorem.

The sketch of proofs fov,, Vs, V., andVs are given in the subsequent subsections, where some equality follows from|E(T")| = [V(T")| -

proofs of lemmas are omitted. S@dfor details.

4.2 Computation of §-value for V,

By Lemma 6, we can see thd,.,t(v) = O, A%*d'(VhZlog?A) = O(A%°log? A
Sev, d'(V) (note thah < A andd” (v) < d'(v). Now, we have' (v) < d(v)+A < Ad(v). It follows
that Yoy, t(v) = O(A2log? A 3\ey, d(v)). Below, in order to show thal,ey, t(v) = O(n), we
prove that ., d(v) = O(n/A%).

By definition, there is no vertex whose all children are vertice¥{#\ since if there is such

Vo0l.2009-AL-127 No.7
2009/11/27

Fig.2 Algorithm Compute-6(V)

1. /** Assume that the head and neck levelsidf/) are at mosh. **/

2: If ve V1 U Vs, then for eaclb € (Lo — L) U {h}, computes((u, v), (x, b)) by the max-flow computation in
the networkN(u, v, —, b) defined in Subsection 3.2.

3: If v € V3, execute the following procedure for easte Lo in the case o(v) N V. = 0, and for each
b € {0,A + 1} in the case o€(v) N V| # 0.
/** Let w* denote the unique child afnot in fol).**/

31 If [{c| 6((v, w*), (b, c)) = 1}| = 2, then lets((u, v), (x, b)) := 1.

32:  If {c| 8((v,w"), (b,c)) = 1} = {c*}, then lets((u, V), (c*, b)) := 0 ands((u, V), (a,b)) := 1 for all other
labelsa¢ {(b—1,b,b+ 1}.

33 If [{c| 6((v, w*), (b, c)) = 1}| = O, then lets((u, v), (+, b)) := 0.

4: If v e V4UVs, then similarly to the case efe V1 UV2, computes((u, v), (x, *)) by the max-flow computa-

tion in a network such a&/(u, v, —, b) specified for this case (details will be described in Subsection 4.3).

a vertexv, then for eaclw € C(v), we havelT(w)| < (A — 19) and hencdT (v)| < AS, which
contradicts the maximality of (w). It follows that in the tredl” obtained fromT by deleting all
vertices inV; — V{7, each leaf vertex belongs ¥}’ (note thatv(T”") = V) UV, U V3 UV, U Vs).
Hence,
VT -1=ET) =3 Sy dr (V)
= %(|V,(VP| + ZveVZUV3UV4uV5(d(V) +1)-1)
= 3(VidI + Suev, (A(V) + 1) + 2V + 2Val + 2Vs| - 1)
> 4V + 3IVal + Vsl + Vil + Vel - 3
(the last inequality follows fromi(v) > 2 forallveV,). Thus |V(1)| —1>|V,. Therefore, we
can observe thak,.,, d(v) = [E(T")| = IVl = Val = Vsl = IV + Vol = 1 < 2V - 2 (the first
equality follows fromE(T")| = uev,uvsovaovs G(V) = Ty, A(V) + V3] + V4] + V5| and the second
1= Vil + V| + Va] + Val + Vs -
V(| = O(n/A%) that 3.y, d(v) = O(n/A%).
4.3 Computation ofs-value for Vs, V4, and Vs
We sketch proofs fols, V4, andVs. Since Property 3 indicates that(w)|
w e Vy -V (resp.,zwec(v)ﬂ(vﬁ)_m [TwW)] > A(A - 19)), we havelVy = O(n/A) (resp.,
IVs| = O(n/A?)). By Property 4, we can observe thsls| = O(n/A). Hence, it sffices to show
that for eachy € V5 U V, (resp.,Vs), 6((u, v), (+, )) can be computed in @j (resp., OfA?)) time.

1). It follows by

> A for each

© 2009 Information Processing Society of Japan



gpooooooobogo
IPSJ SIG Technical Report

Fig.1 Partition ofVinto Vi’s (i = 1.

Now,

the head and neck levels ©fw) are at most 8 for each € V& 1)
by Lemma 2 andil (w)| < (A - 19)* (note that we assume that> 26, since otherwise the original
CK algorithm is already a linear time algorithm). Lwet be the unique child of in C(v) — V,(Vf).

First consider the case where= V; (i.e., Step 3 in algorithm @pute-6(v)). Letb be a label

suchthab € Loif ve V{? := {v e V3| C(v)NV, = 0}, andb € {0, A+1}if v e V) := V5-V{P. No-
tice thatifv € V{ (i.e., C(v)NV, # 0), then by Property 3;is major and henc&((u, v), (&, b)) = 1,
a € Lgindicates thab = 0 orb = A + 1. Observe that if there is a labek Lo —{b—-1,b,b + 1}
such that((v,w*), (b,c)) = 1, then for alla € Lo — {b— 1,b,b + 1, ¢}, we haves((u, V), (a, b)) = 1.

Vo0l.2009-AL-127 No.7
2009/11/27

andb € {0,A + 1} otherwise. Theng((u,Vv),(a, b)) = 1 if and only if there exists an injective
assignmeng : {w*} U Cy(b) — Lo —{a,b— 1,b, b+ 1} such that((v, w), (b, g(w))) = 1 for each
w e {w*} U Cy(b).

Below, we will show how to computé((u, v), (x, b)) in O(1) time for a fixedb, whereb € L if
C(v) n VL = 0 andb € {0,A + 1} otherwise. IflC,(b)| = 17, thens((u, V), (x, b)) = 0 because
in this case, there exists somee C,(b) to which no label inLy — Lg can be assigned since
ILo — Lg| = 16. Assume thaC,(b)| < 16. There are the following three possible cases: (Case-1)
S((v,w*), (b, c)) = 1 for at least two labels,, ¢; € Lg, (Case-25((v, w*), (b, ¢;)) = 1, for exactly
one labek; € Lg, and (Case-3) otherwise.

It is not difficult to see that this shows the correctness of the procedure in this case. Obviously, for (Case-1) By assumption, for amy 6((v, w*), (b,c)) = 1 for somec € Lg — {a}. By Lemma 9,

eachv € V3, we can check which case of 3-1, 3-2, or 3-3 in algorithom&e-6(v) holds, and
determine the values o{(u, v), (x, b)), in O(1) time. Therefore, the values &f(u, v), (x, *)) can
be determined in Q) time.

Next consider the case where V,. For a labeb, we divideC(v) N (V,f,zl) —V) into two subsets
Ci(b) := (w e C(v) N (V? = V) | 6((v,w),(b,c)) = Lforallc € Lg — {b—1,b,b+ 1}} and
Ca(b) := (we C(V) N (VP - V) | 6((v,w), (b,c)) = Oforallc e Lg— {b—1,b,b+1}}. Bythe
following property, we only have to consider the assignment$/fioy U C,(b).

Lemma9 Letve V,andaandb be labels withb —al > 2 such thab e Ly if C(V) NV, =0

we only have to check whether there exists an injective assigngne@i(b) —» Lo — Lg — {a,b —
1,b,b + 1} such thats((v,w), (b,g(w))) = 1 for eachw € C,(b). According to Subsection 3.2,
this can be done by utilizing the maximum flow computation on the subgképsf N (u,v, —, b)
induced by{s, t} U C,(b) U X" whereX’ ={0,1,...,7,A-6,A-5,...,A+1}. Obviously, the size
of N’ is O(1) and it follows that its time complexity is O(1).

(Case-2) For ala # ¢, the value ob((u, v), (a, b)) can be computed similarly to Case-1. Con-
sider the case wherg = ¢;. In this case, if5((v,w*), (b,c)) = 1 holds, then it turns out that
c € Lo — Lg. Hence, by Lemma 9, it lices to check whether there exists an injective assign-

© 2009 Information Processing Society of Japan



gpooooooobogo
IPSJ SIG Technical Report

mentg : (W'} U Cy(b) — Lo — Lg — {b - 1,b,b + 1} such thats((v,w), (b,g(w))) = 1 for each
w e {W*} U Cy(b). Similarly to Case-1, this can be done in O(1) time, by utilizing the subgraph
N of N(u,v, —, b) induced by{s, t} U (C(b) U {w*}) U X".

(Case-3) By assumption, é{(v, w*), (b, ¢)) = 1 holds, then it turns out thate Lo — Lg. Simi-
larly to the case o0& = ¢, in Case-2, by usingv”’, we can compute the valuesé&fu, v), (x, b)) in
O(1) time.

We analyze the time complexity for computiig{u, v), (x, *)). It is dominated by that for com-
puting C;(b), Cx(b), andd((u, v), (x, b)) for eachb € L,. By (1), we haveCi(b) = C;(b’) for all
b,y € Lg andi = 1, 2. It follows that the computation @, (b) andC,(b), b € L, can be done in
O(C(v) n (V,(j) —W))) time. On the other hand, the valuessfu, v), (x, b)) can be computed in
constant time in each case of Cases-1, 2 and 3 for affix@tus,s((u, v), (x, *)) can be computed
in O(A) time.

Finally, we consider the case where Vs. We will prove that the values &f((u, v), (x, b)) can
be computed in QX) time for a fixedb. A key is that the childrenv € C(v) N Vﬁ) of v can be
classified into ¥ (= O(1)) types, depending on issvalues §((v, W), (b,1)) | i € (Lo — Lg) U {Cs})
wherecg is some label ing — {b— 1,b, b + 1}, since by (1)5((v, w), (b, c)) = §((v, w), (b, &)) for
anyc € Lg —{b—1,b,b+1}. Then, we can construct @(d’'(v)) time a networkN’(u, v, a, b)
with O(1) vertices, O(1) edges, and &) (units of capacity from(u, v, a, b) by letting X, := Xg
and replacingC(v) with a set of 27 vertices corresponding to types of vertice€igv) N Vﬁj), and
compute in O(log\) time the values o((u, v), (a, b)) by applying the maximum flow techniques
to N’(u, v, a, b) (seé? for the details aboutv’(u, v, a, b)). Furthermore, by the following lemma,
we can see thai{(u, v), (x, b)) can be obtained by checkimg(u, v), (a, b)) for O(1) candidates of
a; 6((u, v), (+, b)) can be obtained in @( time.

LemmalO If 6((u,v), (a1, b)) # 8((u,Vv), (az, b)) for someay,a, € Lg — {b - 1,bb+ 1}
(say,d6((u,v), (a1, b)) = 1), then we have((v,w*), (b,az)) = 1 ands((v, w*), (b,a)) = 0 for all
aelg—{ayb-1b,b+ 1}, and moreover((u,v), (a b)) = 1 forallae Lg — {a,,b—1,b, b+ 1}.

o o O 0O

1) H.L.Bodlaender, T.Kloks, R.B.Tan and J.van Leeuwen. Approximationg-taoring of
graphsThe Computer Journa?7, 193—-204 (2004).
2) T.Calamoneri. The (h,k)-labelling problem: A survey and annotated bibliographge

Vo0l.2009-AL-127 No.7
2009/11/27

Computer Journak9, 585-608 (2006).hittp://www.dsi.uniromal.it/" calamo/PDF
-FILES/survey.pdf, ver. Jan. 13, 2009.)

3) G.J.Chang, W.-T. Ke, D.Kuo, D.D.-F.Liu and R.K.Yeh. O, 1)-labeling of graph®iscr.
Math.220, 57-66 (2000).

4) G.J.Chang and D.Kuo. Thg2, 1)-labeling problem on graph&IAM J. Discr. Math9,
309-316 (1996).

5) J.Fiala, P.A.Golovach and J.Krato¢hDistance constrained labelings of graphs of bounded
treewidth.Proc. 32th ICALR 360-372 (2005).

6) J.Fiala, P.A.Golovach and J.Kratodh\Distance constrained labelings of tresoc. 5th
TAMC, 125-135 (2008).

7) J.Fiala, P.A.Golovach and J.KratoéhvComputational complexity of the distance con-
strained labeling problem for tree®toc. 35th ICALR Part I, 294—-305 (2008).

8) J.Fiala, T.Kloks and J.KratochvFixed-parameter complexity of-labelings.Discr. Appl.
Math.113, 59-72 (2001).

9) A.V.Goldberg and S.Rao. Beyond the flow decomposition bai&kCM45, pp. 783-797
(1998).

10) J.R.Griggs and R.K.Yeh. Labelling graphs with a condition at distan&AM J. Disc.
Math.5, 586-595 (1992).

11) T.Hasunuma, T.Ishii, H.Ono and Y.Uno. Anr®(®) algorithm forL(2, 1)-labeling of trees.
Proc. 11th SWAT185-197 (2008). (Journal version to appeaiTheoretical Comp. Sgi.
doi:10.1016/j.tcs.2009.04.025.)

12) T.Hasunuma, T.Ishii, H.Ono and Y.Uno. A linear time algorithm [f¢2, 1)-labeling of
trees. CoRR af8810.0906: (2008).

13) F.Havet, B.Reed and J.-S.Serdr{R, 1)-labelling of graphsProc. 19th SIAM-SODA621—
630 (2008).

14) J.E.Hopcroft, R.M.Karp. Am®? algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput2, 225-231 (1973).

15) J.Kratochil, D.Kratsch and M. Liedlé. Exact algorithms foiL(2, 1)-labeling of graphs.
Proc. 32nd MFCS513-524 (2007).

16) W.-F.Wang. The.(2, 1)-labelling of treesDiscr. Appl. Math.154, 598-603 (2006).

17) R.K.Yeh. A survey on labeling graphs with a condition at distance Biscr. Math. 306,
1217-1231 (2006).

© 2009 Information Processing Society of Japan



