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木の L(2,1)-ラベリングに対する線形時間アルゴリズム

蓮 沼 　 徹†1 石 井 　 利 昌†2

小 野 　 廣 隆†4 宇 野 　 裕 之†3

グラフの k-L(2,1)-ラベリングとは，頂点への 0から kまでの整数値の割り当てで
あり，隣接頂点間では少なくとも 2，距離 2の頂点間では少なくとも 1の差があるも
ののことを言う．L(2,1)-ラベリング問題とは，グラフに対する k-L(2,1)ラベリングの
中で最小の kを求めるものである．この問題は，木幅が 2のグラフに対してでも NP
困難であることが知られている．一方，多項式時間アルゴリズムは，路や閉路，木と
いった限られたクラスにしか知られておらず，木に対するアルゴリズムの計算量も 10
年以上 O(∆4.5n)時間であった（ただし，∆はグラフの最大次数，nは木の頂点数）．こ
の計算量は最近になって O(min{n1.75,∆1.5n}) 時間へと改善されたが，線形時間で解け
るかどうかは未解決であった．本論文では，これを解決する木の L(2,1)-ラベリングに
対する線形時間アルゴリズムを提案する．

A linear time algorithm for L(2,1)-labeling of trees

Toru Hasunuma ,†1 Toshimasa Ishii ,†2 Hirotaka Ono †4

and Yushi Uno†3

An L(2,1)-labeling of a graphG is an assignmentf from the vertex setV(G) to the set of
nonnegative integers such that| f (x)− f (y)| ≥ 2 if x andy are adjacent and| f (x)− f (y)| ≥ 1 if
x andy are at distance 2, for allx andy in V(G). A k-L(2,1)-labeling is anL(2,1)-labeling
f : V(G) → {0, . . . , k}, and theL(2,1)-labeling problem asks the minimumk, which we
denote byλ(G), among all possible assignments. It is known that this problem is NP-hard
even for graphs of treewidth 2, and tree is one of very few classes for which the problem
is polynomially solvable. The running time of the best known algorithm for trees had been
O(∆4.5n) for more than a decade, and an O(min{n1.75,∆1.5n})-time algorithm has appeared
recently, where∆ is the maximum degree ofT andn = |V(T)|, however, it has been open if
it is solvable in linear time. In this paper, we finally settle this problem forL(2,1)-labeling
of trees by establishing a linear time algorithm.

1. Introduction

Let G be an undirected graph. AnL(2,1)-labeling of a graphG is an assignmentf from the

vertex setV(G) to the set of nonnegative integers such that| f (x)− f (y)| ≥ 2 if x andy are adjacent

and | f (x) − f (y)| ≥ 1 if x andy are at distance 2, for allx andy in V(G). A k-L(2,1)-labeling is

an L(2,1)-labeling f : V(G) → {0, . . . , k}, and theL(2, 1)-labeling problemasks the minimumk

among all possible assignments. We call this invariant, the minimum valuek, theL(2, 1)-labeling

numberand is denoted byλ(G). Notice that we can usek+ 1 different labels whenλ(G) = k since

we can use 0 as a label for conventional reasons.

The original notion ofL(2, 1)-labeling can be seen in the context of frequency assignment,

where ‘close’ transmitters must receive different frequencies and ‘very close’ transmitters must

receive frequencies that are at least two frequencies apart so that they can avoid interference. Due

to its practical importance, theL(2, 1)-labeling problem has been widely studied. From the graph

theoretical point of view, since this is a kind of vertex coloring problem, it has attracted a lot

of interest4),10),13),16). In this context,L(2,1)-labeling is generalized intoL(p, q)-labeling for arbi-

trary nonnegative integersp andq, and in fact, we can see thatL(1,0)-labeling (L(p, 0)-labeling,

actually) is equivalent to the classical vertex coloring. We can find a lot of related results on

L(p,q)-labelings in comprehensive surveys by Calamoneri2) and by Yeh17).

Related Work: There are also a number of studies on theL(2, 1)-labeling problem from the algo-

rithmic point of view1),8),15). It is known to be NP-hard for general graphs10), and it still remains

NP-hard for some restricted classes of graphs, such as planar graphs, bipartite graphs, chordal

graphs1), and it turned out to be NP-hard even for graphs of treewidth 25). In contrast, only a

few graph classes are known to have polynomial time algorithms for this problem, e.g., we can

determine theL(2, 1)-labeling number of paths, cycles, wheels within polynomial time10).
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As for trees, Griggs and Yeh10) showed thatλ(T) is either∆ + 1 or ∆ + 2 for any treeT, and

also conjectured that determiningλ(T) is NP-hard, however, Chang and Kuo4) disproved this by

presenting a polynomial time algorithm for computingλ(T). Their algorithm exploits the fact that

λ(T) is either∆ + 1 or ∆ + 2 for any treeT. Its running time is O(∆4.5n), where∆ is the max-

imum degree of a treeT andn = |V(T)|. This result has a great importance because it initiates

to cultivate polynomially solvable classes of graphs for theL(2,1)-labeling problem and related

problems. For example, Fiala et al. showed thatL(2,1)-labeling oft-almost trees can be solved

in O(λ2t+4.5n) time for λ given as an input, where at-almost tree is a graph that can be a tree by

eliminatingt edges8). Also, it was shown that theL(p, 1)-labeling problem for trees can be solved

in O((p+ ∆)5.5n) = O(λ5.5n) time3). Both results are based on Chang and Kuo’s algorithm, which

is called as a subroutine in the algorithms. Moreover, the polynomially solvable result for trees

holds for more general settings. The notion ofL(p, 1)-labeling is generalized asH(p, 1)-labeling,

in which graphH defines the metric space of distances between two labels, whereas labels in

L(p, 1)-labeling (that is, inL(p, q)-labeling) take nonnegative integers; i.e., it is a special case that

H is a path graph. In6), it has been shown that theH(p,1)-labeling problem of trees for arbitrary

graphH can be solved in polynomial time, which is also based on Chang and Kuo’s idea. In

passing, these results are unfortunately not applicable forL(p, q)-labeling problems for generalp

andq. Recently, Fiala et al.7) showed that theL(p,q)-labeling problem for trees is NP-hard ifq is

not a divisor ofp, which is contrasting to the positive results mentioned above.

As for L(2, 1)-labeling of trees again, Chang and Kuo’s O(∆4.5n) algorithm is the first poly-

nomial time one. It is based on dynamic programming (DP) approach, and it checks whether

(∆ + 1)-L(2,1)-labeling is possible or not from leaf vertices to a root vertex in the original tree

structure. The principle of optimality requires to solve at each vertex of the tree the assignments of

labels to subtrees, and the assignments are formulated as the maximum matching in a certain bi-

partite graph. Recently, an O(min{n1.75,∆1.5n}) time algorithm has been proposed11). It is based on

the similar DP framework to Chang and Kuo’s algorithm, but achieves its efficiency by reducing

heavy computation of bipartite matching in Chang and Kuo’s and by using an amortized analysis.

We give a concise review of these two algorithms in Subsection 2.2.

Our Contributions: Although there have been a few polynomial time algorithms forL(2, 1)-

labeling of trees, it has been open if it can be improved to linear time2). In this paper, we present a

linear time algorithm forL(2, 1)-labeling of trees, which finally settles this problem. It is based on

the similar DP approach to the preceding two polynomial time algorithms4),11). In our new algo-

rithm, besides using their ideas, we introduce the notion of “label compatibility”, which indicates

how we flexibly change labels with preserving its (∆ + 1)-L(2, 1)-labeling. Interestingly, we can

show that only O(log∆ n) labels are essential forL(2, 1)-labeling in any input tree by using this

notion. By utilizing this fact, we can replace the bipartite matching of graphs with the maximum

flow of much smaller networks as an engine to find the assignments. Consequently, our algorithm

finally achieves its linear running time.

Organization of this Paper: The rest of this paper is organized as follows. Section 2 gives basic

definitions and introduces as a warm-up the ideas of Chang and Kuo’s O(∆4.5n) time algorithm

and its improvement into O(n1.75) time. Section 3 introduces the crucial notion of label compati-

bility that can bundle a set of compatible vertices and reduce the size of the graph constructed for

computing bipartite matchings. Moreover, this allows to use maximum-flow based computation

for them. In Section 4, we give precise analyses to achieve linear running time. Some parts of

the detailed analyses are omitted due to space limitation. Interested readers can find them in the

technical report version of this paper12).

2. Preliminaries

2.1 Definitions and Notations

A graph G is an ordered pair of its vertex setV(G) and edge setE(G) and is denoted by

G = (V(G),E(G)). We assume throughout this paper that all graphs are undirected, simple and

connected, unless otherwise stated. Therefore, an edgee ∈ E(G) is an unordered pair of vertices

u andv, which areend verticesof e, and we often denote it bye= (u, v). Two verticesu andv are

adjacentif (u, v) ∈ E(G). A graphG = (V(G),E(G)) is calledbipartite if the vertex setV(G) can

be divided into two disjoint setsV1 andV2 such that every edge inE(G) connects a vertex inV1

and one inV2; suchG is denoted by (V1,V2,E).

For a graphG, the (open) neighborhoodof a vertexv ∈ V(G) is the setNG(v) = {u ∈ V(G) |
(u, v) ∈ E(G)}, and theclosed neighborhoodof v is the setNG[v] = NG(v) ∪ {v}. Thedegreeof

a vertexv is |NG(v)|, and is denoted bydG(v). We use∆(G) to denote the maximum degree of a

graphG. A vertex whose degree is∆(G) is calledmajor. We often dropG in these notations if
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there are no confusions. A vertex whose degree is 1 is called aleaf vertex, or simply aleaf.

When we describe algorithms, it is convenient to regard the input tree to be rooted at a leaf ver-

tex r. Then we can define the parent-child relationship on vertices in the usual way. For a rooted

tree, itsheightis the length of the longest path from the root to a leaf. For any vertexv, the set of

its children is denoted byC(v). For a vertexv, defined′(v) = |C(v)|.
2.2 Chang and Kuo’s Algorithm and its Improvement

Before explaining algorithms, we give some significant properties onL(2,1)-labeling of graphs

or trees that have been used so far for designingL(2, 1)-labeling algorithms. We can see that

λ(G) ≥ ∆ + 1 holds for any graphG. Griggs and Yeh10) observed that any major vertex inG must

be labeled 0 or∆ + 1 whenλ(G) = ∆ + 1, and that ifλ(G) = ∆ + 1, thenNG[v] contains at most

two major vertices for anyv ∈ V(G). Furthermore, they showed thatλ(T) is either∆ + 1 or∆ + 2

for any treeT. By using this fact, Chang and Kuo4) presented an O(∆4.5n) time algorithm for

computingλ(T).

Chang and Kuo’s Algorithm Now, we first review the idea of Chang and Kuo’s dynamic pro-

gramming algorithm (CK algorithm) for theL(2, 1)-labeling problem of trees, since our linear

time algorithm also depends on the same formula of the principle of optimality. The algorithm

determines ifλ(T) = ∆ + 1, and if so, we can easily construct the labeling withλ(T) = ∆ + 1.

To describe the idea, we introduce some notations. We assume for explanation thatT is rooted

at some leaf vertexr. Given a vertexv, we denote the subtree ofT rooted atv by T(v). Let T(u, v)

be a tree rooted atu that formsT(u, v) = ({u} ∪V(T(v)), {(u, v)} ∪ E(T(v))). Note that thisu is just

a virtual vertex for explanation andT(u, v) is uniquely determined byT(v). ForT(u, v), we define

δ((u, v), (a, b)) =

 1, if λ(T(u, v) | f (u) = a, f (v) = b) ≤ ∆ + 1,

0, otherwise,

whereλ(T(u, v) | f (u) = a, f (v) = b) denotes theL(2, 1)-labeling number onT(u, v) under the con-

dition that f (u) = a and f (v) = b, i.e., the minimumk of k-L(2, 1)-labelings onT(u, v) satisfying

f (u) = a and f (v) = b. Thisδ function satisfies the following formula:

δ((u, v), (a, b))=


1, if there is an injective assignmentg: C(v)→ {0, 1, . . . ,∆+1}−{a,

b− 1,b,b+ 1} such thatδ((v,w), (b,g(w)) = 1 for eachw ∈ C(v),

0, otherwise.

The existence of such an injective assignmentg is formalized as the maximum matching problem:

For a bipartite graphG(u, v, a, b) = (C(v),X,E(u, v, a, b)), whereX = {0, 1, . . . ,∆,∆ + 1} and

E(u, v, a, b) = {(w, c) | δ((v,w), (b, c)) = 1, c ∈ X− {a},w ∈ C(v)}, we can see that there is an injec-

tive assignmentg: C(v) → {0, 1, . . . ,∆ + 1} − {a,b− 1, b, b+ 1} if there exists a matching of size

d′(v) in G(u, v, a, b). Namely, forT(u, v) and two labelsa andb, we can easily (i.e., in polynomial

time) determine the value ofδ((u, v), (a, b)) if the values ofδ function forT(v,w),w ∈ C(v) and

any two pairs of labels are given. Now lett(v) be the time for calculatingδ((u, v), (∗, ∗)) for vertex

v. CK algorithm solves the bipartite matching problems of O(∆) vertices and O(∆2) edges O(∆2)

times for eachv, in order to obtainδ-values for all combinations of labelsa andb. This amounts

t(v) = O(∆2.5) × O(∆2) = O(∆4.5), where the first O(∆2.5) is the time complexity of the bipartite

matching problem14). Thus the total running time is
∑

v∈V t(v) = O(∆4.5n).

An O(n1.75)-time Algorithm Next, we review the O(n1.75)-time algorithm proposed in11). The

running time O(n1.75) is roughly achieved by two strategies. One is that the problem can be solved

by a simple linear time algorithm if∆ = Ω(
√

n), and the other is that it can be solved in O(∆1.5n)

time for any input tree.

The first idea of the speedup is that for computingδ((u, v), (∗, b)), the algorithm does not

solve the bipartite matching problems every time from scratch, but reuse the obtained match-

ing structure. More precisely, the bipartite matching problem is solved forG(u, v,−,b) =

(C(v),X,E(u, v,−, b)) instead ofG(u, v,a,b) for a specifica, where E(u, v,−, b) = {(w, c) |
δ((v,w), (b, c)) = 1, c ∈ X,w ∈ C(v)}. A maximum matching ofG(u, v,−,b) is observed to satisfy

the following properties:

Property1 If G(u, v,−, b) has no matching of sized′(v), thenδ((u, v), (i, b)) = 0 for any label

i. �

Property2 δ((u, v), (i, b)) = 1 if and only if vertexi can be reached by anM-alternating path

from some vertex inX unmatched byM in G(u, v,−,b), whereM denotes a maximum matching

of G(u, v,−, b) (of sized′(v)). �
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From these properties,δ((u, v), (∗,b)) can be computed by a single bipartite matching and a sin-

gle graph search, and its total running time is O(∆1.5d′(v))+O(∆d′(v)) = O(∆1.5d′(v)) (for solving

the bipartite matching ofG(u, v,−, b), which has O(∆) vertices and O(∆d′(v)) edges, and for a

single graph search). Since this calculation is done for allb, we havet(v) = O(∆2.5d′(v)).

The other technique of the speedup introduced in11) is based on preprocessing operations for

amortized analysis. By some preprocessing operations, the shape of input trees can be restricted

while preservingL(2,1)-labeling number, and the input trees can be assumed to satisfy the fol-

lowing two properties.

Property3 All vertices connected to a leaf vertex are major vertices. �

Property4 The size of any path component ofT is at most 3. �

Here, a sequence of verticesv1, v2, . . . , vℓ is called apath componentif (vi , vi+1) ∈ E for all

i = 1, 2, . . . , ℓ−1 andd(vi) = 2 for all i = 1, 2, . . . , ℓ, andℓ is called thesizeof the path component.

Furthermore, this preprocessing operations enable the following amortized analysis. LetVL and

VQ be the set of leaf vertices and the set of major vertices whose children are all leaf vertices,

respectively. Also, letd′′(v) = |C(v) − VL| for v ∈ V. (Note thatd′′(v) = 0 for v ∈ VL ∪ VQ.)

By Property 3, if we go down the resulting tree from a root, then we reach a major vertex in

VQ. Then, the following facts are observed: (i) forv ∈ VQ δ((u, v), (a,b)) = 1 if and only if b = 0

or ∆ + 1 and|a − b| ≥ 2, (ii) |VQ| ≤ n/∆. Note that (i) implies that it is not required to solve the

bipartite matching to obtainδ-values. Also (ii) and Property 4 imply that|V − VQ − VL| = O(n/∆)

(this can be obtained by pruning leaf vertices and regardingVQ vertices as new leaves). Since

it is not necessary to compute bipartite matchings forv ∈ VL ∪ VQ, and this implies that the to-

tal time to obtainδ-values for allv’s is
∑

v∈V t(v) = O(
∑

v∈V−VL−VQ
t(v)), which turned out to be

O(∆2.5∑
v∈V−VL−VQ

d′′(v)). Since
∑

v∈V−VL−VQ
d′′(v) = |V −VL −VQ|+ |VQ| − 1 = O(n/∆), we obtain∑

v∈V−VL−VQ
t(v) = O(∆1.5n). Since we have a linear time algorithm if∆ = Ω(

√
n) as mentioned

above, we can solve the problem in O(n1.75) time in total.

3. Label Compatibility and Flow-based Computation ofδ

As reviewed in Subsection 2.2, one of keys of an efficient computation ofδ-values is reusing

the matching structures. In this section, for a further speedup of the computation ofδ-values, we

introduce a new novel notion, which we call ‘label compatibility’, that enables to treat several

labels equivalently under the computation ofδ-values. Then, the faster computation ofδ-values is

achieved on a maximum flow algorithm instead of a maximum matching algorithm. Seemingly,

this sounds a bit strange, because the time complexity of the maximum flow problem is larger than

the one of the bipartite matching problem. The trick is that the new flow-based computation uses a

smaller network (graph) by this notion than the graphG(u, v,−,b) used in the bipartite matching.

3.1 Label Compatibility and Neck/Head Levels

Let Lh = {h, h + 1, . . . ,∆ − h,∆ − h + 1}. Let T be a tree rooted atv, and u < V(T).

We say thatT is head-Lh-compatibleif δ((u, v), (a, b)) = δ((u, v), (a′, b)) for all a,a′ ∈ Lh and

b ∈ L0 with |a − b| ≥ 2 and|a′ − b| ≥ 2. Analogously, we say thatT is neck-Lh-compatible if

δ((u, v), (a, b)) = δ((u, v), (a, b′)) for all a ∈ L0 andb,b′ ∈ Lh with |a− b| ≥ 2 and|a− b′| ≥ 2. The

neck and head levels ofT are defined as follows:

Definition1 Let T be a tree rooted atv, andu < V(T).

(i) The neck level (resp., head level) ofT is 0 if T is neck-L0-compatible (resp., head-L0-

compatible). (ii) The neck level (resp., head level) ofT is h (≥ 1) if T is not neck-Lh−1-compatible

(resp., head-Lh−1-compatible) but neck-Lh-compatible (resp., head-Lh-compatible).

An intuitive explanation of neck-Lh-compatibility (resp., head-Lh-compatibility) ofT is that if for

T(u, v), a label inLh is assigned tov (resp.,u) under (∆ + 1)-L(2,1)-labeling ofT(u, v), the label

can be replaced with another label inLh without violating a proper (∆+ 1)-L(2, 1)-labeling; labels

in Lh are compatible. The neck and head levels ofT represent the bounds ofLh-compatibility of

T. Thus, a trivial bound on neck and head levels is (∆ + 1)/2.

For the relationship between the neck/head levels and the tree size, we can show the following

lemma, whose proof can be found in the technical report version12):

Lemma2 Let T′ be a subtree ofT. If |V(T′)| ≤ (∆ − 3− 2h)h/2 − 1 and∆ − 2h ≥ 10, then the

head level and neck level ofT′ are both at mosth.

By this lemma, we obtain the following theorem:

Theorem3 For a treeT, both the head and neck levels ofT are O(log|V(T)|/ log∆).

3.2 Flow-based Computation ofδ

We are ready to explain the faster computation ofδ-values. Recall thatδ((u, v), (a, b)) = 1 holds

if there exists a matching ofG(u, v,a,b) in which allC(v) vertices are just matched; which vertex

is matched to a vertex inX does not matter. From this fact, we can treat vertices inX corre-

sponding toLh equally in computingδ, if T is neck- and head-Lh-compatible. The idea of the fast

computation ofδ-values is that, by bundling compatible vertices inX of G, we reduce the size of
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a graph (or a network) to compute the assignments of labels, which is no longer the maximum

matching; the maximum flow.

The algorithm introduced in Subsection 2.2 computesδ-values not by solving the maximum

matchings ofG(u, v, a, b) for all pairs of a and b but by finding a maximum matchingM of

G(u, v,−, b) once and then searchingM-alternating paths. In the new flow-based computa-

tion, we adopt the same strategy; for a treeT(v) whose head and neck levels are at mosth(v),

we do not prepare a network for a specific pair (a, b), sayN(u, v, a, b), but a general network

N(u, v,−, b) = ({s, t} ∪ C(v) ∪ Xh(v),E(v) ∪ EX ∪ Eδ, cap), whereXh(v) = (L0 − Lh(v)) ∪ {h(v)},
E(v) = {(s,w) | w ∈ C(v)}, EX = {(c, t) | c ∈ Xh(v)}, Eδ = {(w, c) | w ∈ C(v), c ∈ Xh(v)}, and

cap(e) function is defined as follows:∀e ∈ E(v), cap(e) = 1, for e = (w, c) ∈ Eδ, cap(e) = 1

if δ((v,w), (b, c)) = 1, cap(e) = 0 otherwise, and fore = (c, t) ∈ EX, cap(e) = 1 if c , h(v),

cap(e) = |Lh(v) − {b,b+ 1,b− 1}| if c = h(v).

For a maximum flowψ : e → R+, we defineX′ as{c ∈ Xh | cap((c, t)) − ψ((c, t)) ≥ 1}. By

the flow integrality and arguments similarly to Properties 1 and 2, we can obtain the following

properties:

Lemma4 If N(u, v,−, b) has no flow of sized′(v), thenδ((u, v), (i, b)) = 0 for any labeli. �

Lemma5 δ((u, v), (i,b)) = 1 if and only if vertexi can be reached by aψ-alternating path from

some vertex inX′ in N(u, v,−, b). �

Here, aψ-alternating path is defined as follows: Given a flowψ, a path inEδ is calledψ-alternating

if its edges alternately satisfycap(e) − ψ(e) ≥ 1 andψ(e) ≥ 1. By these lemmas, we can obtain

δ((u, v), (∗, b))-values forb by solving the maximum flow ofN(u, v,−, b) once and then applying

a single graph search.

The current fastest maximum flow algorithm runs in O(min{m1/2, n2/3} mlog(n2/m) logU) =

O(n2/3mlogn logU) time, whereU, n andm are the maximum capacity of edges, the number of

vertices and edges, respectively9). Thus the running time of calculatingδ((u, v), (a, b)) for a pair

(a, b) is

O((h(v) + d′′(v))2/3(h(v)d′′(v)) log(h(v) + d′′(v)) log∆) = O(∆2/3(h(v)d′′(v)) log2∆),

since h(v) ≤ ∆ and d′′(v) ≤ ∆ (recall that d′′(v) = |C(v) − VL|). By using a similar

technique of updating matching structures introduced in11), we can obtainδ((u, v), (∗,b)) in

O(∆2/3(h(v)d′′(v)) log2∆) + O(h(v)d′′(v)) = O(∆2/3(h(v)d′′(v)) log2∆) time. Since the number of

candidates forb is also bounded byh(v) from the neck/head level property, we have the following

lemma.

Lemma6 δ((u, v), (∗, ∗)) can be computed in O(∆2/3(h(v))2d′′(v) log2∆) time, that is,t(v) =

O(∆2/3(h(v))2 d′′(v) log2∆). �

Combining this with
∑

v∈V−VL−VQ
d′′(v)=O(n/∆) shown in Subsection 2.2, we can show the total

running time for theL(2, 1)-labeling is O(n(max{h(v)})2(∆−1/3 log2∆)). By applying Theorem 3,

we have the following theorem:

Theorem7 For trees, theL(2, 1)-labeling problem can be solved in O(min{n log2 n, ∆1.5n})
time. Furthermore, ifn = O(∆poly(log∆)), it can be solved in O(n) time. �

Corollary1 For a vertexv in a treeT, we have
∑

w∈V(T(v)) t(w) = O(|T(v)|) if |T(v)| =
O(∆poly(log∆)). �

Only by directly applying Theorem 3 (actually Lemma 2), we obtain much faster running time

than the previous one. In the following section, we present a linear time algorithm, in which

Lemma 2 is used in a different way.

4. Proof of Linear Running Time

As mentioned in Subsection 2.2, one of keys for achieving the running time O(∆1.5n) = O(n1.75)

is equation
∑

v∈Vδ d′′(v) = O(n/∆), whereVδ is the set of vertices in whichδ-values should be

computed via the matching-based algorithm; since the computation ofδ-values for eachv is done

in O(∆2.5d′′(v)) time, it takes
∑

v∈Vδ O(∆2.5d′′(v)) = O(∆1.5n) time in total. This equation is derived

from the fact that in leaf vertices we do not need to solve the matching to computeδ-values, and

any vertex with height 1 has∆ − 1 leaves as its children after the preprocessing operation.

In our new algorithm, we generalize this idea: By replacing leaf vertices with subtrees with size

at least∆4 in the above argument, we can obtain
∑

v∈Vδ d′′(v) = O(n/∆4), and in total, the running

time
∑

v∈Vδ O(∆2.5d′′(v)) = O(n) is roughly achieved. Actually, this argument contains a cheating,

because a subtree with size at most∆4 is not always connected to a major vertex, whereas a leaf

is, which is well utilized to obtain
∑

v∈Vδ d′′(v) = O(n/∆). Also, whereas we can neglect leaves to

computeδ-values, we cannot neglect such subtrees. We resolve these problems by best utilizing

the properties of neck/head levels and the maximum flow techniques introduced in Section 3.

4.1 Efficient Assignment of Labels for Computingδ

In this section, by compiling observations and techniques for assigning labels in the computa-

tion of δ((u, v), (∗, ∗)) for v ∈ V, given in Sections 2 and 3, we will design an algorithm to run
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in linear time within the DP framework. Throughout this section, we assume that an input tree

T satisfies Properties 3 and 4. Below, we first partition the vertex setV into five types of subsets

defined later, and give a linear time algorithm for computing the value ofδ functions, specified for

each type.

We here start with defining such five types of subsetsVi (i = 1, . . . , 5). Throughout this section,

for a treeT′, we may denote|V(T′)| simply by |T′|. Let VM be the set of verticesv ∈ V such that

T(v) is a “maximal” subtree ofT with |T(v)| ≤ ∆5; i.e., for the parentu of v, |T(u)| > ∆5. Divide

VM into two setsV(1)
M := {v ∈ VM | |T(v)| ≥ (∆ − 19)4} andV(2)

M := {v ∈ VM | |T(v)| < (∆ − 19)4}
(notice thatVL ⊆ ∪v∈VM V(T(v))). Defined̃(v) := |C(v) − V(2)

M | (= d′(v) − |C(v) ∩ V(2)
M |). Let

V1 := ∪v∈VM V(T(v)),

V2 := {v ∈ V − V1 | d̃(v) ≥ 2},
V3 := {v ∈ V − V1 | d̃(v) = 1,C(v) ∩ (V(2)

M − VL) = ∅},
V4 := {v ∈ V − (V1 ∪ V3) | d̃(v) = 1,

∑
w∈C(v)∩(V(2)

M −VL) |T(w)| ≤ ∆(∆ − 19)},
V5 := {v ∈ V − (V1 ∪ V3) | d̃(v) = 1,

∑
w∈C(v)∩(V(2)

M −VL) |T(w)| > ∆(∆ − 19)}.
Notice thatV = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, andVi ∩ V j = ∅ for eachi, j with i , j (see Figure 1).

Here we describe an outline of the algorithm for computingδ((u, v), (∗, ∗)), v ∈ V, named

Compute-δ(v) (in Figure 2), which can be regarded as a subroutine of the DP framework. Be-

low, we show that for eachVi , δ((u, v), (∗, ∗)), v ∈ Vi can be computed in linear time in total; i.e.,

O(
∑

v∈Vi
t(v)) = O(n). Namely, we have the following theorem.

Theorem8 For trees, theL(2, 1)-labeling problem can be solved in linear time.

We first show O(
∑

v∈V1
t(v)) = O(|V1|). For eachv ∈ VM, we have O(

∑
w∈V(T(v)) t(w)) = O(|T(v)|),

by Corollary 1 and|T(v)| = O(∆5). Hence, we have O(
∑

v∈V1
t(v)) = O(

∑
v∈VM

∑
w∈V(T(v)) t(w)) =

O(
∑

v∈VM
|T(v)|) = O(|V1|).

The sketch of proofs forV2, V3, V4 andV5 are given in the subsequent subsections, where some

proofs of lemmas are omitted. See12) for details.

4.2 Computation ofδ-value for V2

By Lemma 6, we can see that
∑

v∈V2
t(v) = O(

∑
v∈V2
∆2/3d′(v)h2 log2∆) = O(∆8/3 log2∆∑

v∈V2
d′(v)) (note thath ≤ ∆ andd′′(v) ≤ d′(v)). Now, we haved′(v) ≤ d̃(v)+∆ ≤ ∆d̃(v). It follows

that
∑

v∈V2
t(v) = O(∆11/3 log2∆

∑
v∈V2

d̃(v)). Below, in order to show that
∑

v∈V2
t(v) = O(n), we

prove that
∑

v∈V2
d̃(v) = O(n/∆4).

By definition, there is no vertex whose all children are vertices inV(2)
M , since if there is such

Fig.2 Algorithm Compute-δ(v)

1: /** Assume that the head and neck levels ofT(v) are at mosth. ** /
2: If v ∈ V1 ∪V2, then for eachb ∈ (L0 − Lh)∪ {h}, computeδ((u, v), (∗,b)) by the max-flow computation in

the networkN(u, v,−,b) defined in Subsection 3.2.
3: If v ∈ V3, execute the following procedure for eachb ∈ L0 in the case ofC(v) ∩ VL = ∅, and for each

b ∈ {0,∆ + 1} in the case ofC(v) ∩ VL , ∅.
/** Let w∗ denote the unique child ofv not inV(2)

M .** /
3-1: If |{c | δ((v,w∗), (b, c)) = 1}| ≥ 2, then letδ((u, v), (∗, b)) := 1.
3-2: If {c | δ((v,w∗), (b, c)) = 1} = {c∗}, then letδ((u, v), (c∗,b)) := 0 andδ((u, v), (a,b)) := 1 for all other

labelsa < {b− 1,b,b+ 1}.
3-3: If |{c | δ((v,w∗), (b, c)) = 1}| = 0, then letδ((u, v), (∗, b)) := 0.

4: If v ∈ V4∪V5, then similarly to the case ofv ∈ V1∪V2, computeδ((u, v), (∗, ∗)) by the max-flow computa-

tion in a network such asN(u, v,−,b) specified for this case (details will be described in Subsection 4.3).

a vertexv, then for eachw ∈ C(v), we have|T(w)| < (∆ − 19)4 and hence|T(v)| < ∆5, which

contradicts the maximality ofT(w). It follows that in the treeT′ obtained fromT by deleting all

vertices inV1 −V(1)
M , each leaf vertex belongs toV(1)

M (note thatV(T′) = V(1)
M ∪V2 ∪V3 ∪V4 ∪V5).

Hence,
|V(T′)| − 1 = |E(T′)| = 1

2

∑
v∈V(T′) dT′ (v)

= 1
2(|V(1)

M | +
∑

v∈V2∪V3∪V4∪V5
(d̃(v) + 1)− 1)

= 1
2(|V(1)

M | +
∑

v∈V2
(d̃(v) + 1)+ 2|V3| + 2|V4| + 2|V5| − 1)

≥ 1
2 |V

(1)
M | + 3

2 |V2| + |V3| + |V4| + |V5| − 1
2

(the last inequality follows from̃d(v) ≥ 2 for all v ∈ V2). Thus,|V(1)
M | − 1 ≥ |V2|. Therefore, we

can observe that
∑

v∈V2
d̃(v) = |E(T′)| − |V3| − |V4| − |V5| = |V(1)

M | + |V2| − 1 ≤ 2|V(1)
M | − 2 (the first

equality follows from|E(T′)| = ∑v∈V2∪V3∪V4∪V5
d̃(v) =

∑
v∈V2

d̃(v)+ |V3|+ |V4|+ |V5| and the second

equality follows from|E(T′)| = |V(T′)| − 1 = |V(1)
M | + |V2| + |V3| + |V4| + |V5| − 1). It follows by

|V(1)
M | = O(n/∆4) that

∑
v∈V2

d̃(v) = O(n/∆4).

4.3 Computation ofδ-value for V3, V4, and V5

We sketch proofs forV3, V4, andV5. Since Property 3 indicates that|T(w)| ≥ ∆ for each

w ∈ VM − VL (resp.,
∑

w∈C(v)∩(V(2)
M −VL) |T(w)| > ∆(∆ − 19)), we have|V4| = O(n/∆) (resp.,

|V5| = O(n/∆2)). By Property 4, we can observe that|V3| = O(n/∆). Hence, it suffices to show

that for eachv ∈ V3 ∪ V4 (resp.,V5), δ((u, v), (∗, ∗)) can be computed in O(∆) (resp., O(∆2)) time.
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V2

V(2)
M V(1)

M V(1)
M }

V1

V3

V3

V2

V4

V5

V4

∆

∆

V4

∆

Fig.1 Partition ofV into Vi ’s (i = 1, . . . , 5). Bold circles are leaves (VL) or pseudo-leaves (V(2)
M − VL) with their subtrees, while bold squares are vertices inV(1)

M with their subtrees.

Now,

the head and neck levels ofT(w) are at most 8 for eachw ∈ V(2)
M (1)

by Lemma 2 and|T(w)| < (∆−19)4 (note that we assume that∆ ≥ 26, since otherwise the original

CK algorithm is already a linear time algorithm). Letw∗ be the unique child ofv in C(v) − V(2)
M .

First consider the case wherev ∈ V3 (i.e., Step 3 in algorithm Compute-δ(v)). Let b be a label

such thatb ∈ L0 if v ∈ V(1)
3 := {v ∈ V3 |C(v)∩VL = ∅}, andb ∈ {0,∆+1} if v ∈ V(2)

3 := V3−V(1)
3 . No-

tice that ifv ∈ V(2)
3 (i.e.,C(v)∩VL , ∅), then by Property 3,v is major and henceδ((u, v), (a,b)) = 1,

a ∈ L0 indicates thatb = 0 or b = ∆ + 1. Observe that if there is a labelc ∈ L0 − {b− 1, b, b+ 1}
such thatδ((v,w∗), (b, c)) = 1, then for alla ∈ L0 − {b− 1, b,b+ 1, c}, we haveδ((u, v), (a,b)) = 1.

It is not difficult to see that this shows the correctness of the procedure in this case. Obviously, for

eachv ∈ V3, we can check which case of 3-1, 3-2, or 3-3 in algorithm Compute-δ(v) holds, and

determine the values ofδ((u, v), (∗, b)), in O(1) time. Therefore, the values ofδ((u, v), (∗, ∗)) can

be determined in O(∆) time.

Next consider the case wherev ∈ V4. For a labelb, we divideC(v)∩ (V(2)
M −VL) into two subsets

C1(b) := {w ∈ C(v) ∩ (V(2)
M − VL) | δ((v,w), (b, c)) = 1 for all c ∈ L8 − {b − 1,b,b + 1}} and

C2(b) := {w ∈ C(v) ∩ (V(2)
M − VL) | δ((v,w), (b, c)) = 0 for all c ∈ L8 − {b− 1,b,b + 1}}. By the

following property, we only have to consider the assignments for{w∗} ∪C2(b).

Lemma9 Let v ∈ V4 anda andb be labels with|b− a| ≥ 2 such thatb ∈ L0 if C(v) ∩ VL = ∅

andb ∈ {0,∆ + 1} otherwise. Then,δ((u, v), (a, b)) = 1 if and only if there exists an injective

assignmentg : {w∗} ∪ C2(b) → L0 − {a,b− 1, b, b+ 1} such thatδ((v,w), (b, g(w))) = 1 for each

w ∈ {w∗} ∪C2(b).

Below, we will show how to computeδ((u, v), (∗, b)) in O(1) time for a fixedb, whereb ∈ L0 if

C(v) ∩ VL = ∅ andb ∈ {0,∆ + 1} otherwise. If|C2(b)| ≥ 17, thenδ((u, v), (∗, b)) = 0 because

in this case, there exists somew ∈ C2(b) to which no label inL0 − L8 can be assigned since

|L0 − L8| = 16. Assume that|C2(b)| ≤ 16. There are the following three possible cases: (Case-1)

δ((v,w∗), (b, ci)) = 1 for at least two labelsc1, c2 ∈ L8, (Case-2)δ((v,w∗), (b, c1)) = 1, for exactly

one labelc1 ∈ L8, and (Case-3) otherwise.

(Case-1) By assumption, for anya, δ((v,w∗), (b, c)) = 1 for somec ∈ L8 − {a}. By Lemma 9,

we only have to check whether there exists an injective assignmentg : C2(b)→ L0 − L8 − {a, b−
1, b, b + 1} such thatδ((v,w), (b,g(w))) = 1 for eachw ∈ C2(b). According to Subsection 3.2,

this can be done by utilizing the maximum flow computation on the subgraphN ′ of N(u, v,−, b)

induced by{s, t} ∪C2(b)∪X′ whereX′ = {0, 1, . . . ,7, ∆− 6,∆− 5, . . . ,∆+ 1}. Obviously, the size

of N ′ is O(1) and it follows that its time complexity is O(1).

(Case-2) For alla , c1, the value ofδ((u, v), (a, b)) can be computed similarly to Case-1. Con-

sider the case wherea = c1. In this case, ifδ((v,w∗), (b, c)) = 1 holds, then it turns out that

c ∈ L0 − L8. Hence, by Lemma 9, it suffices to check whether there exists an injective assign-
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mentg : {w∗} ∪ C2(b) → L0 − L8 − {b − 1, b,b + 1} such thatδ((v,w), (b, g(w))) = 1 for each

w ∈ {w∗} ∪ C2(b). Similarly to Case-1, this can be done in O(1) time, by utilizing the subgraph

N ′′ of N(u, v,−, b) induced by{s, t} ∪ (C2(b) ∪ {w∗}) ∪ X′.

(Case-3) By assumption, ifδ((v,w∗), (b, c)) = 1 holds, then it turns out thatc ∈ L0 − L8. Simi-

larly to the case ofa = c1 in Case-2, by usingN ′′, we can compute the values ofδ((u, v), (∗, b)) in

O(1) time.

We analyze the time complexity for computingδ((u, v), (∗, ∗)). It is dominated by that for com-

putingC1(b), C2(b), andδ((u, v), (∗, b)) for eachb ∈ L0. By (1), we haveCi(b) = Ci(b′) for all

b,b′ ∈ L8 andi = 1, 2. It follows that the computation ofC1(b) andC2(b), b ∈ L0 can be done in

O(|C(v) ∩ (V(2)
M − VL)|) time. On the other hand, the values ofδ((u, v), (∗,b)) can be computed in

constant time in each case of Cases-1, 2 and 3 for a fixedb. Thus,δ((u, v), (∗, ∗)) can be computed

in O(∆) time.

Finally, we consider the case wherev ∈ V5. We will prove that the values ofδ((u, v), (∗, b)) can

be computed in O(∆) time for a fixedb. A key is that the childrenw ∈ C(v) ∩ V(2)
M of v can be

classified into 217 (= O(1)) types, depending on itsδ-values (δ((v,w), (b, i)) | i ∈ (L0 − L8) ∪ {c̃8})
wherec̃8 is some label inL8 − {b− 1,b, b+ 1}, since by (1),δ((v,w), (b, c)) = δ((v,w), (b, c̃8)) for

anyc ∈ L8 − {b − 1, b, b + 1}. Then, we can construct inO(d′(v)) time a networkN ′(u, v, a, b)

with O(1) vertices, O(1) edges, and O(∆) units of capacity fromN(u, v,a,b) by letting Xh := X8

and replacingC(v) with a set of 217 vertices corresponding to types of vertices inC(v) ∩ V(2)
M , and

compute in O(log∆) time the values ofδ((u, v), (a, b)) by applying the maximum flow techniques

toN ′(u, v, a, b) (see12) for the details aboutN ′(u, v, a,b)). Furthermore, by the following lemma,

we can see thatδ((u, v), (∗,b)) can be obtained by checkingδ((u, v), (a, b)) for O(1) candidates of

a; δ((u, v), (∗, b)) can be obtained in O(∆) time.

Lemma10 If δ((u, v), (a1,b)) , δ((u, v), (a2, b)) for somea1, a2 ∈ L8 − {b − 1, b, b + 1}
(say,δ((u, v), (a1, b)) = 1), then we haveδ((v,w∗), (b, a2)) = 1 andδ((v,w∗), (b,a)) = 0 for all

a ∈ L8 − {a2,b− 1, b, b+ 1}, and moreover,δ((u, v), (a, b)) = 1 for all a ∈ L8 − {a2,b− 1,b, b+ 1}.
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