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One-Way Quantum Finite Automata and Advice
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Tomoyuki Yamakami†1

Abstract: We show containments and separations among language families de-
fined by bounded-error one-way quantum finite automata whose computations
are further helped by various types of “advice.” Beside standard deterministic
advice, we also study randomized advice and quantum advice. The presence
of advice demands quite different approaches toward an analysis of the compu-
tational power of underlying one-way quantum finite automata. We discover
new machine-independent characterizations and develop new proof techniques,
which lead us to obtain the desired containments and separations.
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1. Background, Motivations, and Challenges

Considerable attentions have been paid to a computational model of quantum

finite automata, in hopes of achieving a much better understanding of quantum-

mechanical computations. The notion of quantum finite automata6),7) was con-

ceived as early as mid 1990s as a quantum-mechanical extension of probabilistic

finite automata with a coin-flipping mechanism of determining next moves. With

the current status of technology, prototypes of quantum computers are still lim-

ited in its operational ability. In case where the usage of memory space is severely

limited, quantum finite automata may be an appropriate model for memoryless

quantum computations. Simplicity of such a model has, since its introduction,

helped investigate the behavioral characteristics of quantum computations.

Of various types of quantum finite automata, we are focused on measure-many

one-way quantum finite automata (or 1qfa’s, in short), each of which scans each

tape cell by moving a tape head only in one direction (without stopping the tape
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head) and also performs a (projection) measurement, immediately after every

head move until it scans the right endmarker. It is crucial to allow 1qfa’s to err,

because otherwise quantum finite automata are merely as powerful as one-way

(deterministic) reversible finite automata (or 1rfa’s, in short).

During an early period of study, a number of intriguing features of quantum

finite automata have been revealed. As Kondacs and Watrous6) proved, for in-

stance, a certain regular language is recognized by no 1qfa’s with bounded-error

probability. By Brodsky and Pippenger2), no bounded-error 1qfa recognizes lan-

guages accepted by minimal finite automata that lack a so-called partial order

condition (see Section 5). Ambainis and Freivalds1) demonstrated that every

language recognized by 1qfa’s with success probability higher than 7/9 can be

recognized even by 1rfa’s. Moreover, quantum finite automata can be built more

state-efficiently than, e.g., deterministic finite automata are2). The model of

quantum finite automaton has been further applied to, for instance, interactive

proof systems8).

A notion of finite (state) automata equipped with supplemental information,

known as advice, has been studied in a wide range of the literature. A piece of

advice includes additional data, beside a standard input, which depends only on

the input size5). A series of recent studies3),10)–13) on one-way finite automata

have revealed delicate roles of advice. Such advised-computational models have

immediate connections to other fields, including one-way communication, random

access coding, and two-player zero-sum games. A central question concerning

advice is: how can we encode necessary information into a piece of advice before

a computation starts and how can we decode and utilize such information stored

inside the advice, as a computation proceeds step by step?

As a bold step, we shall examine the roles of advice, particularly given to

bounded-error 1qfa’s. An immediate advantage of taking such advice is the

elimination of endmarkers. Note that our underlying model of 1qfa’s require

every input string to be surrounded by two endmarkers, |c (left endmarker) and

$ (right endmarker), given on an input tape. Earlier, Brodsky and Pippenger2)

demonstrated that the left-endmarker can be eliminated without tampering the

machine’s computational power. By marking the last symbol of the input string

by a piece of advice, we can also eliminate the right endmarker.
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There are also numerous challenges on advice issues. The presence of advice

often makes an analysis of underlying computations quite difficult and thus de-

mands different kinds of proof techniques. For a quick example, a standard

pumping lemma—a typical proof technique showing the non-regularity of a given

language—is not quite serviceable to advised computations; therefore, we need

to develop other tools (e.g., a swapping lemma11)) for them. On a similar light,

advice makes 1qfa’s violate the aforementioned partial order condition criteria,

making a proof technique of Kondacs and Watrous6) inapplicable to a separa-

tion between regular languages and languages accepted by bounded-error advised

1qfa’s. These difficulties motivate us to seek different kinds of proof techniques

to show our desired separation result.

There is another type of advice studied for classical finite automata. Instead

of giving a single advice string, we can probabilistically generate many advice

strings and feed them to an underlying finite automaton at random so that they

can elevate their computational ability. Such advice is known as randomized ad-

vice. An extreme case study13) demonstrated that randomized advice provides

unbounded-error probabilistic one-way finite automata with the full language-

recognition power. Even one-way deterministic finite automata (1dfa’s, in short)

receive more benefits from randomized advice than deterministic advice13). A

natural question that must arise is: can randomized advice also enhance a com-

putational power of its underlying quantum computation more than deterministic

advice does?

Quantum computation is capable of handling quantum advice, which is given

as a pure quantum state in juxtaposition to original inputs. How resourceful can

quantum advice be? For an effective use of quantum advice, however, we must

consider a slightly non-conventional use of a 1qfa’s input tape, authorizing an

“alteration” of advice strings. This is necessary because, as we shall demonstrate

later, quantum advice is merely reduced to randomized advice in computational

power as far as an underlying machine does not alter any advice string. Allowing

such a modification, we shall introduce a model of “rewritable” 1qfa’s (see Section

7). This highlights a stark contrast between classical and quantum computations.

While such an alteration does not affect one-way classical computation, one-way

quantum computation can make use of the alteration even at the end of the
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Fig. 1 A hierarchy of advised language families. Containments and separations associated
with quantum finite automata are new in this paper.

computation.

In this paper, we shall address the issues discussed above and offer some rea-

sonable answers to them. As shown in Fig. 1, we shall show new inclusions and

separations of those advised language families to existing advised families. In

the figure, “ALL” indicates the collection of all languages. To prove these new

results, we shall give a new structural characterization of advised 1rfa’s and also a

new structural property of advised 1qfa’s, which helps us separate, e.g., 1QFA/n

from REG/n. These results are quite interesting on their own light.

2. Basic Terminology

We wish to present quick descriptions of notions and notations to read through

this paper. Let N be the set of all nonnegative integers. For any pair m,n ∈ N
with m ≤ n, the integer interval [m,n]Z denotes the set {m,m+1,m+2, . . . , n},
and [n] is shorthand for [1, n]Z. An alphabet Σ is a finite nonempty set and a

string over Σ is a series of symbols taken from Σ. In particular, the empty string

is always denoted λ. The length |x| of a string x is the total number of symbols

in x. For any string x and any number n ∈ N, Prefn(x) means the substring

consisting of the first n symbols of x whenever |x| ≥ n.

A one-tape two-way one-head off-line Turing machines is a sextuple

(Q,Σ, δ, q0, Qacc, Qrej), where Q is a finite set of inner states, Σ is an input
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alphabet, δ is a transition function, q0 (∈ Q) is the initial state, Qacc (⊆ Q) is a

set of accepting states, and Qrej (⊆ Q) is a set of rejecting states. Set Qnon to

be Q− (Qacc ∪Qrej) for simplicity. For our convenience, write Σ̌ for Σ ∪ {|c, $}.
We say that M runs in linear time if the longest computation path (even in a

case of probabilistic computation) of M on every input x of length n is bounded

from above by a certain fixed linearly-bounded function in n (see Tadaki et al.10)

for details). When δ is deterministic (probabilistic, resp.), we succinctly call M

a 1DTM (1PTM, resp.).

Finite (state) automata are a special case of those one-tape linear-time Tur-

ing machines, together with a restriction that the machines cannot alter tape

contents. When M is a one-way deterministic (probabilistic, resp.) finite au-

tomaton that always move their tape heads rightward, we call M a 1dfa (1pfa,

resp.). Let REG, CFL, and DCFL denote, respectively, the family of regular

languages, the family of context-free languages, and the family of deterministic

context-free languages. See, e.g., a textbook4) for their fundamental properties.

We say that a 1PTM M has bounded error probability if there exists a constant

ε ∈ [0, 1/2) satisfying that, for every input string x, either ProbM [M(x) = 1] ≥
1 − ε or ProbM [M(x) = 0] ≥ 1 − ε, where the probability is taken according to

M ’s internal random process. Let 1-DLIN (1-BPLIN, 1-PLIN, resp.) denote the

collection of all languages that are recognized by 1DTM (1PTM with bounded

error, 1PTM with unbounded error, resp.) in time O(n), where n is an input

length.

To feed supplemental information, beside input strings, to one-tape machines,

we use the “track” notation [ x
y ] of Tadaki et al.10).

An advice function is a function mapping N to Γ∗, where Γ is an alphabet, called

an advice alphabet. The advised language family⋆1 REG/n (1-DLIN/lin, resp.)

of Tadaki et al.10) is the collection of all languages L over certain alphabets Σ

satisfying the following condition: there exist a 1dfa (a linear-time 1DTM, resp.)

M , an advice alphabet Γ, and an advice function h : N → Γ∗ for which (i)

for every length n ∈ N, |h(n)| = n (|h(n)| = O(n), resp.) and (ii) for every

⋆1 Damm and Holzer3) took a different approach to advised computations; however, their
definitions and ours are equivalent for, e.g., polynomial time-bounded computations.

string x ∈ Σ∗, x ∈ L iff M accepts [ x
h(|x|) ]. Similarly, CFL/n, 1-BPLIN/lin,

and 1-PLIN/lin are defined?). The next lemma, shown by Yamakami13), gives a

machine-independent characterization of languages in REG/n.

Lemma 2.1 For any language S over an alphabet Σ, the following two state-

ments are logically equivalent. Let ∆ = {(x, n) ∈ Σ∗ × N | |x| ≤ n}. (1) S is in

REG/n. (2) There is an equivalence relation ≡S over ∆ such that (i) the total

number of equivalence classes in ∆/ ≡S is finite and (ii) for any index n ∈ N and

any two strings x, y ∈ Σ∗ with |x| = |y| ≤ n, the following holds: (x, n) ≡S (y, n)

iff S(xz) = S(yz) for all strings z satisfying |xz| = n.

In this paper, a probability ensemble means an infinite series {Dn}n∈N of prob-

ability distributions, in which each Dn maps Γn to the unit real interval [0, 1],

where Γ is a given alphabet.

3. Usefulness of Advice

Since its introduction, the usefulness of advice has been demonstrated for var-

ious models of underlying computations. Following this line of study, we first

pay our attention to bounded-error quantum computation that takes standard

deterministic advice.

For our purpose, we shall give a brief description of quantum finite automata.

In this paper, we consider only quantum finite automata with one-way head

moves with bounded-error probability, provided that, at each step, they perform

a (projection) measurement to check whether they enter halting states. Such au-

tomata are known as measure-many one-way quantum finite automata (or 1qfa’s,

in short).

Formally, a 1qfa M is a sextuple (Q,Σ, {Uσ}σ∈Σ̌, q0, Qacc, Qrej), where each

time-evolution operator Uσ is a unitary operator acting on the Hilbert space

EQ = span{|q⟩ | q ∈ Q} of dimension |Q|. The series {Uσ}σ∈Σ̌ describe the time

evolution of M . Let Pacc, Prej , and Pnon be respectively the projections of EQ

onto the subspaces Eacc = span{|q⟩ | q ∈ Qacc}, Erej = span{|q⟩ | q ∈ Qrej},
and Enon = span{|q⟩ | q ∈ Qnon}. For any symbol σ ∈ Σ̌, we define a transition

operator Tσ as Tσ = PnonUσ. We expand this operator to its extended one Tx
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for each fixed string x = σ1σ2 · · ·σn in Σ̌∗ by setting Tx = TσnTσn−1 · · ·Tσ2Tσ1 .

Here is a helpful lemma concerning this extended operator Tx.

Lemma 3.1 For any two quantum states |ϕ⟩, |ϕ′⟩ ∈ Enon and any string

x ∈ Σ̌∗, |||ϕ⟩ − |ϕ′⟩||2 − ||Tx(|ϕ⟩ − |ϕ′⟩)||2 ≤ 3
2 [(|||ϕ⟩||

2 − ||Tx|ϕ⟩||2) + (|||ϕ′⟩||2 −
||Tx|ϕ′⟩||2)].

To describe precisely the time-evolution of M , let us consider a new Hilbert

space S spanned by the basis vectors in ℓ2(Q) × R × R, where ℓ2(Q) = {|q⟩ |
q ∈ Q}. We define a norm of an element ψ = (|ϕ⟩, γ1, γ2) in S to be

||ψ|| = (|||ϕ⟩||2 + |γ1| + |γ2|)1/2. With the space S, we extend the aforemen-

tioned transition operator Tσ to T̂σ by defining T̂σ(|ϕ⟩, γ1, γ2) = (Tσ|ϕ⟩, γ1 +

||PaccUσ|ϕ⟩||2, γ2+ ||PrejUσ|ϕ⟩||2). For an arbitrary string x = σ1σ2 · · ·σn in Σ̌∗,

we further define T̂x as T̂σn T̂σn−1 · · · T̂σ1 . Notice that this extended operator T̂x
may not be a linear operator in general; however, it satisfies the following useful

properties.

Lemma 3.2 ( 1 ) For any two elements ψ,ψ′ ∈ S, it holds that ||ψ + ψ′|| ≤
||ψ||+ ||ψ′||.

( 2 ) For any two elements ψ,ψ′ ∈ S and any string x ∈ Σ̌∗, ||T̂xψ − T̂xψ
′|| ≤√

2||ψ − ψ′||.
( 3 ) For any two elements ψ,ψ′ ∈ S and any string x ∈ Σ̌∗, let ψ = (|ϕ⟩, γ1, γ2)

and ψ′ = (|ϕ′⟩, γ′1, γ′2). Then, ||T̂xψ − T̂xψ
′||2 ≥ ||ψ − ψ′||2 − 3(|||ϕ⟩ −

|ϕ′⟩||2 − ||Tx(|ϕ⟩ − |ϕ′⟩)||2).

Recall that an input to machines must be of the form |cx$ = σ1σ2 · · ·σn+2

with σ1 = |c, σn+2 = $, and x ∈ Σn. The acceptance probability of M on x at

step i (1 ≤ i ≤ n + 2), denoted pacc(i), is ||PaccUσi |ϕi−1⟩||2, where |ϕ0⟩ = |q0⟩
and |ϕi⟩ = Tσi |ϕi−1⟩. The acceptance probability of M on x, denoted pacc(x), is∑n+2

i=1 pacc(i). Similarly, we define the rejection probabilities prej(i) and prej(x)

using Prej instead of Pacc. Using these notations, it follows that T̂|cx$(|q0⟩, 0, 0) =
(|ϕn+2⟩, pacc(x), prej(x)). In Section 7, however, we shall expand this current

definition of 1qfa’s using a new device called rewritable tape tracks.

Let a(n) and b(n) be any function from N to the unit real interval [0, 1]. We

write 1QFA(a(n),b(n)) for the collection of all languages L recognized by 1qfa’s M

with the following criteria: if x ∈ L then M accepts x with probability at least

a(|x|), and if x ̸∈ L then M rejects x with probability at least b(|x|). Finally, let
1QFA denote

∪
ϵ>0 1QFA(1/2+ϵ,1/2+ϵ).

Note that 1QFA is closed under complementation, inverse homomorphism, and

word quotient2) and that it is not closed under homomorphism2).

Next, we introduce the notion of advice to 1qfa’s. Similar to REG/n, the

notation 1QFA/n indicates the collection of all languages L over alphabets Σ that

satisfy the following condition: there are a 1qfa M , an error bound ε ∈ [0, 1/2),

and an advice function h : N → Γ∗ with an advice alphabet Γ such that (i)

|h(n)| = n for each length n ∈ N, (ii) for every string x ∈ L, M accepts [ x
h(|x|) ]

with probability at least 1− ε, and (iii) for every x ∈ Σ∗ −L, M rejects [ x
h(|x|) ]

with probability at least 1 − ε. The last two requirements can be succinctly

expressed as ProbM [M([ x
h(|x|) ]) = L(x)] ≥ 1 − ε. It is important to note that

this definition does not require the underlying 1qfa M to have bounded errors

on all inputs.

An immediate benefit of using advice for 1qfa’s is the elimination of endmarkers

on their input tapes. Earlier, Brodsky and Pippenger2) demonstrated that we can

eliminate the left endmarker |c. The use of advice further enables us to eliminate

the right endmarker $ as well.

Lemma 3.3 [endmarker lemma] For any language L ∈ 1QFA/n, there exist a

1qfa M , a constant ε ∈ [0, 1/2), an advice alphabet Γ, and an advice function h

such that (i) M ’s tape has no endmarkers, (ii) |h(n)| = n for any length n ∈ N,
and (iii) for any string x ∈ Σ∗, ProbM [M([ x

h(|x|) ]) = L(x)] ≥ 1− ε.

Similar to the well-known inclusion 1QFA ⊆ REG6), we can prove the following

inclusion, whose proof can be obtained from Lemmas 2.1 and 5.3.

Proposition 3.4 1QFA/n ⊆ REG/n.

4. Reversible Finite Automata with Advice

Before investigating the roles of advice for 1QFA/n, we shall study a natural
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subclass of 1QFA/n—an advised version of 1RFA. Since reversibility is one of

the distinguishing features of quantum computation, an analysis of this particular

family lays out a useful prelude to that of 1QFA/n in the subsequent section.

Formally, a one-way (deterministic) reversible finite automaton (or 1rfa, in short)

M is a 1dfa (Q,Σ, δ, q0, Qacc, Qrej) such that, for every inner state q ∈ Q and

every symbol σ ∈ Σ, there exists at most one inner state q′ ∈ Q satisfying

δ(q′, σ) = q. Notice that, unlike 1dfa’s, this definition demandsmultiple accepting

states and multiple rejecting states.

The advised family 1RFA/n consists of all languages L over certain alphabets Σ

that satisfy the following condition: there exist a 1rfa M and an advice function

h such that (i) |h(n)| = n for any length n ∈ N and (ii) M([ x
h(|x|) ]) = L(x) for

every string x ∈ Σ∗. Since 1rfa’s are a restricted version of 1qfa’s, it immediately

holds that 1RFA/n ⊆ 1QFA/n.

A machine-independent characterization of Lemma 2.1 turns out to be a useful

tool in studying the computational complexity of languages in REG/n. A similar

abstract treatment of languages in 1RFA/n is expected to be useful as well. As

a key lemma of this section, we present such an abstract characterization.

Lemma 4.1 Let S be any language over an alphabet Σ. The following two

statements are equivalent. Let ∆ = {(x, n) | x ∈ Σ∗, n ∈ N, |x| ≤ n}. (1) S is

in 1RFA/n. (2) There is an equivalence relation ≡S over ∆ such that (i) the set

∆/≡S is finite, and (ii) for any length parameter n ∈ N, any symbol σ ∈ Σ, and

any two strings x, y ∈ Σ∗ with |x| = |y| ≤ n, the following holds: (a) whenever

|xσ| ≤ n, (xσ, n) ≡S (yσ, n) iff (x, n) ≡S (y, n), and (b) if (x, n) ≡S (y, n), then

S(xz) = S(yz) for all strings z with |xz| = n.

Condition (a) in this lemma concerns the reversibility of 1rfa’s. The proof of

Lemma 4.1 is similar in nature to that13) of Lemma 2.1 except for a treatment

of the reversibility.

To see how useful this lemma is, we shall show that 1QFA is not included in

1RFA/n. This result can be viewed as a strength of bounded-error quantum

computation over error-free one.

Theorem 4.2 1QFA * 1RFA/n. Thus, 1RFA/n ̸= 1QFA/n.

5. Limitation of Advice for Quantum Computation

In Section 3, deterministic advice is used as a resource that helps its underlying

1qfa’s gain more language-recognition power. There are also clear limitations on

the use of such advice. One such limitation is that 1QFA/n is not large enough

to contain REG.

To deal with 1QFA/n, we note that some of the well-known properties proven

for 1QFA are not as useful as we hope them to be. The first of such properties is a

criterion, known as a partial order condition⋆1 of Brodsky and Pippenger2), which

every language in 1QFA must satisfy. As shown below, 1QFA/n unfortunately

violates this criterion, making an analysis of languages in 1QFA/n quite different.

Example 5.1 1QFA/n does not satisfy the partial order condition criterion.

Kondacs and Watrous6) first proved that REG * 1QFA. We want to strengthen

their result by proving a class separation between REG and 1QFA/n.

Theorem 5.2 REG * 1QFA/n. Thus, 1QFA/n ̸= REG/n.

An argument of Kondacs and Watrous6) for REG * 1QFA used the separation

language La, defined in Example 5.1. As pointed out by Brodsky and Pip-

penger2), this result follows from the fact that La does not satisfy the aforemen-

tioned partial order condition. Therefore, by Example 5.1, their proof technique

is not sufficient to prove the desired separation of REG * 1QFA/n. There is an-

other argument employed by Ambainis and Freivalds1). In their analysis of the

computational behaviors of a 1qfa, Ambainis and Freivalds utilized a maximal

subspace, closed under a Tσ operator. However, the presence of advice makes it

difficult to employ a similar technique, since it requires an input size to change.

We need to seek another way to prove the desired separation between REG and

1QFA/n. For the proof of Theorem 5.2, we shall give a key lemma, which de-

scribes a certain unique characteristic of languages computed by bounded-error

⋆1 We say that a language satisfies the partial order condition if its minimal 1dfa contains
no two inner states q1, q2 ∈ Q such that (i) there is a string z for which δ(q1, z) ∈ Qacc

and δ(q2, z) ̸∈ Qacc or vice versa, and (2) there are two nonempty strings x, y for which
δ(q1, x) = δ(q2, x) = q2 and δ(q2, y) = q1.
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1qfa’s with advice.

We begin with a description of our key lemma. Following a standard conven-

tion, for any partial order ≤ defined on a finite set, we use the notation x = y

whenever x ≤ y and y ≤ x; moreover, we write x < y if x ≤ y and x ̸= y. A

finite sequence (s1, s2, . . . , sm) is called a strictly descending chain of length m

(with respect to ≤) if si+1 < si for any index i ∈ [m− 1].

For our convenience, we call a reflexive, symmetric, binary relation a closeness

relation. For any closeness relation ∼=, an ∼=-discrepancy set S is a set such that,

for any two elements x, y ∈ S, if x and y are different, then x ̸∼= y.

Lemma 5.3 [key lemma] Let S be any language over an alphabet Σ. Let ∆ =

{(x, n) ∈ Σ∗ × N | |x| ≤ n}. If S ∈ 1QFA/n, then there exist two constants

c, d > 0, an equivalence relation ≡S over ∆, a partial order ≤S over ∆, and

a closeness relation ∼= over ∆ that satisfy the following seven conditions. Let

(x, n), (y, n) ∈ ∆, z ∈ Σ∗, and σ ∈ Σ with |x| = |y|. (1) The set ∆/ ≡S

is finite. (2) If (x, n) ∼= (y, n), then (x, n) ≡S (y, n). (3) If |xσ| ≤ n, then

(xσ, n) ≤S (x, n). (4) If |xz| ≤ n, (x, n) =S (xz, n), (y, n) =S (yz, n), and

(xz, n) ∼= (yz, n), then (x, n) ≡S (y, n). (5) (x, n) ≡S (y, n) iff S(xz) = S(yz)

for all z ∈ Σ∗ with |xz| = n. (6) Any strictly descending chain (with respect to

≤S) in ∆ has length at most c. (7) Any ∼=-discrepancy subset of ∆ has cardinality

at most d.

Theorem 5.2 is a direct consequence of Lemma 5.3. The lemma instantly guides

us to Proposition 3.4 with help of Lemma 2.1. Our proof of Lemma 5.3 heavily

depends on Lemma 3.2.

6. Randomized Advice and Automata

Unlike deterministic advice, randomized advice has been proven to endow an

enormous power to one-way finite automata13), where randomized advice refers

to a probability ensemble {Dn}n∈N consisting of an infinite series of probability

distributions Dn over the advice strings Γn. For our notational simplicity, we use

the same notation Dn for a random variable expressing strings y ∈ Γn occurring

with probability Dn(y). Another notation [ x
Dn

] also denotes a random vari-

able expressing a string [ x
y ], provided that y (∈ Γn) is chosen with probability

Dn(y). Yamakami13) introduced advised language families REG/Rn, CFL/Rn,

1-BPLIN/Rlin, and 1-PLIN/Rlin using randomized advice instead of determin-

istic advice. Analogous to the notations REG/Rn and CFL/Rn of Yamakami13),

1QFA/Rn indicates the collection of all languages L that satisfy the following

condition: there are a 1qfa M , a constant ε ∈ [0, 1/2), an advice alphabet Γ, and

an advice probability ensemble {Dn}n∈N (Dn : Γn → [0, 1]) such that, for every

string x ∈ Σ∗, ProbM,D|x| [M([
x

D|x| ]) = L(x)] ≥ 1− ε.

We begin with a simple observation of how powerful random advice can be.

Recall that ALL denotes the collection of all languages. By modifying the proof of

the collapse result 1-PLIN/Rlin = ALL13), we can prove the following statement.

Lemma 6.1 1QFA(1/2,1/2)/Rn = ALL.

In Proposition 3.4, for deterministic advice, we have shown an inclusion of

1QFA/n inside REG/n. When randomized advice is concerned, a similar inclu-

sion still holds between 1QFA/Rn and REG/Rn; however, its proof requires an

analysis of success probability. Note that randomized advice does not automati-

cally commute the inclusions between langauge families.

Proposition 6.2 1QFA/Rn ⊆ REG/Rn.

For comparison, let us introduce another advised family 1RFA/Rn using the

1rfa model instead of the 1qfa model. More precisely, 1RFA/Rn is the collection

of all languages L satisfying the following condition: there exist a 1rfa M , an

error bound ε ∈ [0, 1/2), and a probability ensemble {Dn}n∈N such that, for

every string x ∈ Σ∗, ProbM,D|x| [M([
x

D|x| ]) = L(x)] ≥ 1 − ε. It is obvious that

1RFA/Rn ⊆ 1QFA/Rn.

We shall demonstrate that a use of randomized advice increases the language-

recognition power of 1qfa’s as well as 1rfa’s.

Proposition 6.3 1QFA/n ̸= 1QFA/Rn and 1RFA/n ̸= 1RFA/Rn.

The above proposition immediately follows from the next lemma, in which we

claim a class separation between REG/n and DCFL ∩ 1RFA/Rn.
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Lemma 6.4 DCFL ∩ 1RFA/Rn * REG/n.

7. Power of Quantum Advice

Beyond randomized advice, we shall discuss another type of advice, known as

quantum advice. Through this section, we shall argue how to define and use such

quantum advice on our model of one-way quantum finite automata.

7.1 Quantum Advice on Read-Only Tape Tracks

In the past literature, quantum advice has been discussed mostly in the con-

text of polynomial-time computations (see, e.g., Nishimura and Yamakami9)) as

a series of (pure) quantum states that help quantum Turing machines. Asso-

ciated with an advice alphabet Γ, let |ϕn⟩ denote a normalized quantum state

in a Hilbert space of dimension |Γ|n. Using a computational basis Γn, we can

assume |ϕn⟩ to be a superposition of the form
∑

s∈Γn αs|s⟩ with αs ∈ C such

that
∑

s∈Γn |αs|2 = 1. For our later convenience, the succinct notation |[ x
ϕn

]⟩
indicates the quantum state

∑
s∈Γn αs|tx,s⟩, where tx,s = [ x

s ], in computational

basis {[ x
s ] | s ∈ Γn}.

Unlike quantum Turing machines, our current model of 1qfa’s with read-only

tape tracks severely limits the potential power of quantum advice. Observe that,

since advice strings in a quantum advice state are unaltered, quantum compu-

tations associated with different advice strings never interfere with one another.

This observation leads to the following lemma.

Lemma 7.1 Let A be any language over an alphabet Σ. The following two state-

ments are equivalent. (1) A ∈ 1QFA/Rn. (2) There exist a 1qfa M with read-

only input tape tracks, an advice alphabet Γ, a series Φ = {|ϕn⟩}n∈N of quantum

advice over Γ∗, and a constant ε ∈ [0, 1/2) satisfying that ProbM [M([
x

ϕ|x| ]) =

A(x)] ≥ 1− ε for any input x ∈ Σ∗.

Lemma 7.1 says that, if a 1qfa has only read-only tape tracks, then the usage

of quantum advice is reduced to that of randomized advice. The lemma therefore

leads us to an introduction of the following notion of “rewritable” tape tracks.

Notice that a simple and natural extension of our 1qfa model is to allow a ma-

chine’s tape head to modify advice strings. When we deal with certain types

of classical finite automata, it is of no importance whether the heads can erase

or even rewrite all symbols of given advice strings after scanning them. This is

because one-tape two-way Turing machines that modify tape contents in linear

time can be simulated by one-way finite automata10),13) (see Fig. 1). Quantum

computation, on the contrary, draws a benefit from a modification of advice

strings, although a one-way head move still hampers the machine’s ability. Here,

we modify our original 1qfa’s so that they can access rewritable tape tracks and

modify track contents at the time when their tape heads scan tape cells. For our

convenience, we call such a modified machine a rewritable 1qfa.

To be more precise, for each symbol σ ∈ Σ, let Uσ be any unitary transform

acting on the space EQ,Γ = span{|q⟩|τ⟩ | q ∈ Q, τ ∈ Γ}, instead of span{|q⟩ |
q ∈ Q} used in Sections 3-6. Similarly, three projection operators Pacc, Prej ,

and Pnon can be also modified using EQ,Γ. For each fixed index i ∈ [n], U
(i)
σ

acts on En = span{|q⟩|y⟩ | q ∈ Q, y ∈ Γn} and, by applying Uσ, it modifies

only the content of the ith tape cell as well as M ’s inner state. We define

T
(i)
σ = PnonU

(i)
σ . Let x = x1x2 · · ·xn be any string in Σ̌∗, and an extended

operator Tx = T
(n)
xn · · ·T (2)

x2 T
(1)
x1 acts on En. A rewritable 1qfa on the input x

starts with the (initial) quantum state |q0⟩|ϕn⟩, where |ϕn⟩ is a quantum advice

state in span{|z⟩ | z ∈ Γn}. The acceptance probability pacc(x) of M on x is the

sum, over all i ∈ [n], of ||(PaccU
(i)
xi )T

(i−1)
xi−1 · · ·T (2)

x2 T
(1)
x1 |q0⟩|ϕn⟩||2. The rejection

probability prej(x) of M on x is similarly defined.

The use of rewritable tape tracks makes it possible to reduce the number of ap-

plications of (projection) measurement. In short, measure-many quantum finite

automata are “equivalent” in essence to measure-once ones in our setting.

Lemma 7.2 For any rewritable 1qfa M with quantum advice {|ϕn⟩}n∈N, there

exist another rewritable 1qfa N and another quantum advice {|ϕ′n⟩}n∈N such that

(i) N applies a measurement only once just after scanning an entire input and

(ii) N ’s acceptance probability equals that of M on any input x.

7.2 Rewritable Quantum Finite Automata

As shown in Lemma 7.2, a use of rewritable tape tracks simplifies the behavioral
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descriptions of 1qfa’s by reducing the number of measurements. Furthermore, we

shall show that rewritable tape tracks make 1qfa’s easier to handle.

To emphasize our use of “quantum” advice, we use a special notation 1QFA/Qn

to designate the family of all languages recognized using quantum advice by

rewritable 1qfa’s with bounded-error probability. The error bounds given here

can be relaxed as follows. This relaxation is useful in constructing desired 1qfa’s

for given target languages.

Lemma 7.3 Let L ⊆ Σ∗. Assume that a rewritable 1qfa M satisfies the fol-

lowing condition: there exist two constants ε0 and ε1 and a series {|ϕn⟩}n∈N of

quantum advice states such that (i) 0 ≤ ε0 < ε1 ≤ 1, (ii) for any x ∈ L, M

accepts [ x
ϕn

] with probability at least ε1, and (iii) for any x ∈ L, M accepts

[ x
ϕn

] with probability at most ε0. Then, L ∈ 1QFA/Qn.

An immediate consequence of Lemma 7.2 is a closure property of 1QFA/Qn

under Boolean operators. In contrast, this property is not yet known to hold for

1QFA.

Proposition 7.4 The language family 1QFA/Qn is closed under complemen-

tation, union, and intersection.

The power of rewritable 1qfa’s with quantum advice is exemplified in the next

proposition. The language family 1-BQLIN is the collection of all languages

recognized by one-tape two-way one-head off-line quantum Turing machines,

where all the (classically-viewed) computation paths of the machines must ter-

minate within linearly many steps10). Using linear-size quantum advice, similar

to 1-PLIN/Rlin, we can expand 1-BQLIN to its advised version 1-BQLIN/Qlin.

Proposition 7.5 REG/Rn ⊆ 1QFA/Qn ⊆ 1-BQLIN/Qlin.
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