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The growth in size and heterogeneity of System-on-Chip (SOC) design makes
their design process from initial specification to IC implementation complex.
System-level design methods seek to combat this complexity by shifting increas-
ing design burden to high-level languages such as SystemC and SystemVerilog.
Such languages not only make a design easier to describe using high-level ab-
stractions, but also provide a path for systematic implementation through re-
finement and elaboration of such descriptions. In principle, this can enable a
greater exploration of design alternatives and thus better design optimization
than possible using lower level design methods. To achieve these goals, how-
ever, verification capabilities that seek to validate designs at higher levels as
well their equivalences with lower level implementations are crucially needed.
To the extent possible given the large space of design alternatives, such valida-
tion must be formal to ensure the design and important properties are provably
correct against various implementation choices. In this paper, we present a sur-
vey of high-level verification techniques that are used for both verification and
validation of high-level designs, that is, designs modeled using high-level pro-
gramming languages. These techniques include those based on model checking,
theorem proving and approaches that integrate a combination of the above
methods. The high-level verification approaches address verification of proper-
ties as well as equivalence checking with refined implementations. We also focus
on techniques that use information from the synthesis process for improved val-
idation. Finally, we conclude with a discussion and future research directions
in this area.

1. Introduction

The quantitative changes brought about by Moore’s law in design of integrated
circuits (ICs) affect not only the scale of the designs, but also the scale of the pro-
cess to design and validate such chips. While designer productivity has grown at
an impressive rate over the past few decades, the rate of improvement has not kept
pace with chip capacity growth leading to the well known design-productivity-
gap 47). The problem of reducing the design-productivity-gap is crucial in not
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only handling the complexity of the design, but also improving against the in-
creased fragility of heterogeneous components that are composed in a design.
Unlike software, integrated circuits are not repairable. The development costs
are so high that multiple design spins are essentially ruled out, a design must be
correct in the one and often the only one design iteration to implementation.

High-Level Synthesis (HLS) 30),39),59),65),85) is often seen as a solution to bridge
the design-productivity-gap. HLS is the process of generating the Register Trans-
fer Level (RTL) design consisting of a data path and a control unit from the
behavioral description of a digital system, expressed in languages like C, C++
and Java. The synthesis process consists of several inter dependent sub-tasks
such as: specification, compilation, scheduling, allocation, binding and control
generation. HLS is an area that has been widely explored and relatively mature
implementations of various HLS algorithm have started to emerge 39),59),85). This
shift in design paradigm enables designers to avoid many low-level design issues
early in the design process. It also enables early design space exploration, and
faster functional verification time. However, for verification of high-level designs,
the focus so far has been on traditional testing techniques such as simulation and
emulation. Over the last few decades we have seen many unfortunate examples of
hardware bugs (like Pentium FDIV bug, Killer poke, and Cyrix coma bug) that
have eluded testing techniques. Recently, many techniques (as discussed in this
paper) inspired from formal methods have emerged as an alternative to ensure
the correctness of these high-level designs, overcoming some of the limitations of
traditional testing techniques.

The new techniques and methodology for verification and validation at higher
level of abstraction are collectively called high-level verification techniques. The
high-level verification problem can be further divided into two parts. The first
part deals with verifying properties of high-level designs. The methods for verify-
ing high-level designs allow designers to check for certain properties like functional
behavior, assertion violation, and deadlock in their designs. Once the properties
are checked, the designers refine their design to low-level RTL using a HLS tool.
HLS tools are large and complex software systems, and as such they are prone
to logical and implementation errors. Errors in these tools may lead to the syn-
thesis of RTL designs with bugs in them. As a result, the second part deals with

131 c© 2009 Information Processing Society of Japan
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verifying that the translation from high-level design to low-level RTL preserves
semantics. Taken together, these two parts guarantee that properties satisfied
by the high-level design are preserved through the translation to low-level RTL.

Unfortunately, despite significant amount of work in the area of formal verifica-
tion we are far from being able to prove automatically that a given design always
does the right thing or a given synthesis tool always produces target programs
that are semantically equivalent to their source versions. However, with recent
advances in SAT solvers 35),67), automated theorem proving 36),75),76), and model
checking 14),15),82) researchers are at least able to prove that the designs and tools
satisfy some properties. Also, in many cases they are able to guarantee the func-
tional equivalence between the initial behavioral description and the RTL output
of the HLS process.

In this survey we provide an overview of the formal verification techniques used
for proving the correctness of high-level designs and HLS tools. Earlier surveys on
formal verification in hardware design 38),49),61) give more comprehensive details
about the theoretical and application aspects of it for RTL designs.

The remainder of the paper is organized as follows: Section 2 presents a brief
overview of high-level verification and presents a classification of the techniques
in this area. In Sections 3, 4, and 5 we present a survey of the different formal
verification techniques used in the context of high-level verification. Finally,
Section 6 concludes with a discussion and future research opportunities in this
area.

2. Overview of High-Level Verification

The HLS process consists of performing stepwise transformations from a behav-
ioral specification into a structural implementation (RTL). The main benefit of
HLS is that it provides faster time to RTL and faster verification time. Figure 1
shows the various components involved in high-level verification and how they
interact. The design flow from high-level specification to RTL is shown along
with various verification tasks. These tasks can be broadly classified as follows:
( 1 ) High-level property checking
( 2 ) Translation validation
( 3 ) Synthesis tool verification

Fig. 1 Overview of high-level verification.

( 4 ) RTL property checking
Traditionally, designers start their verification efforts directly for RTL designs.

However, with the popularity of HLS, these efforts are moving more toward their
high-level counterparts. This is particularly interesting because it allows faster
(sometimes three orders of magnitude 83)) functional verification time, when com-
pared to a more detailed low-level RTL implementation. Furthermore, it allows
more elaborate design space exploration, which in turn leads to better quality of
design. Since RTL property checking techniques have been widely explored in
earlier surveys 38),49),61), here we focus only on the first three verification tasks.

The first category of methods, high-level property checking, allow various prop-
erties to be verified on the high-level designs. Once the important properties that
the high-level components need to satisfy have been checked, various other tech-
niques are used in order to prove that the translation from high-level design to
low-level RTL is correct, thereby also guaranteeing that the important properties
of the components are preserved.

The second category translation validation include techniques that try to show,
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for each translation that the HLS tool performs, that the output program pro-
duced by the tool has the same behavior as the original program. Although this
approach does not guarantee that the HLS tool is bug free, it does guarantee
that any errors in translation will be caught when the tool runs, preventing such
errors from propagating any further in the hardware fabrication process.

The third category synthesis tool verification consists of techniques whose goal
is to prove automatically that a given optimizing HLS tool itself is correct. Al-
though, these techniques have same goal as translation validation i.e., to guaran-
tee that a given HLS tool produces correct result, these techniques are different
because it can prove the correctness of parts of the HLS tool once and for all,
before they are ever run.

Each one of the three areas outlined above, namely high-level property check-
ing, translation validation, and synthesis tool verification, have been explored
in a wide variety of research efforts. In the following sections we survey vari-
ous techniques from each of these areas, outlining the connections and trade-offs
between them.

3. High-Level Property Checking

The high-level designs written using languages like C, SystemC, SystemVerilog
are mostly software programs with support for specialized hardware data types
and other hardware features like synchronous concurrency, synchronization, and
timing. Thus, many efforts to use software verification tools to verify these
designs have been explored. Model checking is the most prevalent automatic ver-
ification technique for software and hardware. It is a technique for verifying that
a hardware or software system satisfy a given property (specification). These
properties, which are usually expressed in temporal logic, typically encode dead-
lock and safety properties (e.g., assertion violations). In this section, we survey
several software model checking techniques. Model checking techniques can be
further classified as explicit and symbolic.

3.1 Explicit Model Checking
In explicit state enumeration model checking, the reachable states of a design

are generated using an exhaustive search algorithm. This technique explicitly
stores the entire state space in memory and checks if certain error states are

reachable. For finite state system this technique is both sound (i.e., whenever
model checking cannot reach a given error state, it is guaranteed to not reach that
error state ever in real execution) and complete (i.e., whenever model checking
finds an error, it is guaranteed to be an error in real execution). However, as the
size of the finite state spaces grow larger and larger, this technique suffers from
the well known state explosion problem. To address the state explosion problem,
researchers use techniques to construct the state space on-the-fly 44) during the
search, rather than generating all the states and transitions before the search. In
addition, they use bit-state hashing 44), in which the hash value of the reachable
state is stored, instead of the state itself. Due to possible hash collision the
bit-state hashing technique is unsound. Other techniques include partial-order-
reduction 32), symmetry reduction 19),27) and compositional techniques 18).

Intuitively, the partial-order-reduction technique exploits the independence be-
tween parallel threads to compute a subset of the enabled transitions in each
visited states. Next, if a selective search is done using only the transitions from
these subsets the detection of all the deadlocks and safety property violations are
guaranteed. Symmetry reduction on the other hand exploits symmetries in the
program, and explores one element from each symmetry class. Compositional
techniques decompose the original verification problem to related smaller prob-
lems such that the result of the original problem can be obtained by combining
the smaller ones.

The most popular finite state explicit model checker for concurrent programs
are SPIN 44) and MURPHI 24). Both tools have been successfully used for verifi-
cation of sequential circuits and protocols.

Moreover, in order to achieve scalability some systems give up completeness
of the search and focus on the bug finding capabilities of model checking. For
instance, one can bound the depth of the search and/or bound the number of
context switches 70). This line of thought also leads to the execution-based model
checking approach. These methods are typically used for improving the coverage
of a test. Traditionally, in testing the user writes a test bench and runs it.
Typically, the operating system scheduler executes only one fixed schedule out
of the many possible behaviors. However, the scheduler of the execution based
model checker systematically explore all possible behaviors of the program for a
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given test input and depth. The most striking benefit of this approach is the ease
of implementing it, as it sidesteps the need to formally represent the semantics
of the programming language as a transition relation. Another key aspect of this
method is the idea of stateless 33) search i.e., it stores no state representations
in memory but only information about which transitions have been executed so
far. Although stateless search reduces the storage requirements, a significant
challenge for this approach is how to handle the exponential number of paths
in the program. Here again various reduction techniques like symmetry, partial-
order 29), and abstraction have been explored.

Verisoft 33) is the first tool in this domain, and it explores arbitrary code written
in full fledged programming language like C or C++. It does so by modifying
the OS scheduler and systematically exploring all possible interleavings. Java
PathFinder 84) is a tool for Java programs that uses the virtual machine rather
than OS scheduler to explore the different behaviors. CMC 69) is another tool for
C programs that improves the efficiency of the search by storing a hash of each
visited state. Dynamic validation using execution-style model checking is also
well adapted for validating SystemC designs 41),51).

3.2 Symbolic Model Checking
The above reduction techniques like partial-order, address the state explosion

problem for asynchronous concurrent systems (by reducing the number of inter-
leavings that need to be explored). However, they are not so effective in the
case of synchronous concurrent systems, which do not involve interleaving. Sym-
bolic model checking techniques, on the other hand, are quite effective for both
synchronous and asynchronous concurrent systems. Furthermore, the reduction
techniques discussed in Section 3.1 including partial-order reduction are orthog-
onal and can be used in conjunction with symbolic techniques.

Symbolic algorithms manipulate sets of states, instead of individual states.
These algorithms avoid ever building the graph for the system; instead, they
represent the graph implicitly using a formula in propositional logic. They can
also represent infinite states using a single formula. For example the predicate
(x > 1 ∧ y > 1) denotes the set of all states in which the value of the vari-
ables x and y are both greater than 1. The first major step toward symbolic
representation is the use of Binary Decision Diagrams (BDD) 13). BDDs are a

canonical form representation for boolean formulas, and are particularly impor-
tant for finite state programs, as these programs can be represented using boolean
variables. BDDs are used in symbolic model checker like SMV 63) and have been
instrumental in verifying hardware designs with very large state spaces 14).

As in explicit model checking, one sometimes trades off completeness for
bug finding capabilities of symbolic model checking. Bounded Model Checking
(BMC) 10) is one such algorithm that unroll the control flow graph (loop) for a
fixed number of steps (say k), and check whether a property violation can oc-
cur in k or fewer steps. This typically involves encoding the restricted model
as an instance of Satisfiability (SAT) problem. This problem is then solved us-
ing a SAT 67) or SMT (Satisfiability Modulo Theory) 68) solver. BMC tools like
CBMC 17) and FSoft-BMC 45) use iterative deepening depth-first search so that
the above process can be repeated with larger and larger values of k until all
possible violations have been ruled out.

Another area that has recently received lot of attention is abstract model check-
ing, which trades off precision for efficiency. Abstraction 21),22) attempts to prove
properties of a program by first simplifying it. Next, the reachability analysis is
performed on the simplified (or abstract) domain, which usually satisfies some,
but not all the properties of the original (or concrete) program. Generally, one
requires the abstract domain and its semantics to be sound (i.e., the properties
proved in the abstract semantics implies properties in the concrete semantics).
However, typically, the abstraction is not complete (i.e., not all true properties
in the concrete semantics are true in the abstract semantics). An example of ab-
straction is, to only consider boolean variables and the control flow of a program
and ignore the values of non boolean variables. Although, such an abstraction
may appear coarse, it is sometimes sufficient to prove properties like mutual
exclusion.

The polyhedral abstract domain has been successfully used to check for
array bounds violations 20). Another interesting domain, predicate abstrac-
tion 6),23),37),54) is parameterized by a fixed finite set B = {B1, B2, · · · , Bk} of
first-order formulas (predicates) over the program variables, and consists of the
lattice of Boolean formulas over B ordered by implication. A cube over B is
a conjunction of possibly negated predicates from B. The domain of predicate
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abstraction is the set of all cubes, and one cube is computed at each program
point.

The goal of predicate abstraction is to compute a set of predicates from B at
every program point. Thus, given a set of predicates B, a program statement
s, and a cube over B flowing into the statement, it computes the cube over
B that flows out of the statement. For example, consider the set of predicates
B = {B1, B2}, where B1 ≡ (a = b) and B2 ≡ (a = b+1). Given the cube B1∧¬B2

and the statement a := b+1, then predicate abstraction would compute that the
cube ¬B1 ∧ B2 should be propagated after the statement.

A problem with abstract model checking is that although the abstraction sim-
ulates the concrete program, when the abstraction does not satisfy a property, it
does not mean that this property actually fails in the concrete program. When a
property fails, the model checker produces a counterexample. A counterexample
can be genuine i.e., can be reproduced on the concrete program, or spurious i.e.,
does not correspond to a real computation but arises due to imprecisions in the
analysis. Counterexamples are checked against the real state space to make sure
they are genuine. In the case when it is spurious, methods have been developed
to automatically refine the abstract domain and get a more precise analysis which
rules out the current counterexample and possibly many others, without losing
soundness. This iterative strategy is called Counter Example Guided Abstraction
Refinement (CEGAR).

SLAM 6) is a popular CEGAR based model checker for C programs. It was
used successfully within Microsoft for device driver verification 7) and has been
developed into a commercial product (Static Driver Verifier, SDV). BLAST 9) is
also a CEGAR based model checker that uses lazy abstraction 42). The main idea
of BLAST is the observation that the computationally intensive steps of abstrac-
tion and refinement can be optimized by a tighter integration which would allow it
to reuse the work performed in one iteration toward subsequent iterations. Lazy
abstraction tightly couples abstraction and refinement by constructing the ab-
stract model on-the-fly, and locally refining the model on-demand. MAGIC 16) is
another CEGAR based compositional model checking framework for concurrent
C programs. Using MAGIC, the problem of verifying a large implementation can
be naturally decomposed into the verification of a number of smaller, more man-

ageable fragments. These fragments can be verified separately, enabling MAGIC
to scale up to industrial size programs.

Advances in model checking and related techniques in the past several decades
have allowed researchers to verify increasingly ambitious properties of critical
software programs including device drivers, operating systems code, and large
commercial applications. They have also enabled the verification of large hard-
ware components like microprocessors. Although this is a significant step for-
ward toward reducing the design-productivity-gap, state-of-the-art verification
techniques are still far away from proving full correctness of programs.

4. Translation Validation

Once the design has been checked to satisfy certain properties using techniques
discussed in Section 3, the next step is to make sure that those properties are
preserved through the synthesis process. In this section we discuss a category of
methods called translation validation which guarantee the preservation of safety
properties through the synthesis process. Translation validation techniques are
employed during synthesis to check that each transformation performed by the
HLS tool preserves the semantics of the initial design. The initial design is called
specification and the transformed design is called implementation. The validation
step check for either refinement or equivalence. Typically, the implementation
is said to be a refinement of the specification if the set of execution traces of
the implementation is a subset of the set of execution traces of the specification.
They are equivalent when the two sets are equal. In this section, we discuss
different techniques for translation validation. Depending upon the core approach
these techniques are primarily based on, they are divided into three categories:
relational approach, model checking, and theorem proving.

4.1 Relational Approach
Relational approaches 12),25),48),50) are used to check the correctness of the syn-

thesis process by establishing a functional equivalence between the Control-Data
Flow Graphs (CDFG) of the program, before and after each step of HLS. The
equivalence is defined on some predefined observable events that are preserved
across the transformations. Intuitively, the idea is to show that there exists a
simulation relation R that matches a given program state in the implementa-
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tion with the corresponding state in the specification. This simulation relation
guarantees that for each execution sequence of observable events in the imple-
mentation, a related and equivalent execution sequence exists in the specification.
The relation R ⊆ S tate1 ×S tate2 operates over the program states S tate1 of the
specification and the program states S tate2 of the implementation. If S tart1 is
the set of start states of the specification, S tart2 is the set of start states of the
implementation, and σ →e σ′ denotes state σ stepping to state σ′ with observable
event e, then the following conditions summarize the requirements for a correct
refinement:

∀σ2 ∈ S tart2 . ∃σ1 ∈ S tart1 . R(σ1, σ2)
∀σ1 ∈ S tate1, σ2 ∈ S tate2, σ

′
2 ∈ S tate2 .

σ2 →e σ′
2 ∧ R(σ1, σ2) ⇒

∃σ′
1 ∈ S tate1 . σ1 →e σ′

1 ∧ R(σ′
1, σ

′
2)

These conditions respectively state that:
( 1 ) For each starting state in the implementation, there must be a related state

in the specification.
( 2 ) If the specification and the implementation are in a pair of related states,

and the implementation can proceed to produce observable events e, then
the specification must also be able to proceed, producing the same events
e, and the two resulting states must be related.

The above conditions are the base case and the inductive case of a proof by
induction showing that the implementation is a refinement of the specification.

One example of using the relational approach is Karfa, et al.’s technique 48) for
establishing the equivalence between the initial Finite State Machine with Data-
path (FSMD) and the scheduled FSMD. The technique introduces cut-points
in the original and transformed FSMD automatons, which allows computations
through the original and transformed FSMD to be seen as the concatenation of
paths from cut-points to cut-points. The technique then establishes the equiv-
alence by exploiting the structural similarities between related cut-points using
weakest pre-condition.

Another example of the relational approach can be found in Dushina, et al.’s
proposed method 25) for checking the functional equivalence between a scheduled

abstract FSM and the corresponding RTL after binding. The method establishes
the equivalence transition by transition. In particular, for each transition in the
RTL controller, it performs a symbolic execution of the associated RTL data
path. The symbolic execution results are then syntactically compared with the
data operations specified in the equivalent transition of the abstract FSM.

In our own work 52),53), we have developed an automatic algorithm based on the
relational approach, and implemented it within the SPARK 39) HLS tool, which
is a parallelizing HLS framework that does code motion across basic blocks.
Our algorithm validates all the phases (except for parsing, binding and code
generation) of SPARK against the initial behavioral description. Unlike previous
methods, which assume that the scheduler does not move code across basic blocks
and variable names do not change, our technique can handle these features fully
automatically.

In general, relational approaches work well when the transformations preserve
most of the program’s control flow structure. Such transformations are called
structure-preserving 86) transformations. Unfortunately, relational approaches
tend to be ineffective in the face of non structure-preserving transformations
like loop unrolling, loop tiling and loop reordering. Despite these limitations,
relational approaches are very useful in practice: with only a fraction of the
development cost of an HLS tool, they can uncover bugs that elude testing.

4.2 Model Checking
Techniques involving model checking 5),11) are used for verifying register-

transfer logic against its scheduled behavior. The key idea is to partition the
equivalence checking task into two simpler subtasks, verifying the validity of reg-
ister sharing/binding, and verifying correct synthesis of the RTL interconnect
and control. The success of these methods can be attributed to the observation
that the state space explosion in most designs is caused by the data path registers
rather than the number of control states.

The following algorithm outlines the method of verifying the validity of register
sharing.
• The first step involves identifying paths in the scheduled graph along which

potential conflicts can occur. During this step no interpretation of the data
path is done. If no conflict is identified then verification successfully termi-
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nates.
• Otherwise for each violation the set of all conflict paths is summarized in a

reduced Conflict Sub-Graph (CSG).
• The reduced CSG is then checked to find out if the conflict was benign. If a

conflict is detected during the checking, then a logically possible path with
incorrect register binding has been detected. In this case the appropriate
path is shown to the user as a counterexample.

• Else, if it ends without any conflict detected, all possible conflict paths are
logically impossible and the verification algorithm successfully terminates.

Ashar, et al. 5) analyzed potential conflicts by means of structural methods, and
then the reduced CSG is checked for satisfiability by the VIS model checker 82).
Whereas Blank 11) identifies possible conflicts using a symbolic model checker 14).
The result of the analysis is summarized in a reduced internal representation
called Language of Labeled Segments (LLS) 43), which is then checked by symbolic
simulation 66). However, symbolic simulation allows reasoning for a defined finite
number of steps. Thus, loops in the program cannot be verified for an arbitrary
number of iterations.

Ashar, et al. also presented an algorithm to verify the correct synthesis of the
RTL interconnect and control 5). This part of equivalence checking is done state-
by-state, i.e., for each state in the schedule, the computations performed in that
state are shown to be equivalent to those performed in the RTL implementation
for the same state. The equivalence is shown using symbolic simulation.

4.3 Theorem Proving
Although most of the translation validation approaches discussed so far use

theorem provers in some way, the theorem prover is not at the center of the
approach. The Correctness Condition Generator 60), on the other hand, is pri-
marily based on a theorem proving technique. This approach assumes that the
synthesis tool can identify the binding relation between specification variables
and registers in the RTL design, and between the states in the behavior and
the corresponding states in the RTL design. A correctness condition generator
is tightly integrated with the high-level synthesis tool to automatically gener-
ate (1) formal specifications of the behavior and the RTL design including the
data path and the controller, (2) the correctness lemmas establishing equiva-

lence between the synthesized RTL design and its behavioral specification, and
(3) proof scripts for these lemmas that can be submitted to a higher-order logic
proof checker without further human interaction. The tight integration of the
synthesis process with the theorem prover allows the theorem prover to gather
information about what kinds of transformations were performed, and therefore
better reason about them.

5. Synthesis Tool Verification

Another attractive way of proving that an HLS tool produces correct RTL is
to verify the correctness of HLS tool once and for all, before it is ever run once.

One can categorize such techniques into three broad classes: (1) formal as-
sertions, which can be used to guarantee the correctness of the synthesis tool,
(2) transformational synthesis tools, which are correct by construction, and
(3) witness generators, which recreate the steps that an existing HLS tool has
performed using formally verified transformations.

5.1 Formal Assertions
Narasimhan, et al. proposed a Formal Assertions approach 71)–73) to building

a verified high-level synthesis system, called Asserta. The approach works un-
der the following premise: If each stage in the system, like scheduling, register
optimization, interconnect optimization etc. can be verified to perform correct
transformations on the input specification, then by compositionality, we can as-
sert that the resulting RTL design is equivalent to its input specification. This
technique has the following four main steps.
( 1 ) Characterization: A base specification model is identified for each synthesis

task. The base specification model is usually a tight set of correctness
properties that completely characterizes the synthesis task.

( 2 ) Formalization: The base specification model is then formalized as a col-
lection of theorems in a higher order logic theorem proving environment,
which form the base formal assertions. An algorithm is also chosen to re-
alize the corresponding synthesis task and is described in the same formal
environment.

( 3 ) Verification: The formal description of the algorithm is verified against the
base theorems. Inconsistencies in the base model are identified during the
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verification exercise. Furthermore, the model is enhanced with several ad-
ditional formal assertions derived during verification. The formal assertions
now represent the invariants in the algorithm.

( 4 ) Formal Assertions Embedding : In the next step a software implementation
of the algorithm that was formally verified in the previous stage is devel-
oped. The much enhanced and formally verified set of formal assertions is
then embedded within this software implementation as program assertions.

During synthesis, the implementation of each task is continually evaluated against
its specification model specified by these assertions and any design error during
synthesis can be detected.

Asserta 71) is a high-level synthesis system developed to show the effectiveness
of assertion-based verification techniques to generating first-time correct RTL
designs. The synthesis engine has three main stages, namely scheduling, register
optimization and interconnect generation. The proof effort was conducted using
Prototype Verification System (PVS) 75), a higher order logic theorem prover.

Since the main tasks of Asserta have been verified, it can be used with an
increased degree of confidence. This approach is also not affected by the state
space or complexities of any synthesized RTL design. However, the correctness
of the system depends on the completeness and correctness of the base asser-
tions. Another concern is that during the formal assertions embedding step, due
to difference in the expressive power of logic and software program, the transla-
tion process often could get quite complicated and finally, the correctness of the
method hinges on this translation process. It is also hard to generate a tight base
specification for all the steps of the synthesis process. Thus, although Asserta is
a first step toward achieving correct synthesis, verifying large synthesis programs
is quite tedious and complex.

5.2 Transformational Synthesis Tools
The basic idea of this method is to determine a set of transformations, which

when applied to an initial specification, transform the source into the required
implementation. This transformations are then embedded in a theorem prover
to prove their correctness. The correctness of the HLS system thus follows from
a ‘correct by construction’ argument.

Transformational synthesis is an area that has been widely

explored 26),40),46),55),79),81). Various tools have been developed in the recent past,
which mainly differ in the expressiveness of their input language, the theorem
prover used and the type of transformations allowed. Sharp, et al. 81) developed
the T-Ruby design system, where the Ruby language is used for specifying VLSI
circuits and the theorem prover Isabelle 76) is used to formalize the correctness-
preserving transformations. DDD 46) is another system, which is a based on
functional algebra. Both systems uses hardware specific calculus to describe
a design. The following are few systems based on behavioral transformations.
Veritas 40) is a theorem prover based on an extension of typed higher order logic,
which provides an interactive environment for converting the specification into
an implementation. Larsson 55) presented a transformational approach to digital
system design based on the HOL proof system 36). Hash 26) is another system
based on the theorem prover HOL 36). McFarland 62) investigated the correctness
of behavioral transformations using behavior expressions. Rajan 79) on the other
hand, used the PVS 75) theorem proving system to specify and verify behavioral
transformations.

However, unlike the formal assertion technique presented in Section 5.1, tech-
niques based on transformational synthesis reason only about the specification
of the transformations, not their software implementations, which is where many
of the bugs arise.

5.3 Witness Generator
The main idea behind witness generator techniques 28),64),78) is to use a set of

behavior-preserving elementary transformations for validating an existing non
transformational synthesis system by discovering and to some extent isolating
software errors.

Figure 2 shows an overview of the witness generator approach. The source
program is first converted into a CDFG, after which point the CDFG passes
through a regular unverified HLS process. Following the regular HLS process,
the CDFG is also passed to a transformational system that consists of a set of
elementary structural transformations, all of which have been formally verified
given a set of preconditions. These transformations are sequenced together by the
witness generator, whose goal is to find a sequence of elementary transformations
which when applied to the initial design, achieve the same RTL outcome. For
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Fig. 2 Using a witness generator system to validate synthesis tools.

this technique to be broadly applicable, the set of elementary transformations
must collectively capture a wide variety of synthesis algorithms.

The task of the witness generator is facilitated by the following information,
which is provided by the synthesis tool:
• The outcome of a synthesis task can be captured by a simple data structure

(binding data structure) such that any algorithm for this task can record its
outcome in this data structure. For example, the outcome of any scheduling
algorithm can be recorded as a schedule table which records the mapping
between operations to control steps and the outcome of any register allocation
algorithm can be recorded as mapping from variables to registers.

• It is possible to generate a sequence of elementary transformations to perform
the same task by examining this data structure, without any knowledge of
the synthesis algorithm used to perform the task.

When a precondition fails during the execution of the sequence of transformations
identified by the witness generator, the sequence applied so far forms a counter-
example that can be presented to the user.

Radhakrishnan, et al. 78) identified a set of six elementary transformations
which were sufficient to emulate the effect of many existing high-level synthe-
sis algorithms. Each of these transformations is mechanically proved in PVS 75)

to preserve the computational behavior.
Eveking, et al. 28) uses a similar approach to verify the correctness of various

scheduling algorithms. They represented the initial CDFG using the LLS 43)

internal language. After that, the process of equivalence verification consists of a
number of computationally equivalent LLS transformation steps which assimilate
the original design to the scheduled design.

Recently, Mend́ıas, et al. 64) used equational specification to describe behaviors
and/or structures, in a elaborate formal framework called Fresh. In Fresh, seven
formal derivation rules, classified into structural and behavioral were used to
transform the initial design to the RTL design.

The above systems essentially recreate, within a formal framework, each of the
design decisions taken by an external (and potentially incorrect) HLS algorithm.
The latest HLS tools are complex and use a variety of transformations to optimize
the synthesis result for metrics like area, performance and power. As a result,
it is becoming increasingly difficult to find a small set of correct transformations
that can recreate all the design decisions taken by external HLS tools.

6. Discussion and Future Directions

The last decade witnessed great improvements in formal methods and HLS.
Recently, many commercial formal verification tools for system-level designs,
like Static Driver Verifier (SDV) 3), the Sequential Equivalence Checking tool
(SLEC) 1), SCADE Design Verifier 2), and Statemate 4) have become available.
However, their adoption is in the early stages and the tools are often limited in
the quality of the results and the kinds of correctness guarantees that are pro-
vided. By performing verification on the high-level design, where verification is
easier to perform, and then checking that all refinement steps are correct, high-
level verification can provide strong and expressive guarantees that would have
been difficult to achieve by directly analyzing the low-level RTL code. In this
section we discuss promising future research areas in verification of high-level
designs and the tools associated with them.

Hardware-Software modeling : High-level hardware languages support many fea-
tures that are useful for both software and hardware designs. For example, Sys-
temC allows both asynchronous and synchronous semantics of concurrency, and
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also both software and hardware data types. However, existing tools often ei-
ther target software or hardware. For example, most software model checkers
only support software data types and asynchronous semantics of concurrency,
and most hardware model checker only support hardware data types and syn-
chronous semantics of concurrency. As a result, researchers often use abstraction
or complicated techniques while modeling the non-supported features of a given
model checker. This gap points to a possible research direction that would unify
techniques for hardware models and techniques for software models into combined
methodology for reasoning about hardware-software models.

Compositional techniques: Although many techniques presented in this paper
use compositional methods to make the verification problem tractable, these
techniques are far too limited in their application. Even after decomposition using
the current techniques the problem is still quite large and complex. Advanced and
more efficient methods are needed for decomposing a computationally demanding
global property into local properties whose verification is simpler.

Modular techniques: A major issue is that most of these verification method-
ologies are hard and inconvenient to use, and even more harder to modify or
extend. Hence, every time a new methodology is proposed a new tool has to be
written, often from scratch. None of the formal methods discussed in this paper
are designed from a software engineering perspective. Thus, there is a need for
a modular and reusable framework, which can be quickly used to prototype new
ideas and test them.

Debugging : Most verification tools surveyed in this paper provide only limited
feedback to the user. When a bug is found, these tools cannot typically pin-point
the error in the code. Some methods are able to output an error trace, but figuring
out the cause of the error from it, is not straightforward and requires expertise
in formal methods. Although there has been work in this area 8), adapting such
techniques to the high-level verification domain is still a challenge. Another
limitation of current methods is that they often stop searching when a bug is
found, rather than providing a list of all bugs. More broadly, the goal should be
to fit formal verification into the regular develop-edit-debug flow, which would
require the development of verification tools for speed and ease of use.

Synthesis-For-Verification: HLS process focuses mainly on three design con-

straints: area, timing and power. These methodologies tend to ignore verification,
which takes about 70% of the design cycle, as a constraint. Recently, Ganai,
et al. 31) proposed a new paradigm ‘Synthesis-For-Verification’ which involves
synthesizing “verification-aware” designs that are more suitable for functional
verification. Therefore, another research direction may be to use existing in-
frastructure of HLS to generate “verification friendly” models that are relatively
easier to verify using state-of-the-art techniques.

Compiler techniques: Many techniques used in HLS are similar to those used
for compilers. As a result, advances in fields like compiler correctness can pro-
vide inspiration for developing techniques for high-level verification. For example,
translation validation 34),74),77),80),86) has been successfully used to prove the cor-
rectness of many compiler transformations. Necula’s translation validation tech-
nique 74) automatically proved many structure preserving transformation used in
GCC, whereas Zuck, et al. 34) proved various non-structure preserving transfor-
mation, along with structure preserving transformation. Leroy reported 58), his
efforts on implementing a provably-correct compiler for a subset of C. Lerner, et
al. 56),57) presented ways to automatically prove the correctness of compiler opti-
mizations once and for all. All these techniques have been successfully applied to
the compiler domain, and can provide new directions for verification of the HLS
process.
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