
IPSJ SIG Technical Report

Energy-Efficient Computation Models for Cluster Systems

AILIXIER AIKEBAIER,†1 YAN YANG,†1 TOMOYA ENOKIDO†2

and MAKOTO TAKIZAWA †1

Information systems are composed of various types of computers interconnected in net-
works. In addition, information systems are being shifted from the traditional client-server
model to the peer-to-peer (P2P) model. The P2P systems are scalable and fully distributed
without any centralized coordination. It is getting more significant to discuss how to reduce
the total electric power consumption of computers in information systems in addition to
developing distributed algorithms to minimize the computation time. In this paper, we do
not discuss the micro level like the hardware specification of each computer. We discuss a
model to show the relation of the computation and the total power consumption of multiple
peer computers to perform types of processes at macro level. We also discuss algorithms
for allocating a process to a computer so that the deadline constraint is satisfied and the total
power consumption is reduced.

1. Introduction

Information systems are getting scalable so that various types of computational de-
vices like server computers and sensor nodes1) are interconnected in types of networks
like wireless and wired networks. Various types of distributed algorithms 6) are so far de-
veloped, e.g. for allocating computation resources to processes and synchronizing mul-
tiple conflicting processes are discussed to minimize the computation time and response
time, maximize the throughput, and minimize the memory space. On the other hand,
the green IT technologies4) have to be realized in order to reduce the consumptions of
natural resources like oil and resolve air pollution on the Earth. In information systems,
total electric power consumption has to be reduced. Various hardware technologies like
low-power consumption CPUs2),3) are now being developed. Biancini et al.8) discuss
how to reduce the power consumption of a data center with a cluster of homogeneous
server computers by turning off servers which are not required for executing a collection

†1 Seikei University
†2 Rissho University

of web requests. Various types of algorithms to find required number of servers in ho-
mogeneous and heterogeneous servers are discussed 5),9). In wireless sensor networks1),
routing algorithms to reduce the power consumption of the battery in a sensor node are
discussed.

In this paper, we consider peer-to-peer (P2P) overlay networks 7) where computers are
in nature heterogeneous and cannot be turned off by other persons different from the
owners. In addition, the P2P overlay networks are scalable and fully distributed with
no centralized coordination. Each peer has to find peers which not only satisfy QoS
requirement but also spend less electric power. First, we discuss a model for perform-
ing processes on a computer. Then, we measure how much electric power a type of
computers spends to perform a Web application process. Next, we discuss simple and
multi-level power consumption models for performing a process in a computer based
on the experiments with servers and personal computers. In the simple model, each
computer consumes maximally the electric power if at least one process is performed.
Otherwise, the computer consumes minimum electric power. The simple model shows
a personal computer with one CPU independently of the number of cores. In the multi-
level model, the energy consumption of a computer depends on how many processes are
concurrently performed. A server computer with multiple CPUs follows the multi-level
model. A request to perform a process like a Web page request is allocated to one of
the computers. We discuss allocation algorithms to reduce not only execution time but
also power consumption in a collection of computers. In the algorithms, processes are
allocated to computers so that the deadline constraints are satisfied based on the laxity
concept.

In section 2, we present a systems model for performing a process on a computer.
In section 3, we discuss a power consumption model obtained from the experiment. In
section 4, we discuss how to allocate each process with a computer to reduce the power
consumption. In section 5, we evaluate the algorithms.

2. Computation Model

2.1 Normalized computation rate
A system S is includes a set C of computers c1, ..., cn (n ≥ 1) interconnected in

reliable networks. A user issues a request to perform a process like a Web page request.

1 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

The process is performed on one computer. There are a set P of application processes
p1, ..., pm (m ≥ 1) which can be performed on any computer in C. A term process
means an application process in this paper.

First, a user issues a request to perform a process ps to a load balancer K . For example,
a user issues a request to read a web page on a remote computer. The load balancer K

selects one computer ci in the set C for a process ps and sends a request to the computer
ci. On receipt of the request, the process ps is performed on the computer ci and a reply,
e.g. Web page is sent back to the requesting user.

Requests from multiple users are performed on a computer c i. A process being per-
formed at time t is current. A process which already terminates before time t is referred
to as previous. Let Pi(t) (⊆ P) be a set of current processes on a computer c i at time
t. Ni(t) shows the number of the current processes in the set P i(t), Ni(t) = |Pi(t)|. Let
P (t) be ∪i=1,...,n Pi(t).

Suppose a process ps is performed on a computer ci. Here, Tis is the total computation
time of ps on ci and minTis shows the computation time Tis where a process ps is exclu-
sively performed on ci, i.e. without any other process. Hence, minT is ≤ Tis for every
process pi. Let maxTs and minTs be max(minT1s, ..., minTns) and min(minT1s, ...,
minTns), respectively. If a process ps is exclusively performed on the fastest computer
ci and the slowest computer cj , minTs = minTis and maxTs = minTjs, respectively.
A time unit (tu) shows the minimum time to perform a smallest process. We assume 1
≤ minTs ≤ maxTs.

The average computation rate (ACR) Fis of a process ps on a computer ci is defined
as Fis = 1 / Tis [1/ tu]. Here, 0 < Fis ≤ 1 / minTis ≤ 1. The maximum ACR maxFis

is 1 / minTis. Fis shows how many percentages of the total amount of computation of
a process ps are performed for one time unit. Let maxFs and minFs be max(maxF1s,
..., maxFns) and min(maxF1s, ..., maxFns), respectively. maxFs and minFs show
the maximum ACRs maxFis and maxFjs for the fastest computer ci and the slowest
computer cj , respectively.

The more number of processes are performed on a computer c i, the longer it takes
to perform each of the processes on c i. Let αi(t) indicate the degradation rate of a
computer ci at time t (0 ≤ αi(t) ≤ 1)[1/tu]. αi(t1) ≤ αi(t2) ≤ 1 if Ni(t1) ≤ Ni(t2) for
every pair of different times t1 and t2. We assume αi(t) = 1 if Ni(t) ≤ 1 and αi(t) < 1 if

Ni(t) > 1. For example, suppose it takes 50 [msec] to exclusively perform a process p s

on a computer ci. Here, minTis = 50. Here, Fis = maxFis = 1/50 [1/msec]. Suppose it
takes 75 [msec] to concurrently perform the process p s with other processes. Here, Fis

= 1/75 [1/msec]. Hence, αi(t) = 50/75 = 0.67 [1/msec].
We define the normalized computation rate (NCR) fis(t) of a process ps on a

computer ci at time t as follows:

fis(t) =

{
αi(t) · maxFis/maxFs [1/tu]
αi(t) · minTs/minTis [1/tu]

(1)

For the fastest computer ci, fis(t) = 1 if αi(t) = 1, i.e. Ni(t) = 1. If a computer ci is
faster than cj and the process ps is exclusively performed on ci and cj at time ti and tj ,
respectively, fis(ti) > fjs(tj). If a process ps is exclusively performed on ci, αis(t) = 1
and fis(t) = maxFis / maxFs. The maximum NRC maxfis shows maxFis / maxFs.
0 ≤ fis(t) ≤ maxfis ≤ 1. fis(t) shows how many steps of a process ps are performed
on a computer ci at time t. The average computation rate (ACR) F is depends on the
size of the process ps while fis(t) depends on the speed of the computer c i.

Next, suppose that a process ps is started and terminated on a computer ci at time stis
and etis, respectively. Here, the total computation time T is is etis - stis.

∫ etis

stis

(fis(t)) dt = minTs ·
∫ etis

stis

αi(t)
minTis

= minTs (2)

If there is no other process, i.e. αi(t) = 1 on the computer ci, fis(t) = maxFis / maxFs =
minTs / minTis. Hence, Tis = etis − stis = minTis. If other processes are performed,
Tis = etis - stis > minTis. Here, minTs shows the total amount of computation to be
performed by the process ps.

Figure 1 shows the NCRs fis(t) and fjs(t) of a process ps which are exclusively
performed on a pair of computers c i and cj , respectively. Here, the computer ci is the
fastest in the computer set C. The NCR fis(t) = maxfis = 1 for stis ≤ t ≤ etis and Tis

= etis - stis = minTs. On the slower computer cj , fjs(t) = maxfjs < 1 and Tjs = etjs -
stjs > minTs. Here, maxfis · minTis = minTs = maxfjs · minTjs from the equation
(2). The areas shown by fis(t) and fjs(t) have the same size minTs(= Tis).

2 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

maxf

0

1

f

f

t
st st

T
et et

is

is

is

is

is

js

js
js

(t)

(t)

Tjs

(=minT)s

Fig. 1 Normalized computation rates (NCRs).

Next, we define the computation laxity Lis(t) [tu] as follows:

Lis(t) = minTs −
∫ t

stis

(fis(x)) dx. (3)

The laxity Lis(t) shows how much computation the computer c i has to spend to perform
up a process ps at time t. Lis(stis) = minTs and Lis(etis) = 0. If the process ps would
be exclusively performed on the computer c i, the process ps is expected to terminate at
time etis = t + Lis(t).

2.2 Simple computation model
There are types of computers with respect to the performance. First, we consider a

simple computation model. In the simple computation model, a computer c i satisfies the
following properties:
[Simple computation model]
1. maxfis = maxfiu for every pair of different processes ps and pu performed on a
computer ci.

2. ∑
ps∈Pi(t)

fis(t) = maxfi. (4)

The maximum NCR maxfi of a computer ci is maxfis for any process ps. This
means, the computer ci is working to perform any process with the maximum clock
frequency. Pi(t) shows a set of processes being performed on a computer c i at time t. In

the simple computation model, we assume the degradation factor α i(t) = 1.
On a computer ci, each process ps starts at time stis and terminates at time etis. We

would like to discuss how fis(t) of each process ps changes in presence of multiple
precesses on a computer ci. A process ps is referred to as precedes another process pu

on a computer ci if etis < stiu. A process ps is interleaved with another process pu

on a computer ci iff etiu ≥ etis ≥ stiu. The interleaving relation is symmetric but not
transitive. A process ps is referred to as connected with another process pu iff (1) ps is
interleaved with pu or (2) ps is interleaved with some process pv and pv is connected
with pu. The connected relation is symmetric and transitive. A schedule sch i of a
computer ci is a history of processes performed on the computer c i. Processes in the
schedule schi are partially ordered in the precedent relation and related in the connected
relation. Here, let Ki(ps) be a closure subset of the processes in the schedule sch i which
are connected with a process ps, i.e. Ki(ps) = {pu | pu is connected with ps}. Ki(ps) is
an equivalent class with the connected relation, i.e. K i(ps) = Ki(pu) for every process
pu in Ki(ps). Ki(ps) is a knot in the schedule schi. The schedule schi is divided into
knots Ki1, . . . , Kili which are pairwise disjointing. Let pu and pv are a pair of processes
in a knot Ki(ps) where the starting time stiu is the minimum and the termination time
etiv is the maximum. That is, the process pu is first performed and the process pv is
lastly finished in Ki(ps). The execution time TKi of the knot Ki(ps) is etiv - stiu.
Let KPi(t) be a current knot which is a set of current or previous processes which are
connected with at least one current process in Pi(t) at time t.
[Theorem] Let Ki be a knot in a schedule schi of a computer ci. The execution time
TKi of the knot Ki is

∑
ps∈Ki

minTis.
Let us consider a knot Ki of three processes p1, p2, and p3 on a computer ci as shown

in Figure 2 (1). Here, Ki = {p1, p2, p3}. First, suppose that the processes p1, p2, and p3

are serially performed, i.e. eti1 = sti2 and eti2 = sti3. Here, the execution time TKi is
eti3 - sti1 = minTi1 + minTi2 + minTi3. Next, three processes p1, p2, and p3 start at
time st and terminate at time et as shown in Figure 2 (2). Here, the execution time TK i

= minTi1 + minTi2 + minTi3. Lastly, let us consider a knot Ki where the processes
are concurrently performed. The processes p1, p2, and p3 start at the same time, sti1 =
sti2 = sti3, are concurrently performed, and the process p 3 lastly terminates at time eti3

after p1 and p2 as shown in Figure 2 (3). Here, the execution time TK i of the knot Ki is

3 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

eti3 - sti1 = minTi1 + minTi2 + minTi3. The current knot KPi(t1) is {p1, p2, p3} and
KPi(t2) is {p1, p2}.

time t

i
p
1

p
2

p
3

time t

maxfi p1
p2
p3

+()

time t

i

p1

p2 p3

(1) Serial execution.

(2) Parallel execution.

(3) Mixed execution.

t1sti1
t1 st i1-

minTi1 minTi2 minTi3

minTi1 minTi2 minTi3+

+()minTi1 minTi2 minTi3+

maxf

maxf

t2

Fig. 2 Execution time of knot.

It depends on the scheduling algorithm how much each NCR f is(t) is in the equation
(4), fis(t) = αis·maxfi where

∑
ps∈Pi(t)

αis = 1. In the fair scheduler, each fis(t) is the
same as the others, i.e. αis = 1/|Pi(t)|:

fis(t) = maxfi / |Pi(t)|. (5)

2.3 Estimated termination time
Suppose there are a set P of processes {p1, . . . , pm} and a set C of computers

{c1, . . . , cn} in a system S. Here, we assume the system S to be heterogeneous, i.e.
some pair of computers ci and cj have different specifications and performance. Sup-
pose a process ps is started on a computer ci at time stis. A set Pi(t) of current processes
are being performed on a computer c i at time t.
[Computation model] Let KPi(t) be a current knot = {pi1, ..., pili} of processes, where
the starting time is st. The total execution time T (st, t) of processes in the current knot

KPi(t) is given as;

T (st, t) = minTi1 + minTi2 + · · · + minTili (6)

In Figure 2 (3), t1 shows the current time. A process p1 is first initiated at time sti1
and is terminated before time t1 on a computer ci. A pair of processes p2 and p3 are
currently performed at time t1. Here, KPi(t) is a current knot {p1, p2, p3} at time t1.
T (sti1, t1) = minTi1 + minTi2 + minTi3. The execution time from time sti1 to t1 is t1
- sti1. At time t1, we can estimate that the concurrent processes p2 and p3 are performed
and terminate at the time t1 + T (stt1, t1) - (t1 - sti1) = sti1 + T (ti1, t1). sti1 is starting
time of the current knot KPi(t).

The estimated termination time ETi(t) of current processes on a computer c i means
time when every current process of time t terminates if no other process would be per-
formed after time t. ETi(t) is given as follows:

ETi(t) = t + T (stis, t) − (t − stis) = stis + T (stis, t) (7)

Suppose a new process ps is started at current time t. By using the equation (7), we
can obtain ETi(t) of the current processes on each computer c i at time t. From the
computation model, ETis(t) of a new process ps starting on a computer ci at time t is
given as follows [Figure 3]:

ETis(t) = ETi(t) + minTis (8)

3. Power Consumption Models

3.1 Simple model
In this paper, we assume the simple computation model is taken for each computer,

i.e. the maximum clock frequency to be stable for each computer c i. Let Ei(t) show
the electric power consumption of a computer c i at time t [W/tu] (i = 1, . . . , n). maxEi

and minEi indicate the maximum and minimum electric power consumption of a com-
puter ci, respectively. That is, minEi ≤ Ei(t) ≤ maxEi. maxE and minE show

4 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

max(maxE1, ..., maxEn) and min(minE1, ..., minEn), respectively. Here, minEi

shows the power consumption of a computer c i which is in idle state.
We define the normalized power consumption rate (NPCR) e i(t) [1/tu] of a computer

ci at time t as follows:

ei(t) = Ei(t)/maxE (≤ 1). (9)

Let minei and maxei show the maximum power consumption rate minE i / maxE

and the minimum one maxEi / maxE of the computer ci, respectively. If the fastest
computer ci maximumly spends the electric power with the maximum clock frequency,
ei(t) = maxei = 1. In the lower-speed computer cj , i.e. maxfj < maxfi, ej(t) = maxej

< 1.
We propose two types of power consumption models for a computer c i, simple and

multi-level models. In the simple model, ei(t) is given depending on how many number
of processes are performed as follows:

ei(t) =

{
maxei if Ni(t) ≥ 1.

minei if otherwise.
(10)

A personal computer with one CPU satisfies the simple model as discussed in the
experiments of the succeeding section.

3.2 Multi-level model
In the multi-level model, the electric power consumption of a computer c i depends

on how many number of processes are concurrently performed on the computer c i. The
NPCR ei(t) of a computer ci at time t is given as follows:

ei(t) =

{
βi(t) · maxei if Ni(t) ≥ 1.

minei if otherwise.
(11)

Here, the factor βi(t) shows how much the power consumption is degraded depending
on the number of processes being concurrently performed on the computer c i at time t,
i.e. minei / maxei ≤ βi(t) ≤ 1 if Ni(t) ≥ 1. βi(t1) < βi(t2) if Ni(t1) < Ni(t2).

In a computer ci with multiple CPUs, the NPCR ei(t) depends on how many number
of CPUs are active independently of the number of cores in each CPU. The NCPR e i(t)

depends on the number of active CPUs. The number of active CPUs depends on the
scheduling algorithm to allocate processes to CPUs.

3.3 Total power consumption
The total normalized power consumption TPC i(t1, t2) of a computer ci from time t1

to time t2 is given as follows:

TPCi(t1, t2) =
∫ t2

t1

ei(t)dt (12)

Next, TPC1·(t1, t2) ≤ t2 - t1. In the fastest computer ci, TPC1·(t1, t2) = maxei·(t2
- t1) = t2 - t1 if at least one process is performed at any time from t1 to t2 in the simple
model.

Let Ki be a knot of a computer ci whose starting time is sti and termination time is eti.
The normalized total power consumption of the computer c i to perform every process in
the knot Ki is TPCi(sti, eti). In the simple model, TPCi(sti, eti) =

∫ eti

sti
maxeidt =

(eti - sti) · maxei =
∑

ps∈Ki
minTis · maxei.

4. Process Allocation Algorithms

4.1 Round-robin algorithms
We consider two types of the round-robin algorithms, weighted round robin (WRR) 20)

and weighted least connection (WLC)21) algorithms. For each of the WRR and WLC
algorithms, we consider two cases, Per (performance) and Pow (power). In Per the
weight is given in terms of the performance ratio of the servers. That is, the higher
performance a server supports, the more number of processes are allocated to the server.
In Pow, the weight is defined in terms of the power consumption ratio of the servers. The
less power a server consumes, the more number of processes are allocated to the server.

4.2 Laxity-based algorithm
Some application has the deadline constraint TCs on a process ps issued by the ap-

plication, i.e. a process ps has to terminate until the deadline. Here, a process ps has to
be allocated to a computer ci so that the process ps can terminate by the deadline TCs.
Cs (t) denotes a set of computers which satisfy TCs, i.e. Cs (t) = {ci | ETis(t) ≤ TCs}.
That is, in a computer ci in Cs (t), the process ps is expected to terminate by TCs. Here,
if the process ps is allocated to one computer ci in Cs(t), the process ps can terminate

5 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

before TCs.

time t

p1

p2 p3

minTi1+()

tst i1

ps

ETis

ETi

minTi2 minTi3+ minTis

maxf

0

Fig. 3 Expected termination time ETis.

Next, we assume that the NPCR ei(t) of each computer ci is given as equation (10)
according to the simple model. We can estimate the total power consumption laxity
leis(t) of a process ps between time t and ETis(t) at time t when the process ps is
allocated to the computer ci [Figure 4]. leis(t) of the computer ci is given as equation
(13):

leis(t) = maxei ∗ (ETis(t) − t) (13)

Suppose a process ps is issued at time t. A computer ci in the computer set C is se-
lected for the a process ps with the constraint TCs at time t as follows:

Alloc(t, C, ps, TCs) {
Cs = φ; NoCs = φ;
for each computer ci in C, {

if ETis(t) ≤ TCs, Cs = Cs ∪ {ci};
else /* ETis(t) > TCs */ NoCs = NoCs ∪ {ci}; }

if Cs �= φ, { /* candidate computers are found */
computer = ci such that leis(t) is the minimum in Cs;
return(computer); }

else { /* Cs = φ */

computer = ci such that ETis(t) is minimum in NoCs;
return(computer);

}
}

Cs and NoCs are sets of computers which can and cannot satisfy the constraint TC s,
respectively. Here, Cs ∪ NoCs = C and Cs ∩ NoCs = φ.

In the procedure Alloc, if there is at least one computer which can satisfy the time
constraint TCs of process ps, one of the computers which consumes the minimum power
consumption is selected. If there is no computer which can satisfy the application time
constraint TCs, one of the computers which can most early terminate the process p s is
selected in the computer set C.

time t

i

p1

p2 p3

)

tsti1

ps

time t

maxei

mine i

maxe * (ET (t) - t)isi

ET is

minTi1+(minTi2 minTi3+ minTis

maxf

ei (t)

f i (t)

0

Fig. 4 Estimation of power consumption.

5. Evaluation

5.1 Environment
We measure how much electric power computers consume for Web applications. We

6 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

consider a cluster system composed of Linux Virtual Server (LVS) systems which are
interconnected in gigabit networks as shown in Figure 5. The NAT based routing system
VS-NAT12) is used as the load balancer K . The cluster system includes three servers s1,
s2, and s3 in each of which Apache 2.011) is installed, as shown in Table 1. The load
generator server L first issues requests to the load balancer K . Then, the load balancer
K assigns each request to one of the servers according to some allocation algorithm.
Each server si compresses the reply file by using the Deflate module13) on receipt of a
request from the load generator server L.

We measure the peak consumption of electric power and the average response time of
each server si (i = 1, 2, 3). The power consumption ratio of the servers s 1, s2, and s3

is 0.9 : 0.6 : 1 as shown in Table 1. On receipt of a Web request, each server s i finds
a reply file of the request and compresses the reply file by using the Deflate module.
The size of the original reply file is 1Mbyte and the compressed reply file is 7.8Kbyte
in size. The Apache benchmark software10) is used to generate Web requests, where the
total number 10,000 of requests are issued where 100 requests are concurrently issued
to each server. Here, the performance ratio of the servers s 1, s2, and s3 are 1 : 1.2 : 4 as
shown in Table 1. Thus, s3 is the fastest and mostly consumes the electric power. The
server s1 is slower than s3 but more consumes the electric power than s2.

 server 1

 server 2

 server 3

Load balancer

Gbit switchGbit switch

Load generation server

Virtual server

L K

s

s

s

1

2

3

Fig. 5 Cluster system.

5.2 Experimental results
If the weight is based on the performance ratio (Per), the requests are allocated to the

servers s1, s2, and s3 with the ratio 1 : 1.2 : 4, respectively. On the other hand, if the

weight is based on the power consumption ratio (Pow), the requests are allocated to the
servers s1, s2, and s3 with the ratio 0.9 : 0.6 : 1, respectively. Here, by using the Apache
benchmark software, the load generation server L transmits totally 100,000 requests to
the servers s1, s2, and s3 where six requests are concurrently issued to the load balancer
K . The total power consumption of the cluster system and the average response time
of a request from a web server are measured. We consider a static web server where
the size of a reply file for a request is not dynamically changed, i.e. the compressed
version of the same HTML reply file is sent back to each user. In this experiment, the
original HTML file and the compressed file are 1,025,027 [Byte] and 13,698 [Byte] in
size, respectively. On the load balancer K , types of process allocation algorithms are
adopted; the weighted round-robin (WRR)20) algorithms, WRR-Per and WRR-Pow; the
weighted least connection (WLC)21) algorithms, WLC-Per and WLC-Pow.

Figure 6 shows the total power consumption [W/H] of the cluster system for time.
In WRR-Per and WLC-Per, the total execution time and peak power consumption are
almost the same. In addition, the total execution time and peak power consumption are
almost the same in WRR-Pow and WLC-Pow. This experimental result shows that the
total power consumption and total execution time are almost the same for the two allo-
cation algorithms if the same weight ratio is used. Here, if the weight of the load balance
algorithm is given in terms of the performance ratio (Per), the peak power consumption
is higher than Pow. However, the total execution time of Per is longer than Pow.

Here, the total power consumption is calculated by the multiplication of the execution
time and power consumption. The experiment shows the total power consumption is
reduced by using the performance based weight (Per).

6. Concluding Remarks

In this paper, we discussed the simple and multi-level power consumption models
of computers. The simple model shows a computer with one CPU while the multi-level
model denotes a computer with multiple CPUs. We discussed the laxity-based algorithm
to allocate a process to a computer so that the deadline constraint is satisfied and the
total power consumption is reduced on the basis of the laxity concept. We obtained
experimental results on electric power consumption of Web servers. We evaluated the
simple model through the experiment of the PC cluster. Then, we showed the PC cluster

7 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

IPSJ SIG Technical Report

Table 1 Servers

Server 1 Server 2 Server 3
Number of CPUs 1 1 2
Number of cores 1 1 2

CPU Intel Pentium 4 (2.8GHz) AMD Athlon 1648B (2.7GHz) AMD Opteron 2216HE (2.4GHz)
Memory 1,024MB 4,096MB 4096MB

Maximum computation rate 1 1.2 4
Maximum power 0.9 0.6 1

consumption rate maxei

 340

 360

 380

 400

 420

 440

 460

 480

 500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Po
w

er
 c

on
su

m
pt

io
n

[W
/H

]

Execution time [min]

WRR Performance
WLC-Performance

WRR Power
WLC Power

Fig. 6 Power consumption.

follows the simple model. We are now considering types of applications like database
transactions and measuring the power consumption of multi-CPU servers.

References

1) I. F. Akyildiz and I. H. Kasimoglu.: Wireless Sensor and Actor Networks: Research Chal-
lenges. Ad Hoc Networks journal (Elsevier), 2:351.367, 2004.

2) AMD, http://www.amd.com/.
3) Intel, http://www.intel.com/.
4) Green IT, http://www.greenit.net.
5) T. Heath, B. Diniz, E. V. Carrera, W. Meira, R. Bianchini.: Energy Conservation in Hetero-

geneous Server Clusters. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming(2005), pp. 186-195.

6) Nancy A. Lynch, Distributed Algorithms. Morgan Kaufmann Publisher, 1st edition (April
1997), ISBN-10: 1558603484.

7) A. Montresor.: A robust Protocol for Building Superpeer overlay Topologies. In: Proc. of

the 4th International Conference on Peer-to-Peer Computing, pp. 202-209, 2004.
8) R. Bianchini and R. Rajamony.: Power and Energy Management for Server Systems. IEEE

Computer, volume 37, number 11, November 2004. Special issue on Internet data centers.
9) K. Rajamani and C. Lefurgy.: On Evaluating Request-Distribution Schemes for Saving En-

ergy in Server Clusters. In: Proc of the 2003 IEEE International Symposium on Performance
Analysis of Systems and Software, pp. 111-122, 2003.

10) ab - Apache HTTP server benchmarking tool, http://httpd.apache.org/docs/2.0/programs/ab.html.
11) Apache 2.0, http://httpd.apache.org/.
12) VS-NAT, http://www.linuxvirtualserver.org/.
13) Apache Module mod-deflate, http://httpd.apache.org.
14) M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Reserves: A Mechanism for Resource

Management in Cluster-Based Network Servers. In Proceedings of the International Confer-
ence on Measurement and Modeling of Computer Systems, pp. 90-101, 2000.

15) A. Bevilacqua. A Dynamic Load Balancing Metthod on a Heterogeneous Cluster of Work-
stations. Informatica, 23(1): 49-56, March 1999.

16) R. Bianchini and E. V. Carrera. Analytical and Experimental Evaluation of Cluster-Based
WWW Servers. World Wide Web journa, 3(4), Decembar 2000.

17) T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and R. Bianchini. Self-Configuring Heteroge-
neous Server Clusters. In Proceedings of the Workshop on Compilers and Operating Systems
for Low Power, 2003.

18) K. Rajamani and C. Lefurgy. On Evaluating Request-Distribution Schemes for Saving En-
ergy in Server Clusters. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, pp. 111-122, 2003.

19) M. Colajanni, V. Cardellini, and P. S. Yu. Dynamic Load Balancing in Geographically Dis-
tributed Heterogeneous Web Servers. In Proceeding of the 18th International Conference on
Distributed Computing Systems, pp. 295, 1998.

20) Weighted Round Robin (WRR), http://www.linuxvirtualserver.org/docs/scheduling.html.
21) Weighted Least Connection (WLC), http://www.linuxvirtualserver.org/docs/scheduling.html.

8 c© 2009 Information Processing Society of Japan

Vol.2009-DPS-140 No.2
2009/9/10

