
IPSJ SIG Technical Report

Efficient Enumeration of All Ladder Lotteries with k Bars

Katsuhisa Yamanaka†1 and Shin-ichi Nakano †2

A ladder lottery, known as the “Amidakuji” in Japan, is a network with n
vertical lines and many horizontal lines each of which connects two consecutive
vertical lines. Each ladder lottery corresponds to a permutation. Ladder lotter-
ies are frequently used as natural models in many areas. Given a permutation
π, an algorithm to enumerate all ladder lotteries of π with the minimum num-
ber of horizontal lines are known. In this paper, given a permutation π and an
integer k, we design an algorithm to enumerate all ladder lotteries of π with
exactly k horizontal lines.

1. Introduction

A ladder lottery, known as the “Amidakuji” in Japan, is a common way to
choose an assignment randomly. Formally, a ladder lottery of a permutation
π = (p1, p2, . . . , pn) is a network with n vertical lines (lines for short) and many
horizontal lines (bars for short) as follows (see Fig. 1). The i-th line from the left
is called line i. The top ends of the n lines correspond to π. The bottom ends
of the n lines correspond to the identical permutation (1, 2, . . . , n). Each bar
connects two consecutive lines. Each number pi in π starts at the top end of line
i, and goes down along the line, then whenever pi comes to an end of a bar, pi

goes horizontally along the bar to the other end, then goes down again. Finally
pi reaches the bottom end of line pi. We can regard a bar as a modification of
the “current” permutation. In a ladder lottery a sequence of such modifications
always results in the identical permutation (1, 2, . . . , n).

The ladder lotteries are strongly related to primitive sorting networks, which
are deeply investigated by Knuth [2]. A comparator in a primitive sorting network

†1 Graduate School of Information Systems, The University of Electro-Communications, 1-5-1
Chofugaoka, Chofu, Tokyo 182-8585, Japan. yamanaka@is.uec.ac.jp

†2 Department of Computer Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-
8515, Japan. nakano@cs.gunma-u.ac.jp

62

4 2

2

2

4

4

4

4

6

6

6

6

6

6

4

1

1

1

1

5

5

5

5

5

3

3

3

3

1 2 3 4 5 6

6

6

1

1

Fig. 1 A ladder lottery of the permuta-
tion (2,6,4,1,5,3) with 14 bars.

62

2

4

4

4

6

6

6

6

4

1

1

1

1

5

5

5

3

3

3

3

1 2 3 4 5 6

Fig. 2 An optimal ladder lottery of the
permutation (2,6,4,1,5,3).

replaces pi and pj by min (pi, pj) and max (pi, pj), while a bar in a ladder lottery
always exchanges them.

Given a permutation π = (p1, p2, . . . , pn) the minimum number of bars to
construct ladder lotteries of π is equal to the number of “reverse pairs” in π,
which are pairs (pi, pj) in π with pi > pj and i < j. A ladder lottery of π with the
minimum number of bars is optimal. The ladder lottery in Fig. 2 has eight bars,
and its corresponding permutation (2,6,4,1,5,3) has eight reverse pairs: (2,1),
(6,4), (6,1), (6,5), (6,3), (4,1), (4,3) and (5,3), so the ladder lottery is optimal.

In [7] we gave an algorithm to enumerate all optimal ladder lotteries of a given
permutation π. The algorithm generates all optimal ladder lotteries of π in O(1)
time for each. The idea of our algorithm in [7] is as follows. We first define a
tree structure Tπ, called the family tree, among optimal ladder lotteries, in which
each vertex of Tπ corresponds to each optimal ladder lottery and each edge of Tπ

corresponds to a relation between two optimal ladder lotteries. Then we design an
efficient algorithm to generate all child vertices of a given vertex in Tπ. Applying
the algorithm recursively from the root of Tπ, we can generate all vertices in Tπ,
and also corresponding optimal ladder lotteries. Based on such tree structure,
but with some other ideas, a lot of efficient enumeration algorithms are designed
[1, 4, 5].

However the algorithm in [7] works only if the number of bars is minimum. In
this paper we generalize the algorithm to enumerate all ladder lotteries in Sπ,k,

1 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

Fig. 3 The family tree Tπ,k, where π = (4, 2, 3, 1) and k = 7.

which is the set of all ladder lotteries of a given permutation π with exactly k

bars. The algorithm enumerates all ladder lotteries in Sπ,k in O(1) time for each.
Note that if k is smaller than the number of reverse pairs in π then Sπ,k = ϕ.
Also if the parity of k does not match the parity of the number of reverse pairs
in π then Sπ,k = ϕ. In this paper we design a new family tree (see Fig. 3) to
enumerate all ladder lotteries in Sπ,k for any k.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines the tree structure among ladder lotteries in Sπ,k. Section 4 gives
an efficient algorithm to enumerate all ladder lotteries in Sπ,k. Finally Section 5
is a conclusion.

2. Preliminary

A ladder lottery L of a permutation π = (p1, p2, . . . , pn) is a network with n

vertical lines (lines for short) and many horizontal lines (bars for short) as follows.
The i-th line from the left is called line i. The top ends of the n lines correspond

to π. The bottom ends of the n lines correspond to the identical permutation
(1, 2, . . . , n). Each bar connects two consecutive vertical lines. See Fig. ??. Each
number pi in π starts the top end of line i, and goes down along the line, then
whenever pi comes to an end of a horizontal bar, pi goes to the other end, then
goes down again. Finally pi reaches the bottom end of line pi. This path is called
the pi-route. We can regard a bar as a modification of the “current” permutation.
In a ladder lottery a sequence of such modifications always results in the identical
permutation (1, 2, . . . , n).

Let π = (p1, p2, . . . , pn) be a permutation. A reverse pair in π is a pair (pi, pj)
with pi > pj and i < j. A reverse pair is called “inversion” in the area of algebra.
Let r be the number of reverse pairs in π. We can observe that any ladder lottery
of π contains at least r bars, since each bar “cancels” exactly one reverse pair
in the “current” permutation (see, e.g., [3, 5.3.4 Fig. 45]). If a ladder lottery L

contains exactly r bars, then we say that L is optimal.
A swap operation, which corresponds the notion of “braid relation” in the area

of algebra, is a local modification of a ladder lottery as shown in Fig. 4. Note that
each dashed circle contains exactly three bars. Applying this modification to a
ladder lottery of π resutls in other ladder lottery of π, since the local permutation
consisting of the modified three bars remains as it was. A swap operation (a) to
(b) in Fig. 4 is called a left swap operation to bar bu. Note that in Fig. 4 the left
swap operation moves bar bu from the (upper) right of the 5-route to the (lower)
left, and to apply the left swap operation we need some route, say the 3-route,
to be left-turned there. Similarly, a local swap operation (b) to (a) in Fig. 4 is
called a right swap operation to bar bd. Note that the operation moves bar bd

from the left of the 5-route to the right.
A redundant pair is a pair of parallel bars appearing consecutively between the

same pair of lines. In Fig. 5 examples are shown in the dashed circles. A left
warp operation is a modification of a ladder lottery as shown in Fig. 5, in which
(1) remove some redundant pair, then (2) append it at the lower left corner. The
reverse operation is called a right warp operation.

3. The Family Tree

Let Sπ,k be the set of all ladder lotteries of a given permutation π =

2 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

(a)

5 2 4 3

5

5

5

2 4

4

4

3

3

3

3

3

1

1

1

1

5

5
5

5

3

5

2

2

4

4

4

3
3

3
5

5
3

3

5

3

1

1

1

1 5

1 2 3 4 5

2
2

2

3

3

2

2

1

(b)

5 2 4 3 1

1 2 3 4 5

left-swap

right-swap

bu

bd

b

Fig. 4 A local swap operation.

(a) (b)

left-warp

right-warp

62

4 2

2

2

2

2

4

4

4

4

6

6

6

6

6

6

4

1

1

1

1

1

1

5

5

5

5

5

3

3

3

3

1 2 3 4 5 6

62

4 2

2

2

4

4

4

4

6

6

6

6

6

6

4

1

1

1

1

5

5

5

5

5

3

3

3

3

1 2 3 4 5 6

6

6

1

1

Fig. 5 A warp operation.

(p1, p2, . . . , pn) with exactly k bars. Assume that k is not smaller than the num-
ber of reverse pairs in π, and the parity of k and the number of reverse pairs
match.

In this section we design a tree structure Tπ,k among Sπ,k, in which each vertex
of Tπ,k corresponds to a ladder lottery in Sπ,k, and each edge corresponds to a
relation between two ladder lotteries.

Assume Sπ,k ̸= ϕ. Pick up any Ln ∈ Sπ,k. Observe the n-route in Ln. The
n-route partitions Ln into the upper part LU

n and the lower part LL
n . We say

Ln is n-clean if (i) LU
n has no bar and (ii) the n-route is x-monotone. If Ln

is n-clean then removing the n-route from Ln then patching LU
n and LL

n , as
shown in Fig. 6, results in a ladder lottery, say Ln−1, in Sπ′ ,k−1, where π

′
is

the permutation derived from π by removing n. Similarly observe the (n − 1)-

4 6 3 2 1 5

1 2 3 4 5 6

4 6 3 2 1 5

1 2 3 4 5 6

4 3 2 1 5

1 2 3 4 5

Ln
Ln

L

Ln
U

Ln-1




Fig. 6 The removal of the n-path.

route in Ln−1. We say Ln−1 is (n − 1)-clean if (i) LU
n−1 has no bar and (ii) the

(n − 1)-route is x-monotone. Repeat this process until some non-clean ladder
lottery appears or L2 is derived. If Li is i-clean for each i = 3, 4, . . . , n, then Ln

is called the root lottery of Sπ,k, denoted by R (See Figs 8 and 12). Otherwise we
define the clean level of Ln as follows. The clean level of Ln is c if Li is i-clean
for i = n, n − 1, . . . , c but not (c − 1)-clean. Especially if Ln is not n-clean then
the clean level of Ln is n+1, and the clean level of R is 3. Note that if Ln ∈ Sπ,k

has the clean level c, then n-route, (n − 1)-route, . . . , c-route form so called “a
brick structure,” as follows.

For each pa ≥ c in π, let (q1, q2, . . . , qb) be the decreasing list of numbers each
of which is larger than pa and locating to the left of pa in π. In Ln, the pa-route
first go left b times, along the bars sharing with q1-route, q2-route, . . ., qb-route,
then turn, then go right pa − a + b times. Note that on the right side of the
pa-route with pa ≥ c, every x-route with x < c is x-monotone (left-down), every
bar is on the y-route for some y > pa, and there is no bar which can be left
swap. (Otherwise there exists some route with left-turn, a contradiction.) Also
either (1) Ln has at least one bar in the region below the c-route and above
the (c − 1)-route, or (2) the (c − 1)-route is not x-monotone in Lc−1. See some
examples in Fig. 7. The region is called the active region of Ln. Especially, we
define the active region of R is ϕ for convenience (in the proof of Lemma 3.2).

Now we assign a parent ladder lottery in Sπ,k for each ladder lottery Ln in
Sπ,k −{R} as follows. We assume that Ln has the clean level c. Let AP (Active
Path) be the maximal x-monotone subpath of the (c − 1)-route ending at the

3 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

b

b

2 7 6 4 5 1 3

1 2 3 4

k=7

(a)

5 6 7

3 6 7 1 5 4 2

1 2 3 4

k=5

(b)

5 6 7

2 6 7 1 5 3 4

1 2 3 4

k=5

(c)

5 6 7

Fig. 7 The active regions.

P(P(L  ))

3 5 4 1 2

1 2 3 4 5

3 5 4 1 2

1 2 3 4 5

3 5 4 1 2

1 2 3 4 5

3 5 4 1 2

1 2 3 4 5

3 5 4 1 2

1 2 3 4 5

Ln P(L  )n n R=P(P(P(P(L  ))))nP(P(P(L  )))n

Fig. 8 The sequence of a ladder lottery Ln of (3,5,4,1,2) with exactly 11 bars.

bottom of line c − 1. Note that AP is never left-down. We say a bar b

connecting line l and l + 1 is upward visible from AP if (1) the lowest end of
a bar on l above AP is the end of b, and (2) the lowest end of a bar on l + 1
above AP is the end of b. Note that if b is upward visible from AP then b can
be left-swapped and other upward visible bar from AP never has an end on line
l nor l + 1. Thus the number of the upward visible bars from AP is at most n

2 .
Now we define the parent ladder lottery of Ln ∈ Sπ,k −{R}, as follows. We have
the following two cases.

Case 1: The active region has at least one visible bar from AP .
Among the upward visible bars from AP , the rightmost bar is called the active

bar of Ln. In Figs. 7(a) and (b), b is the active bar. Apply the left swap operation
to the active bar and let P (Ln) be the derived ladder lottery.
Case 2: The active region has no visible bar from AP .

Then at the left end of AP there exists a redundant pair, which is called the
active pair. See Fig. 7(c). Apply the left warp operation to the active pair and
let P (Ln) be the derived ladder lottery.

We say P (Ln) is the parent ladder lottery of Ln, and Ln is a child ladder lottery
of P (Ln). Note that the parent ladder lottery of Ln is unique, while P (Ln) may
have many children. Also note that the clean level of P (Ln) is smaller than or
equal to the clean level of Ln, and if they have the same clean level then P (Ln)
has less or equal number of bars in the active region, and if they have the same
number of bars in the active region then P (Ln) has shorter AP .

We have the following lemma.
Lemma 3.1 For any Ln ∈ Sπ,k − {R}, P (Ln) ∈ Sπ,k holds.
Proof. Since the each of the two operations to derive the parent reserves the
permutation.

¤
Given a ladder lottery Ln in Sπ,k − {R}, by repeatedly finding the parent

ladder lottery of the derived ladder lottery, we can have the unique sequence
Ln, P (Ln), P (P (Ln)), . . . of ladder lotteries in Sπ,k, which eventually ends up
with the root R. See Fig. 8. The active bars and the active pairs are depicted
by thick lines.

We have the following lemma.
Lemma 3.2 The sequence Ln, P (Ln), P (P (Ln)), . . . of Ln ∈ Sπ,k − {R} ends
with R ∈ Sπ,k.
Proof. For each Ln ∈ Sπ,k we define its clean potential C(Ln) = (s, t, u), where
s is the clean level of Ln, t is the number of bars in the active region of Ln

and u is the length of AP . For L1, L2 ∈ Sπ,k with C(L1) = (s1, t1, u1) and
C(L2) = (s2, t2, u2), we say L1 is cleaner than L2 if (1) s1 < s2, (2) s1 = s2 and
t1 < t2, or (3) s1 = s2, t1 = t2 and u1 < u2. For any Ln ∈ Sπ,k we can observe
that P (Ln) is cleaner than Ln and R is the cleanest among Sπ,k. Thus for any
Ln ∈ Sπ,k the sequence of clean potentials C(Ln), C(P (Ln)), C(P (P (Ln))), . . .
always ends at C(R). ¤

By merging all these sequences we can have the family tree of Sπ,k, denoted by
Tπ,k, in which the root of Tπ,k corresponds to R, the vertices of Tπ,k correspond

4 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

to the ladder lotteries in Sπ,k and each edge corresponds to a relation between a
ladder lottery in Sπ,k and its parent. See Fig. 3. The active bars and the active
pairs are depicted by thick lines.

4. Enumerating All Ladder Lotteries

In this section we give an efficient algorithm to enumerate all ladder lotteries
in Sπ,k.

If we have an algorithm to enumerate all children of a given ladder lottery in
Sπ,k, then by recursively applying the algorithm starting at the root R of Sπ,k,
we can enumerate all ladder lotteries in Sπ,k. Now we design such an algorithm.

We need some definitions. Let Ln ∈ Sπ,k with π = (p1, p2, . . . , pn). Assume Ln

has the clean level c. So each bar locating on the right of the c-route is contained
in some x-route with x > c, but either (1) in the active region (See Fig. 7) there
is at least one bar which is not contained in any x-route with x ≥ c−1 or (2) the
(c − 1)-route is not x-monotone. Each x-route with x ≥ c goes left along bars
(sharing with larger routes), “turns,” then goes right along bars (sharing with
smaller routes). For each x-route with x ≥ c, if b is the first bar to go right after
bars to go left, then b is called the turn bar of x. Note that only if the x-route
contains both at least one bar to left and one bar to right, the x-route has the
turn bar. Otherwise if the x-route contains only bars to left (or right) then the
x-route is x-monotone in Ln and has no turn bar. Also note that the turn bar is
defined only for the x-route with x ≥ c. In the next lemma we show that on the
x-route with x ≥ c, only turn bars has a chance to be right swapped.
Lemma 4.1 Let Ln be a ladder lottery having the clean level c. On the x-route
with x ≥ c only the turn bar has a chance to be right swapped.
Proof. Since Ln has the clean level c, the x-route of each x ≥ c first goes left
along bars, turns, then goes right along bars. See Fig. 4(b). A bar bd can be
right swapped only if the vertical segment between the left end of bd and the left
end of b has no right end of other bars. Here the route passes b, then left-turn,
then passes bd. Thus on the x-route with x ≥ c, only the turn bar has a chance
to satisfy the condition. See an example in Fig. 9. The turn bars of the 9-route
and the 7-route can be right swapped, but the turn bar of the 8-route can not
be. ¤

10 8 9 7 4

6 7 8 9 10

Fig. 9 Illustration for Lemma 4.1.

Let S[Ln, b] be the ladder lottery derived from Ln by applying the right swap
operation to a bar b. If Ln ∈ Sπ,k has the clean level c and has a redundant
pair b at the lower left corner of Ln then let W [Ln, x, l, h] be the ladder lottery
derived from Ln by a right warp operation to b so that (1) b has ends at line l−1
and l, (2) b is on the x-route of W [Ln, x, l, h], (3) b appears at the left end of
AP of W [Ln, x, l, h], and (4) the vertical segment between the left end of b and
the left end of the bar on the x-route above b has exactly h right ends of bars
in W [Ln, x, l, h]. See Fig. 10, where h = 2 corresponds the two white circles.
Every child of Ln is either S[Ln, b] for some b or W [Ln, x, l, h] for some x, l and
h, but not all S[Ln, b] or W [Ln, x, l, h] are children of Ln. S[Ln, b] is a child of
Ln only if b is the active bar of S[Ln, b]. Also W [Ln, x, l, h] is a child of Ln only
if b is the active pair of W [Ln, x, l, h].

Now we first classify each S[Ln, b] into children of Ln and non-children, as
follows. Remember the clean level of Ln is c. Let R(i) be the region on the right
side of the i-route, and L(i) be the region on the left side of the i-route. We have
two types.

Type 1: b is a turn bar.
If b can not be right swapped then S[Ln, b] is not defined. Assume otherwise.
Note that such a bar exists only on the x-routes with x ≥ c. Assume that

b is on the q-route, and in Ln the routes of p, q, r pass through as shown in
Fig. 11(a). Since b is a turn bar of the q-route, q ≥ c and p > q > r hold.

5 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

Ln

x

l-1 l

. . .

W[L  , x, l, h]n

x

l-1 l

b

b

. . .

Fig. 10 Illustration for W [Ln, x, l, h].

b

 Ln n S[L  ,b](a) (b)

p q r p q r

p
q

r
pq

r

b

Fig. 11 Illustration for Type 1.

Now S[Ln, b] is not p-clean since b in S[Ln, b] is not on the x-route with x > p.
Thus the clean level of S[Ln, b] is increased to p + 1, and b is the only bar in
the active region of S[Ln, b]. Since b is upward visible from AP , which is the
maximal x-monotone subpath of the p-route ending at the bottom of line x, b is
the active bar of S[Ln, b]. Thus L[Ln, b] is a child of Ln. Otherwise S[Ln, b] is
not a child of Ln.

Type 2: b can be right swapped but b is not a turn bar.
Such a bar, say b, exists only in L(c)∩L(c+1)∩· · ·∩L(n), and b is “downward”

visible from some x-route, and a right swap operation to b moves b to R(x)
crossing the x-route.

Note that the left boundary of L(c) ∩ L(c + 1) ∩ · · · ∩ L(n) is x-monotone. If
the right swap operation moves b to R(x) crossing the x-route with x ≥ c, then
the clean level of S[Ln, b] is x + 1 and b is the only bar in the new active region
and b is upward visible from AP , so b is the active bar of S[Ln, b]. Thus S[Ln, b]
is a child of Ln.

If the right swap operation moves b to R(c − 1), crossing AP , which is the
maximal x-mononotone subpath of the (c−1)-route ending at the bottom of line
c − 1, then the clean level of S[Ln, b] remains c, and b is appended to the active
region. Assume the active bar of Ln has the left end on line s and b in Ln has the
right end on line t. So b in S[Ln, b] has the right end on line t + 1. If t + 1 ≥ s,
then b is the active bar of S[Ln, b], otherwise b is not. Thus S[Ln, b] is a child of
Ln if and only if t + 1 ≥ s.

If the right swap operation moves b to R(c − 1), crossing the (c − 1)-route but
not AP , then b is not upward visible from AP . Thus S[Ln, b] is not a child of
Ln.

Otherwise the right swap operation moves b to R(x) crossing the x-route with
x < c − 1. The clean level of S[Ln, b] remains c, and b is not the active bar in
S[Ln, b]. Thus S[Ln, b] is not a child of Ln.

Also we classify each W [Ln, x, l, h] into children of Ln and non-children, as
follows.

Type 3: W [Ln, x, l, h].
If Ln has no redundant pair at the lower left corner of Ln then W [Ln, x, l, h]

is not defined. Assume otherwise. Let c be the clean level of Ln.
Each x-route with x ≥ c goes left along bars, “turns,” then goes right along

bars. For each x ≥ c, let ux be the leftmost line on which the x-route passes.
Note that AP is never left-down.

Now for each x ≥ c and each l, where x ≥ l ≥ max (ux, 2), and each possible

6 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

654321

3 6 5 1 4 2

654321

3 6 5 1 4 2

65432

3 6 5 1 4 2

6543

3 6 5 1 4 2

654

3 6 5 1 4 2

65

3 6 5 1 4 2

6

3 6 5 1 4 23 6 5 1 4 2

654321

3 6 5 1 4 2

Fig. 12 Computation of the root R in Sπ,k, where π = (3, 6, 5, 1, 4, 2) and k = 14.

h, W [Ln, x, l, h] is a child of Ln. For l with x ≥ l > ux, W [Ln, x, l, h] is derived
from Ln by removing a redundant pair at the lower left corner, then replace a
suitable bar on the x-route by triple bars. For l = ux, W [Ln, x, l, h] is derived
from Ln by removing a redundant pair at the lower left corner, then appened
a redundant pair so that the redundant pair appears at the left end of AP of
W [Ln, x, l, h]

For x = c − 1 we need to check more carefully. Assume AP of Ln has left end
on line u. If Ln has no active bar, then for each l with c− 1 ≥ l ≥ max (u, 2) and
each possible h, W [Ln, c − 1, l, h] is a child of Ln.

If Ln has the active bar b, then assume it has the left end on line s. Note
that we have u < s. Then for each l with c − 1 ≥ l ≥ s and each possible h,
W [Ln, c−1, l, h] is a child of Ln. Note that the left end of AP of W [Ln, c−1, l, h]
is on line l − 1. For each l with s − 1 ≥ l ≥ max (u, 2), W [Ln, c − 1, l, h] still has
the active bar b, so the parent of W [Ln, c−1, l, h] is not Ln, and W [Ln, c−1, l, h]
is not a child of Ln.

For x < c − 1, W [Ln, x, l, h] is not a child of Ln.
Now we have the following algorithm.

Procedure find-all-children(Ln, c, a)
{ Ln is the current ladder lottery, c is the clean level of Ln,

and a is the active bar or the active pair, and s is the line

on which a has the right end. }
begin

01 Output Ln {Output the difference from the previous one.}
02 for each x ≥ c

03 begin
04 if the turn bar b of the x-route is right swappable
05 then find-all-children(S[Ln, b], x + 1, b)
06 for each downward visible (non-turn) bar b from the x-route
07 find-all-children(S[Ln, b], x + 1, b)
08 end
09 for each downward visible bar b from AP

{b in Ln has the right end on line t.}
10 if t ≥ s − 1 then find-all-children(S[Ln, b], c, b)
11 if Ln has no redundant pair at the lower left corner then return
12 for each x ≥ c

{ux is the leftmost line on which the x-route passes.}
13 for each l = max (ux, 2) to x

14 for each possible h

15 find-all-children(W [Ln, x, l, h], x + 1, ϕ)
16 if Ln has no active bar

{u is the line on which AP of Ln has left end.}
17 for each l = max (u, 2) to c − 1
18 for each possible h

19 find-all-children(W [Ln, x, l, h], c, ϕ)
20 else
21 for each l = s to c − 1
22 for each possible h

23 find-all-children(W [Ln, x, l, h], c, ϕ)
end

7 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15



IPSJ SIG Technical Report

Algorithm find-all-ladder-lotteries(π = (p1, p2, . . . , pn))
begin

01 Compute R

02 for each x ≥ 2
03 if the turn bar b of the x-route is right swappable
04 then find-all-children(S[R, b], x + 1, b)
05 if Ln has no redundant pair at the lower left corner then return
06 for each x ≥ 2
07 for each l = max (ux, 2) to x

08 for each possible h

09 find-all-children(W [R, x, l, h], c, ϕ)
end

By maintaining (i) the clean level c, (ii) the list of downward visible bar from x,
for each x ≥ c− 1 (those are candidate bars to be right swapped, crossing the x-
route), (iii) the active bar, and (iv) the current ladder lottery, we can enumerate
all children of Ln in O(1) time for each on average.
Lemma 4.2 One can enumerate all children of Ln in O(1) time for each on
average.

From the above lemma, we obtain the following theorem.
Theorem 4.3 After computing and outputting the root R in Sπ,k in O(n + k)
time, the algorithm runs in O(|Sπ,k|) time. The algorithm uses O(n+k) working
space.
Proof. We show that the root R in Sπ,k can be generated in O(n + k) time.
See Fig. 12 for a sketch. We start with n vertical lines. Then we append the
j-route for each j = n, n− 1, . . . , 3. Each j-route goes left with some bars, turns,
then goes right with some bars. When we append the j-route the part of route
to go left is already completed, since those bars correspond to the crossing with
the routes of larger numbers. So we only need to append the part to go right,
consisting of x-monotone path. Finally we append the redundant pairs at the
lower left corner. Thus we can compute R in O(n + k) time and space. ¤

By the theorem above, our algorithm generates each ladder lottery in Sπ,k in
O(1) time “on average.” However it may have to return from the deep recursive

calls without outputting any ladder lottery in Sπ,k, after generating a ladder
lottery corresponding to the rightmost leaf of a large subtree in the family tree.
Therefore the next ladder lottery in Sπ,k cannot be generated in O(1) time in
worst case.

By modifying the algorithm so that each ladder lottery at “even” depth in Tπ,k

is output “before” its children, and each ladder lottery at “odd” depth in Tπ,k

is output “after” its children [6], we can output the next ladder lottery in O(1)
time in worst case.
Theorem 4.4 After computing and outputting the root R in Sπ,k in O(n + k)
time, the algorithm enumerates all ladder lotteries in Sπ,k in O(1) time for each.
The algorithm uses O(n + k) working space.

5. Conclusion

In this paper, we gave an algorithm to enumerate all ladder lotteries of a given
permutation π with exactly k bars. Our algorithm uses O(n + k) space and
enumerate all ladder lotteries in Sπ,k in O(1) time for each in worst case.

References

1) D.Avis and K.Fukuda. Reverse search for enumeration. Discrete Appl. Math.,
65(1-3):21–46, 1996.

2) D.E. Knuth. Axioms and hulls. LNCS 606, Springer-Verlag, 1992.
3) D.E. Knuth. The art of computer programming. 3, Addison-Wesley, 2nd edition,

1998.
4) Z.Li and S.Nakano. Efficient generation of plane triangulations without repe-

titions. Proc. The 28th International Colloquium on Automata, Languages and
Programming, (ICALP 2001), LNCS 2076:433–443, 2001.

5) S.Nakano. Efficient generation of triconnected plane triangulations. Comput.
Geom. Theory and Appl., 27(2):109–122, 2004.

6) S.Nakano and T.Uno. Constant time generation of trees with specified diameter.
Proc. the 30th Workshop on Graph-Theoretic Concepts in Computer Science, (WG
2004), LNCS 3353:33–45, 2004.

7) K.Yamanaka, S.Nakano, Y.Matsui, R.Uehara, and K.Nakada. Efficient enumer-
ation of all ladder lotteries. In Proc. The 20th Workshop on Topological Graph
Theory, (TGT20), 150–151, 2008.

8 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.1
2009/9/15


