Special Features: Robotics Based on Al Technology

SEC 7

i

The Role of Games in Artificial Intelligence

Grames as Test Beds for Al Research

Games are excellent test beds for exploring many types
of artificial intelligence research. They abstract some
aspects of complex real-world domains, allowing the
problem solver to focus on critical issues of search and
knowledge representation. This fact was recognized
in the infancy of the computer age, most notably by
Claude Shannon” in his seminal paper on computer
chess: "(1) The problem is sharply defined both in the
allowed operations (the moves) and in the ultimate goal
(checkmate); (2) it is neither so simple as to be trivial
nor too difficult for satisfactory solution; (3) chess is
generally considered to requiring 'thinking' for skillful
play; a solution of this problem will force us either
to admit the possibility of mechanized thinking or to
further restrict our concept of 'thinking’; (4) the discrete
structure of chess fits well into the digital nature of
modern computers."

The advantages of games for Al research become
clearer when considering some of the complexities of
the real world:

1. There are multiple goals, sometimes conflicting,

often poorly defined

2. The allowable actions are rarely explicit, change

over time, and may be effectively infinite

3. Most relevant information is either hidden or too

1152 4#4%115 (EHMAOIE 2003511 B

010

Murray Campbell

IBM T.J. Watson Research Center
mcam@us.ibm.com

voluminous to absorb and process

4. The behavior and motivations of other agents is
hard to discern and predict

5. Building sensors and effectors to interact with the
world is a significant technical challenge all by

itself.

Games make simplifying assumptions on these
conditions, perhaps selectively allowing some
complexity in one or two dimensions. Otherwise, the
problem is so daunting that it is hard to even know
where to begin.

This paper will examine some of reasons why games
have been and continue to be excellent domains for
Artificial Intelligence research. Different games stress
different aspects of intelligence, which allows progress
to be made in each area. Deep Blue, the first chess-
playing computer to defeat the human world champion
in a regulation match, will be described in some detail,
with emphasis on the search and evaluation function.
Finally, a number of areas for future research are
described.

Issues Explored in Game-Playing
Systems

A wide variety of games have been the subject of Al

research”. To achieve high performance in these games,



The Role of Games in Artificial Intelligence

Figure 1: Deep Blue defeated Garry Kasparov in a 1997 match.

many issues must be explored, including search control,
real-time decision making, imperfect information,
randomness, learning, and multi-agent environments.

Almost all games require some form of search control,
i.e., a systematic method of exploring possible future
game states. This is because the size of the search space
is too large to exhaustively explore. Selective search
is one option for controlling search, exploring more
deeply those states that are deemed most important.
An indirect approach is state abstraction, combining
multiple game states into one, which also reduces
complexity.

Most games have real-time aspects to them. Making
a reasonable decision in a limited time is a key area
of research, and numerous techniques have been
developed to address this issue. For example, the
technique of "iterative deepening" (successively
exploring deeper and deeper in the move tree) ensures
that there is always a reasonable move to be made. In
some cases, it is possible to reason explicitly about the
expected benefit of additional computation versus its
cost, using decision theoretic techniques.

In many games, information is hidden from the
players. It is typical to hypothesize properties of this
missing information based on evidence that is revealed
as the game progresses and make move decisions based
on these assumptions. For example, one could conduct
Monte Carlo simulations to identify a good move.

Randomness in games is in part a search control
problem, where the value of a future move being

explored must be weighted by the probability of

020

its occurrence. Monte Carlo simulation is also one
technique that is useful to deal with randomness.

The use of learning to improve game-playing behavior
has long been an important research area, going back to
Arthur Samuel's checkers program in the 1950s. A wide
variety of techniques have been applied, with varying
degrees of success. However, the goal of very high-
performance game playing systems that are able to learn
completely from scratch has only be realized in very
limited domains.

Multi-player games add an additional layer of
complexity. Standard searching methods often become
intractable, and it is often necessary to model the
opponents to better predict them, thereby constraining

the search.

Case Study: The Deep Blue Chess
System

The Deep Blue" computer chess system was developed
at IBM Research in the mid-1990s. In 1997, Deep Blue
became the first computer to defeat the reigning World
Chess Champion in a regulation match (Figure 1).

The most obvious feature of Deep Blue was its
computational power. Deep Blue was a massively
parallel system, comprised of a 30-processor IBM
RS/6000 SP computer and 480 single-chip chess search
engines. The SP computer (leftmost in Figure 2) was
made up of two frames, each containing 15 general-
purpose computers (middle in Figure 2). Each SP

processor, in addition to the standard components,

IPSJ Magazine Vol.44 No.11 Nov. 2003 1153



Special Features: Robotics Based on Al Technology

Disk

RAM

*

CPU and
controllers

ooo

Search
control

Evaluation
function

Move
generator

oo oo
OO oo
OO oo

SP Parallel Computer:
2 frames with 15
processors each

Figure 2: The components of the Deep Blue
system.

contained two microchannel cards, each of which
contained 8 single-chip chess search engines (rightmost
in Figure 2). Each chip was capable of examining over 2
million chess positions per second (Figure 3).

Deep Blue managed the parallelism through the
use of a static processor tree. One SP processor
was designated as the master, and it controlled the
remaining 29 SP processors. The master processed
It

then passed jobs to the worker processors. Each of

the levels of the search tree closest to the root.

the workers processed additional levels in the search
tree, and then passed on jobs to the single-chip search
engines (Figure 4).

The overall average Deep Blue system speed was 126
million chess positions per second. This is in stark
contrast to human Grandmaster chess players, who
have been observed to examine 1-2 chess positions
per second. Clearly the human approach to chess is
dramatically different to that taken by Deep Blue.

In spite of this huge speed advantage, a naive brute-
force approach to chess would have been insufficient
to defeat the top human Grandmasters. In part, this
is because brute-force approaches to chess (and most
other games) are exponential with search depth. This
severely limits the maximum depth of search, and
human Grandmasters can easily demonstrate the

ability to search well beyond the maximum depth

1154 #4%115 (EHMMIE 2003 5E11 B

Single SP processor
with 2 chess cards

030

\ 4

Single chip
chess engine

Piece Placement Table Search control

Move

End Game |
Stack

Evaluator ~ -k

Move
" Generator

L
i |
Evaluation | %
Function _
RAMs

8x1 Systolic Array

Figure 3: The VLSI single-chip chess search engine used in Deep
Blue.

Master
Processor
(Node 1)
Worker Worker
Processor Processor
(Node 2) (Node 30)
Chess Chess Chess Chess
Engine Engine Engine Engine
2-1 2-16 30-1 30-16

Figure 4: Deep Blue is organized as a 3-level hierarchy.



a brute-force system can reasonably be expected to

attain. The key for human players is "selective search",

i.e., searching the tree of possible chess moves to a

variable depth. Properly done, this allows "important"

move sequences to be searched more deeply, and

"unimportant” sequences to be searched less deeply.

Figure 5 illustrates this idea. On the left, a brute force

search can reach a given fixed depth. A selective search,

on the right, allocates some of the available resources to
searching more deeply following important positions

(shown as stars in the figure). This allows the selective

search to search more deeply on important moves.

Considerable effort was spent on implementing and
improving the effectiveness of Deep Blue's selective
search. Our approach was to "extend" interesting
sequences more deeply. A second approach, comple-
mentary to the first, is to "prune" uninteresting
sequences early. Deep Blue's selective search was
purely extension based (we considered pruning too
risky) and used a novel algorithm called "dual credit
with delayed extensions", which attempted to adhere to
the following principles:

1. Extending forced/forcing pairs of moves: The
most important method humans use to search
deeply is to examine forcing sequences in greater
detail. A forcing sequence is one where one or both
sides have very few reasonable choices of moves
(other choices lead to an immediate loss). We
used a method based on our "singular extensions"
algorithm to identify forcing sequences.

. Forced moves are expectation dependent. A move
can be forced for a player if that player expects to
have an advantage, but not forced if the player
expects the position to be even.

. Fractional extensions: It is usually not feasible to
fully extend forcing sequences, since this can cause
the search to "explode". It is possible to measure
the "forcedness" of a sequence, and extend the
sequence in proportion to the degree of forcedness.

. Delaying extensions: A series of forcing moves is
usually much more interesting than an isolated
forcing move, so delaying an extension until
additional forcing moves are seen can be quite
effective.

. Dual credit: Chess is a two-player game, and
sometimes both sides can be forced in sequence.

The dual credit system ensures that the search is

040

The Role of Games in Artificial Intelligence

Fixed-depth search

(brute-force) Selective search

Figure 5: Brute-force versus selective search.

bounded.

6. Preserve the search envelope: Under some
conditions a selective search can loop unless careful
track is kept of previously visited states. These

states are recorded in a hash table.

The resultant search was highly selective. A brute-
force Deep Blue would have searched roughly 14 ply
ahead (a ply is a white move or a black move). The
Deep Blue selective search algorithm ensured that
all move sequences were examined to a minimum
of 12 ply, but was able to search the important move
sequences 30-40 ply deep. This is undoubtedly an
important factor in Deep Blue's 1997 victory.

A less visible but equally important aspect of Deep
Blue was the "evaluation function". An evaluation
function, given a chess position, produces a scalar value
representing the goodness of the position. Positive
values are good for white, while negative values are
good for black. The Deep Blue evaluation function
was quite complex, recognizing approximately 8000
patterns, each of which was assigned a value.

The complexity of the Deep Blue evaluation function
was a mixed blessing. On the one hand, many
important features relevant to assessing a chess
position allow a more accurate evaluation. On the
other hand, assigning appropriate number values
to each of the patterns was an extremely difficult

problem. It is particularly true because the values are

IPSJ Magazine Vol.44 No.11 Nov. 2003 1155



Special Features: Robotics Based on Al Technology

context dependent, varying with the characteristics of
the current state. We experimented with a number of
methods for automatically tuning these values, with
limited success. It is fair to say that the best way to tune
a complex chess evaluation function is an open research
problem, and that the "evaluation function" of human
Grandmasters is in many cases superior to Deep Blue.

One other interesting aspect of Deep Blue that is
relevant to Al is the "extended book". The extended
book was a mechanism to allow Deep Blue to take
advantage of past human Grandmaster experience.
A collection of 700,000 Grandmaster games were
processed, and for some of the positions reached in
these games, a score was computed estimating the value
of each of the moves that Grandmasters had previously
played. The score was based on a large number of
factors, including the number of times a move had been
played, the strength of the players making the move,
and the results of the move. Deep Blue would use this
information to bias its search, preferring moves that had
high scores. Of course if Deep Blue found a strong new
move that had never been played before, it was free to
choose it.

To summarize, Deep Blue used a radically different
approach to playing chess than a human Grandmaster.
While Deep Blue had a less sophisticated evaluation
function than human players, it could compensate
for this by means of an incredibly thorough and deep
search. This, along with various other techniques,

allowed Deep Blue to play chess at the world-class level.

Future Directions

Steady progress continues to be made in improving
the performance of PC-based chess programs. Some
commercially available programs (e.g., Deep Fritz,
Deep Junior) are now challenging the world's top
Grandmasters. However, the focus of game-playing
research has shifted to a number of other areas.

Creating effective learning systems is a serious
challenge for many games. In chess, for example,
preliminary steps have been taken to learn feature
values in an evaluation function, using either examples
for Grandmaster play or by reinforcement-learning-style
approaches. There is considerable work to do before
an evaluation function can be learned from scratch,

especially in discovering potentially useful features

1156 44%115 (EHMAMIE 2003 E11 B

050

(although Gerry Tesauro's TD-Gammon is a notable
exception).

In the area of search, games with large branching
factors (a large number of moves available at each turn)
are proving difficult for computer players. The main
reason is that techniques that have proven successful
in games like chess and checkers do not scale well to
games with large branching factors. Highly selective
search is essential for such games, i.e., search in a more
human style.

Games with imperfect information and randomness
present a whole new set of problems. In a card game
like bridge, Matthew Ginsberg's program GIB has
sophisticated methods for dealing with hidden cards,
and is approaching world-class level. In poker, another
card game, opponent modeling is an important factor
(because of bluffing), and a group at the University
of Alberta has developed a program that is also
approaching world-class level.

While research in traditional strategy games like chess
and Go continues, the future of Artificial Intelligence
game playing research seems to be moving towards
interactive gamesz). There are significant benefits in
developing intelligent characters and complex virtual
worlds that make interactive games more realistic and
interesting. Each genre of interactive computer games
(e.g., action, role-playing, adventure, strategy, sports)
have their own unique challenges. The game roles that
Al can help with include believable tactical enemies,
partners, support characters, etc. Interactive games will
provide a wide variety of challenges to Al researchers
for the foreseeable future.
Acknowledgement I would like to thank Feng-
hsiung Hsu and A. Joseph Hoane, Jr., my collaborators

on the Deep Blue project.

References

1) Campbell, M., Hoane, A.J. and Hsu, FH.: Deep Blue, Artificial
Intelligence, Vol.134, pp. 57-83 (2002).

2) Laird, J.E. and van Lent, M.: Human-level Al's Killer Application:
Interactive Computer Games, AAAI National Conference on Artificial
Intelligence (2000).

3) Schaeffer, J.: A Gamut of Games, Al Magazine, Vol.22, No.3, pp.29-46
(2001).

4) Shannon, C.: Programming a Computer for Playing Chess,
Philosophical Magazine, Vol.41, pp.256-275 (1950).

(Recieved October 5, 2003)



oen



