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Speed-up in mdLVs by Limitation in
Computational Number of Shift

Masami Takata’"  Kinji Kimura''
and Yoshimasa Nakamura''

In a singular value computation using the mdLVs (modified discrete Lotka-Volterra
scheme with shift) scheme, most of the computational time is that for calculating shifts.
In this paper, we aim to perform a speed-up of the mdLVs by using a limitation of the
computational number of shifts. In the proposed algorithm for speed-up, a shift, which is
calculated before some iteration, is successively used in update of shifts. The proposed
algorithm can be expanded into a parallel algorithm for distributed memory systems. To
evaluate the proposed sequential algorithm, we experiment using 100 1,000-dimensional
matrices. As a result, since data on shifts is updated by using an old and safety shift,
accuracy of singular values can be improved. Moreover, since the computational number
of shifts is limited, computational time of the proposed algorithm becomes smaller.
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1. Introduction

Singular value decomposition is known as effective method for investigation of feature in
rectangular matrices. Singular value decomposition is a matrix decomposition of a given
rectangular matrix into a product of nonnegative definite diagonal matrix and two orthogonal
matrices, where elements of the diagonal matrix are singular values and the orthogonal
matrices consist of left and right singular vectors. In general, any rectangular matrix is
decomposed into a product of an upper bidiagonal matrix and orthogonal matrices [1][2].
Note that singular values of the rectangular matrix are equal to those of the bidiagonal matrix.
Therefore, a singular value decomposition of the bidiagonal matrix can be chosen instead of
that of the rectangular matrix.

The QRs scheme [1][2][3][4][5] and the I-SVD (Integrable-Singular Value Decomposition)
scheme [6][7][8][9] are known as today’s standard singular value decomposition schemes for
bidiagonal matrices. The computational time in the I1-SVD scheme is shorter than that in the
QRs scheme [9]. The orthogonality of singular vector in the I-SVD scheme is somewhat
worse than that in the QRs scheme. However, the errors related to singular values and singular
vectors in the I-SVD scheme are smaller than those in the QRs scheme [8].

An increase of data volume for data search system [10] and image processing [11], for
example, which are calculated by using the singular value decomposition, brings us data
matrices of large dimension. Consequently, singular value decompositions with high-speed
should be developed. Hence the I-SVD scheme as well as the QRs must be improved to a
parallel scheme.

In the 1-SVD scheme, once singular values are calculated by using the mdLVs (modified
discrete Lotka-Volterra scheme with shift) scheme, then singular vectors are obtained by using
a singular vector computation with the twisted factorization [6][7]. In the mdLVs scheme,
most of the computational time is that for calculating shifts. Consequently, we aim to perform
a speed-up of the singular value computation by using limitation in number of shift
calculations. In this paper, we propose an improvement of the mdLVs scheme. Note that this
proposed algorithm is expanded into a parallel one of the mdLVs.

In Section 2, we explain the singular value computation by using the mdLVs scheme. In
Section 3, we propose an algorithm, which has a limitation of the number of shifts. In
Section 4, we valid accuracy of singular values and computational time of the proposed
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algorithm. In Section 5, we improve the proposed sequential algorithm into a parallel one for
distributed memory systems.

2. Modified discrete Lotka-Volterra scheme with shift

In Subsection 2.1, we give a summary of the singular value computation based on the dLV
system. In Subsection 2.2, we show the outline of the mdLVs scheme. In Subsection 2.3, a
programming of the mdLVs scheme is described shortly.

2.1 Singular value computation based on the discrete Lotka-Volterra system

In the mathematical biology, the LV (Lotka-Volterra) system is known as a fundamental
prey—predictor model. In some case, the LV system is a completely integrable dynamical
system which has explicit solutions and sufficiently many conservation laws. A time
discretization
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of the LV system is known (cf. [6]). This system also has explicit solution and many
conservation laws. Therefore, it is called the integrable discrete LV (dLV) system. Here k (k =
1, 2,..., 2M-1) indicates the k—th species and the discrete time n (n =0, 1, 2,...) corresponds to
an iteration number of the scheme, u,™ is the value of u, at n, and the arbitrary nonzero
number & ™ is a discrete step-size, and M is the dimension of a matrix. Let the initial value
u® be positive. In the case where & ™ > 0, any subtraction and division by zero do not
occur in Eq.(1) and u(™ is always positive. Consequently, canceling and numerically
instability do not emerge. Let us note here we do not need treat negative numbers in singular
value computations.
The boundary condition and the initial condition are

ug” =0,ufy) =0, ()
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respectively. Here by, (i: 1<i<M) and by are diagonal and upper—subdiagonal elements
of the M xM bidiagonal matrix B, respectively. When n — o, u.;™ and ux™ converge

to the square of the i-th singular value o, and 0, respectively. Thus the dLV system gives

rise to a stable scheme for computing singular values [6].
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2.2 Speed up by means of the shifted discrete Lotka-Volterra scheme

The mdLVs scheme, the integrable dLV system with shift, can compute singular values in
higher speed. The mdLVs scheme is formulated as follows [7].

Let us introduce new elements w ™ and v, ™ by

W = @ 5, @)

v U @ 5Ou), ©
By Eq.(3), the initial w @ is just b 2. The shifted integrable dLV system is defined by adding
a shift ™, which is defined as 0<S™ <o? where & p, is the minimal singular value of B,

to Eqg.(1). Namely,
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In general, the convergence is accelerated by enlarging S™. However, since the positivity of
u™ may be destroyed by a larger S, it causes a numerical instability. It is proved in [7] that

u™ > 0 if and only if 0<S™ <o?. Hence the shift S™ can be determined by using the

Johnson bound [12] for estimating o .
In the Johnson bound, S™ is the minimum vlaue among s;™. s;"is calculated as follows.

In the Johnson bound, a shift S™ becomes to quadratic of an approximate number in the
minimal singular value o ,
2.3 Algorithm for singular value computation based on the Lotka-Volterra system
Each iteration in an algorithm for the mdLVs scheme is described as follows.
(i) u™is calculated from w,™ by Eq.(4).
(ii) vi™is calculated from u™ by Eq.(5).
(iii) S™ is calculated by Eq.(8).
(iv) After checking ™, w, ™% is calculated.
® In the case of a valid S™, w ¥ is calculated from v,(" by Eq.(6) and (7).
® In other case, w, " V= v, ™.
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(v) In the case that wy,™? is extremely smaller than w,;.;™Y, SPLIT or a deflation of

dimension size are done.

SPLIT, which divides the matrix to two parts, and the deflation are defined in [11].

Arrays of the algorithm are calculated as follows. In Step(i), the array U = (u,™, u,™,...,
U1 ™) is calculated from the array W = ( wi™, wo™, ..., woui™), where n represents the
iteration number. Since the data at each n does not keep, each array consists of
one-dimensional array corresponding to under suffix. In Step(ii), the array V = (v;™, v,(, ...,
Vo ™) is calculated from U. In Step(iii), the sift S™ is calculated from V. By using a valid
S™ W is overwritten by V in Step(iv).

In the loops of Step(i) and (ii), U and V are updated in ascending order of k. For the update
of u ™, we use w™ and u.;™ in Step(i). For the update of v, we need u ™ and u.,™ in
Step(ii). For the calculate of s, we use V2™, v,ii™ and v, ™ in Step(iii). Then, ™ is
calculated from all s ™. For the update w,™Y from w ™ in Step(iv), W is updated in
ascending order of k.

3. Proposed algorithm

The shift calculation in Step(iii), in which the Johnson bound is calculated, needs a lot of
calculation for square root. Therfore, the most of the computatinal time in the mdLVs scheme
is Step(iii). Hence, to speed up the mdLVs scheme, we limit number of shift calculations in
Step(iii).

Each iteration in a proposed algorithm is described as follows.

0 u™is calculated from w,™ by Eq.(4).

() vi{Vis calculated from u ™ by Eq.(5).

(1) In the case of L=Pend, S is calculated by Eq.(8).

(IV)  Blanch instruction in L.

® In the case of L=1+Pend-Nact, w,"*? is calculated, after checking S™.
> In the case of a valid S™, w,™*? is calculated from v, by Eq.(6) and (7).
> In other case, w, " V= v, ™.
® In other case, w, " V= v, ™.
(V) Blanch instruction in L.
) In the case of L=1+Pend-Nact, L=Pend.
) In other case, L=L-1
(V1) In the case that L=Pend-1 and wx™" is extremely smaller than w;., ™%, SPLIT or
a deflation of dimension size are done.
®  Once SPLIT is done, then Nact is checked and changed if necessary.
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Figure 1 Error comparison of static Nact with dynamic one
® |[f the deflation occurs and dimension size is smaller than

2*M*(Pend-1)/Nproc+1, Pend=Pend-1.
Here, L means limit of computational number in the shift S, Pend is initialized as Nproc

(Nproc: 1< Nproc £ M ) which is a partition number of strip-mining [13] in the matrix B,

and Nact is a number of partition matrices while singular values are computed. Initial L and
Nact are set to Nproc.

In this algorithm, the shift S™ is calculated at Nact times. Hence, a computational time
becomes shorter. In Step(1V), wyi.;™? is updated by using the shift S"NeY which is
calculated before Nact iteration. When iteration number n increases, U+ is approximated
to the minimal singular value. Consequently, Step(IV) may be furthermore accelerated
convergence in Uxy.1™ and uu™. In Step(V), L is updated. Step(111) and SPLIT in Step(VI) is
done at the same iteration number.

4. Numerical experiments

We examine efficiency of the proposed sequential algorithm in Section 3.

For comparing numerical accuracy, we use a computer with CPU:
Intel (R) Core (TM) 2 (2.66GHz), Memory: 8,192MB, L1D: 32KB, L1l: 32KB, L2: 4,096KB
and 64bit registers, on which Fedora Core 7 (Linux 2.6.21) is installed. For the compiler,
GNU 4.1.2 with option “O3” is adopted.
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Figure 2 comparison of iteration in static Nact with that in dynamic one

In the proposed algorithm, & ™=1.

To discuss errors and computational time in singular value computation, we construct 100
1,000-dimensional test matrices whose singular values are exactly known by using the
Golub-Kahan-Lanczos method [2][14]. 1,000 singular values of each matrix are randomized
on the interval [1, 500].

In Subsection 4.1, we discuss about errors of singular values. In Subsection 4.2, we
examine computational time in the proposed algorithm.

4.1 Experiments for accuracy

Figure 1 shows a comparison of static Nact (Nact=Nproc) with dynamic Nact, which

includes the proposed algorithm. Here, the interval of Nproc is 1< Nproc < 64 . Each error

of the static Nact in Nproc has the same trend as the dynamic one. In the case of small Nproc,
the error in the proposed algorithm is smaller than that in the original algorithm, which is the
same as Nproc=1. It is caused that w,"*? is updated by using the shift S"™N2Y which has been
calculated at n-Nact-th iteration. In the case of large Nproc, the error is nearly equal to the
error in the original algorithm. This reason is too much increase number of iteration. In the

case of 20 < Nproc , errors is more large as Nproc is sized up. Since many w™*? is updated

without a shift, the convergence, which means the decrease iteration number, is not
accelerated. Consequently, computational errors, which occur at each iteration, is stored up,

and the accuracy in the case of 20 < Nproc becomes worse.
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Figure 4 Time comparison of static Nact with dynamic one.
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Figure 3 Comparison of the number of shift calculation in static Nact with that in dynamic one.

Figure 2 shows a comparison of static Nact with dynamic one. The debasement of accuracy
in the static Nact is more accerelated than that in the dynamic one. In the case of the static
Nact, the number of the shift calculation is not changed in any dimension size. Therefore,
when dimension size becomes small because of SPLIT or a defration, the limitation in number
for the shift calculation is too large. Consequently, it overbound that w, ™ is updated without
a shift. Hence, the dynamic Nact in the proposed algorithm is effective.

By the results in Figure 1 and Figure 2, the proposed sequential algorithm is useful.
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Table 1 Time of each Nproc. [sec.]

Nproc Average Maximum Minimum
1 10.77 13.13 7.13
2 9.96 11.60 6.38
4 9.12 10.83 5.66
8 8.53 10.00 5.49
16 7.95 9.68 5.27
32 7.58 9.86 4.58
64 7.38 9.05 4.83

Through Nproc is set to a suitable number, which may be obtained from a relationship to a
dimension size, the accuracy of the proposed algorithm becomes better.
4.2 Experiments for computational time

Figure 3 shows the average time in each Nproc (1< Nproc <64 ). In the mdLvs scheme,

the most of the computational time is a shift calculation. Therefore, computational time in the
proposed algorithm, which has the limitation of the number in the shift calculation, is shorter
than that in the original algorithm. In Figure 3, the relationship between Nproc and the
computational time is drown using bodoly-dented line. It is caused that dimension size is
changed by SPLIT.

Figure 4 shows a comparison of static Nact with dynamic Nact, in the case of

1< Nproc < 64 . Number of the shift calculation in the static Nact is smaller than that in the

dynamic one, since the number in dynamic Nact is changed at Step(VI). However, in Figure 3,
the computational time in the static Nact is nearly equal to that in the dynamic one. It is
caused that w, ™Y is updated without a shift in a lot of case. An adoption of a shift accerelates
a convergence to singular values. Thus, when a shift is not adopted, iteration number
increases and accuracy becomes wrong. Consequently, the dynamic Nact is effective in these
test matrices.

To evaluate matrices with a large dimensional size, we construct 100 10,000-dimensional
test matrices, of which elements are randomized on the interval from 1 to 100 and any true
singular values can not be obtained. Table 1 shows computational time in the matrices, where
Nproc=1, 2, 4, 8, 16, 32, 64. More Nproc is large, more computational time is small.
Consequently, computational time in a singular valu calculation becomes shorter by using the
proposed sequential algorithm.
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Figure 5 Concept of a parallel algorithm

5. An expansion for parallel system with distributed memory

In the singular vector computation of the I-SVD scheme, each singular vector is computed
independently. Therefore, the singular vector computation can be paralleled. On the other
hand, since the computation using the original mdLVs scheme has dependency relation, this
unfits for parallelization.

On the other hand, the algorithm proposed in Section 3 can be improved a parallel
algorithm for distributed memory systems. We adopt pipline progress for the parallel
algorithm. Figure 5 shows a concept in the case of 4 processors, where each number means a
processor id. Note that computational time in each Step is difference, although each square for
Steps is drawn at the same size in Figure 5.

In Step(1), u™ is calculated using u.:™. In Eq.(6) and (7) of Step(IV), to update w
we need w,..™Y. Consequently, these step should be calculated using pipeline progress.

In Step(Il) and s;™ of Step(ll), each element can be calculated independently. And also,
when w, ™9 is updated without the shift S™, each element does not has relationship.
Consequently, these calculations can be paralleled.

Let Nproc be a processer number. The calculation for S™ in Step(ll1) is calculated on the
Pend-th processor. Then, the calculated shift S™ is sent to each processor by using asynclonus
communications. The calculated shift S™ is used in Step(IV) after Nact-th iteration. Therefore,

(n+1)
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each processor has only to recieved until Step(IV) at Nact-th iteration. Since we choose
asynclonus communications, the other steps can be carried on its calculations in each
processor.

In Step(V1), SPLIT is occured on arbitraly processors. Thus, Nact may be changed on all
processors. We adopt pipline for parallel systems. Consequently, the Nact, which is changed
on an arbitraly processor, is sent to the Pend-th processor. Then, the Pend-th processor is sent
the changed Nact to the 1+Pend-Nact-th or later processors.

In Step(VI), a defration is occured only the Pend-th processor. Therefore, when Pend is
chnaged, the Pend+1-th processor is sent the changed Pend to each processor. In the another
case, the defration have no effect on calculations on processors other than Pend-th one.

To avoid communication barriers, the canged Nact and Pend must be finished
communicating until Nact -th iteration like as Step(lll). Consequently, Step(VI) should be
calculated only in the case of L=Pend-1.

In this parallel algorithm, errors may be equal to the case of the sequential proposed
algorithm.

6. Conclusion

A shift calculation occupies most of the computational time of the mdLVs scheme. To
decrease the computational time, we propose an improvement of the mdLVs, which has a
limitation of the number of shifts. Moreover, we expand it to a parallel algorithm, to which
pipeline progress is adopted, for distributed memory systems. To evaluate the proposed
sequential algorithm, we experiment using 100 1,000-dimentional matrices. Since w, ™Y is
updated with the shift SN2 which has been calculated before Nact iteration, we determined
that errors in the proposed algorithm are smaller than that in the original algorithm (Nproc=1).
In the proposed algorithm, Nact is changed dynamicaly at each iteration. Therefore, we
compared with a static Nact and the dynamic one. By using the proposed sequential algorithm,
computational time becomes about half. In this regard, we finded out that extrimery large
number of Nproc does not influence decrease of computational time. It is caused that the
calculation number to update wk(””) without shift increases. In these results, we conclude
that the proposed algorithm is effective.

In a future work, we should develop a parallel program based on the proposed parallel
algorithm.
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