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Speed-up in mdLVs by Limitation in 
Computational Number of Shift 
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In a singular value computation using the mdLVs (modified discrete Lotka-Volterra 
scheme with shift) scheme, most of the computational time is that for calculating shifts. 
In this paper, we aim to perform a speed-up of the mdLVs by using a limitation of the 
computational number of shifts. In the proposed algorithm for speed-up, a shift, which is 
calculated before some iteration, is successively used in update of shifts. The proposed 
algorithm can be expanded into a parallel algorithm for distributed memory systems. To 
evaluate the proposed sequential algorithm, we experiment using 100 1,000-dimensional 
matrices. As a result, since data on shifts is updated by using an old and safety shift, 
accuracy of singular values can be improved. Moreover, since the computational number 
of shifts is limited, computational time of the proposed algorithm becomes smaller.  

 

シフトの計算回数の制限を用いた mdLVs 法の

高速化 
 

髙田雅美†  木村欣司††  中村佳正††  
 
mdLVs（modified discrete Lotka-Volterra scheme with shift）法を用いた特異値分解で
は，シフトの計算時間が全体の計算時間の大部分を占める．本論文において，我々
は，シフトの計算回数を制限することによって mdLVs 法の高速化を試みる．この
高速化アルゴリズムでは，数イタレーション前に計算されたシフトを用いて，各
要素値の更新を行う．なお，このアルゴリズムは，分散メモリ型並列計算機用の
並列アルゴリズムに容易に改良することが可能である．提案する逐次アルゴリズ
ムの性能を調べるために，100 個の 1,000 次行列を用いて実験を行う．実験の結
果，数イタレーション前のシフトを用いても，正定値が保たれるため，特異値の
精度が向上することを確認した．また，シフトの計算回数が減少するため，全体
の計算時間が小さくなった． 

 
 
 
 

1. Introduction  

Singular value decomposition is known as effective method for investigation of feature in 
rectangular matrices. Singular value decomposition is a matrix decomposition of a given 
rectangular matrix into a product of nonnegative definite diagonal matrix and two orthogonal 
matrices, where elements of the diagonal matrix are singular values and the orthogonal 
matrices consist of left and right singular vectors. In general, any rectangular matrix is 
decomposed into a product of an upper bidiagonal matrix and orthogonal matrices [1][2]. 
Note that singular values of the rectangular matrix are equal to those of the bidiagonal matrix. 
Therefore, a singular value decomposition of the bidiagonal matrix can be chosen instead of 
that of the rectangular matrix.  

The QRs scheme [1][2][3][4][5] and the I-SVD (Integrable-Singular Value Decomposition) 
scheme [6][7][8][9] are known as today’s standard singular value decomposition schemes for 
bidiagonal matrices. The computational time in the I-SVD scheme is shorter than that in the 
QRs scheme [9]. The orthogonality of singular vector in the I-SVD scheme is somewhat 
worse than that in the QRs scheme. However, the errors related to singular values and singular 
vectors in the I-SVD scheme are smaller than those in the QRs scheme [8]. 

An increase of data volume for data search system [10] and image processing [11], for 
example, which are calculated by using the singular value decomposition, brings us data 
matrices of large dimension. Consequently, singular value decompositions with high-speed 
should be developed. Hence the I-SVD scheme as well as the QRs must be improved to a 
parallel scheme. 

In the I-SVD scheme, once singular values are calculated by using the mdLVs (modified 
discrete Lotka-Volterra scheme with shift) scheme, then singular vectors are obtained by using 
a singular vector computation with the twisted factorization [6][7]. In the mdLVs scheme, 
most of the computational time is that for calculating shifts. Consequently, we aim to perform 
a speed-up of the singular value computation by using  limitation in number of shift 
calculations. In this paper, we propose an improvement of the mdLVs scheme. Note that this 
proposed algorithm is expanded into a parallel one of the mdLVs.  

In Section 2, we explain the singular value computation by using the mdLVs scheme. In 
Section 3, we propose an algorithm, which has a limitation of the number of shifts. In  
Section 4, we valid accuracy of singular values and computational time of the proposed 
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algorithm. In Section 5, we improve the proposed sequential algorithm into a parallel one for 
distributed memory systems. 

2. Modified discrete Lotka-Volterra scheme with shift 

In Subsection 2.1, we give a summary of the singular value computation based on the dLV 
system. In Subsection 2.2, we show the outline of the mdLVs scheme. In Subsection 2.3, a 
programming of the mdLVs scheme is described shortly. 

2.1 Singular value computation based on the discrete Lotka-Volterra system 
In the mathematical biology, the LV (Lotka-Volterra) system is known as a fundamental 

prey–predictor model. In some case, the LV system is a completely integrable dynamical 
system which has explicit solutions and sufficiently many conservation laws. A time 
discretization 
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of the LV system is known (cf. [6]). This system also has explicit solution and many 
conservation laws. Therefore, it is called the integrable discrete LV (dLV) system. Here k (k = 
1, 2,…, 2M-1) indicates the k–th species and the discrete time n (n = 0, 1, 2,…) corresponds to 
an iteration number of the scheme, uk

(n) is the value of uk at n, and the arbitrary nonzero 
number  (n) is a discrete step-size, and M is the dimension of a matrix. Let the initial value 
uk

(0) be positive. In the case where  (n) > 0, any subtraction and division by zero do not 
occur in Eq.(1) and uk

(n) is always positive. Consequently, canceling and numerically 
instability do not emerge. Let us note here we do not need treat negative numbers in singular 
value computations. 

The boundary condition and the initial condition are 
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respectively. Here b2i-1 ( i: Mi 1 ) and b2i are diagonal and upper–subdiagonal elements 
of the MM   bidiagonal matrix B, respectively. When n , u2i-1

(n) and u2i
(n) converge 

to the square of the i–th singular value i  and 0, respectively. Thus the dLV system gives 

rise to a stable scheme for computing singular values [6]. 

2.2 Speed up by means of the shifted discrete Lotka-Volterra scheme 
The mdLVs scheme, the integrable dLV system with shift, can compute singular values in 

higher speed. The mdLVs scheme is formulated as follows [7]. 
Let us introduce new elements wｋ

(n) and vｋ
(n) by 
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By Eq.(3), the initial wｋ
(0) is just bｋ

2. The shifted integrable dLV system is defined by adding 

a shift S(n) , which is defined as 2)(0 m
nS   where  m is the minimal singular value of B, 

to Eq.(1). Namely, 
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In general, the convergence is accelerated by enlarging S(n). However, since the positivity of 
uk

(n) may be destroyed by a larger S(n), it causes a numerical instability. It is proved in [7] that 

uk
(n) > 0 if and only if 2)(0 m

nS  . Hence the shift S(n) can be determined by using the 

Johnson bound [12] for estimating  m. 
In the Johnson bound, S(n) is the minimum vlaue among si

(n). si
(n)is calculated as follows. 
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In the Johnson bound, a shift S(n) becomes to quadratic of an approximate number in the 
minimal singular value  m 

2.3 Algorithm for singular value computation based on the Lotka-Volterra system 
Each iteration in an algorithm for the mdLVs scheme is described as follows. 
(i)  uk

(n) is calculated from wk
(n) by Eq.(4). 

(ii)  vk
(n)is calculated from uk

(n) by Eq.(5). 
(iii)  S(n) is calculated by Eq.(8). 
(iv)  After checking S(n), wk

(n+1) is calculated. 
 In the case of a valid S(n), wk

(n+1) is calculated from vk
(n) by Eq.(6) and (7). 

 In other case, wk
(n+1)= vk

(n). 
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(v)  In the case that w2i
(n+1) is extremely smaller than w2i-1

(n+1), SPLIT or a deflation of 
dimension size are done. 

SPLIT, which divides the matrix to two parts, and the deflation are defined in [11]. 
Arrays of the algorithm are calculated as follows. In Step(i), the array U = ( u1

(n), u2
(n),…, 

u2M-1
(n)) is calculated from the array W = ( w1

(n), w2
(n),…, w2M-1

(n)), where n represents the 
iteration number. Since the data at each n does not keep, each array consists of 
one-dimensional array corresponding to under suffix. In Step(ii), the array V = ( v1

(n), v2
(n),…, 

v2M-1
(n)) is calculated from U. In Step(iii), the sift S (n) is calculated from V. By using a valid  

S (n), W is overwritten by V in Step(iv). 
In the loops of Step(i) and (ii), U and V are updated in ascending order of k. For the update 

of uk
(n), we use wk

(n) and uk-1
(n) in Step(i). For the update of vk

(n), we need uk
(n) and uk+1

(n) in 
Step(ii). For the calculate of si

(n), we use v2i-2
(n), v2i-1

(n) and v2i
(n) in Step(iii). Then, S(n) is 

calculated from all si
(n). For the update wk

(n+1) from wk
(n) in Step(iv), W is updated in 

ascending order of k. 

3. Proposed algorithm 

The shift calculation in Step(iii), in which the Johnson bound is calculated, needs a lot of 
calculation for square root. Therfore, the most of the computatinal time in the mdLVs scheme 
is Step(iii). Hence, to speed up the mdLVs scheme, we limit number of shift calculations in 
Step(iii). 

Each iteration in a proposed algorithm is described as follows. 
(I)     uk

(n) is calculated from wk
(n) by Eq.(4). 

(II)     vk
(n)is calculated from uk

(n) by Eq.(5). 
(III) In the case of L=Pend, S(n) is calculated by Eq.(8). 
(IV) Blanch instruction in L. 
 In the case of L=1+Pend-Nact, wk

(n+1) is calculated, after checking S(n). 
 In the case of a valid S(n), wk

(n+1) is calculated from vk
(n) by Eq.(6) and (7). 

 In other case, wk
(n+1)= vk

(n). 
 In other case, wk

(n+1)= vk
(n). 

(V)     Blanch instruction in L. 
 In the case of L=1+Pend-Nact, L=Pend. 
 In other case, L=L-1 

(VI) In the case that L=Pend-1 and w2i
(n+1) is extremely smaller than w2i-1

(n+1), SPLIT or 
a deflation of dimension size are done.  

 Once SPLIT is done, then Nact is checked and changed if necessary. 
 

 
    
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Error comparison of static Nact with dynamic one 
 

 If the deflation occurs and dimension size is smaller than 
2*M*(Pend-1)/Nproc+1, Pend=Pend-1. 

Here, L means limit of computational number in the shift S(n), Pend is initialized as Nproc 

(Nproc: MNproc 1 ) which is a partition number of strip-mining [13] in the matrix B, 

and Nact is a number of partition matrices while singular values are computed. Initial L and 
Nact are set to Nproc. 

In this algorithm, the shift S(n) is calculated at Nact times. Hence, a computational time 
becomes shorter. In Step(IV), w2i-1

(n+1) is updated by using the shift S(n-Nact), which is 
calculated before Nact iteration. When iteration number n increases, u2M-1

(n) is approximated 
to the minimal singular value. Consequently, Step(IV) may be furthermore accelerated 
convergence in u2M-1

(n) and u2M
(n). In Step(V), L is updated. Step(III) and SPLIT in Step(VI) is 

done at the same iteration number. 

4. Numerical experiments 

We examine efficiency of the proposed sequential algorithm in Section 3. 
For comparing numerical accuracy, we use a computer with CPU:             

Intel (R) Core (TM) 2 (2.66GHz), Memory: 8,192MB, L1D: 32KB, L1I: 32KB, L2: 4,096KB 
and 64bit registers, on which Fedora Core 7 (Linux 2.6.21) is installed. For the compiler, 
GNU 4.1.2 with option “O3” is adopted. 
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Figure 2 comparison of iteration in static Nact with that in dynamic one 
In the proposed algorithm,  (n)=1. 
To discuss errors and computational time in singular value computation, we construct 100 

1,000-dimensional test matrices whose singular values are exactly known by using the 
Golub-Kahan-Lanczos method [2][14]. 1,000 singular values of each matrix are randomized 
on the interval [1, 500]. 

In Subsection 4.1, we discuss about errors of singular values. In Subsection 4.2, we 
examine computational time in the proposed algorithm. 

4.1 Experiments for accuracy 
Figure 1 shows a comparison of static Nact (Nact=Nproc) with dynamic Nact, which 

includes the proposed algorithm. Here, the interval of Nproc is 641  Nproc . Each error 

of the static Nact in Nproc has the same trend as the dynamic one. In the case of small Nproc, 
the error in the proposed algorithm is smaller than that in the original algorithm, which is the 
same as Nproc=1. It is caused that wk

(n+1) is updated by using the shift S(n-Nact), which has been 
calculated at n-Nact-th iteration. In the case of large Nproc, the error is nearly equal to the 
error in the original algorithm. This reason is too much increase number of iteration. In the 

case of Nproc20 , errors is more large as Nproc is sized up. Since many wk
(n+1) is updated 

without a shift, the convergence, which means the decrease iteration number,  is not 
accelerated. Consequently, computational errors, which occur at each iteration, is stored up, 

and the accuracy in the case of Nproc20  becomes worse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 shows a comparison of static Nact with dynamic one. The debasement of accuracy 

in the static Nact is more accerelated than that in the dynamic one. In the case of the static 
Nact, the number of the shift calculation is not changed in any dimension size. Therefore, 
when dimension size becomes small because of SPLIT or a defration, the limitation in number 
for the shift calculation is too large. Consequently, it overbound that wk

(n+1) is updated without 
a shift. Hence, the dynamic Nact in the proposed algorithm is effective. 

By the results in Figure 1 and Figure 2, the proposed sequential algorithm is useful.  
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Figure 4 Time comparison of static Nact with dynamic one. 
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Figure 3 Comparison of the number of shift calculation in static Nact with that in dynamic one. 
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Table 1 Time of each Nproc. [sec.] 
Nproc Average Maximum Minimum 

1 10.77 13.13 7.13
2 9.96 11.60 6.38
4 9.12 10.83 5.66
8 8.53 10.00 5.49

16 7.95 9.68 5.27
32 7.58 9.86 4.58
64 7.38 9.05 4.83

Through Nproc is set to a suitable number, which may be obtained from a relationship to a 
dimension size, the accuracy of the proposed algorithm becomes better. 

4.2 Experiments for computational time 

Figure 3 shows the average time in each Nproc ( 641  Nproc ). In the mdLvs scheme, 

the most of the computational time is a shift calculation. Therefore, computational time in the 
proposed algorithm, which has the limitation of the number in the shift calculation, is shorter 
than that in the original algorithm. In Figure 3, the relationship between Nproc and the 
computational time is drown using bodoly-dented line. It is caused that dimension size is 
changed by SPLIT. 

Figure 4 shows a comparison of static Nact with dynamic Nact, in the case of 

641  Nproc . Number of the shift calculation in the static Nact is smaller than that in the 

dynamic one, since the number in dynamic Nact is changed at Step(VI). However, in Figure 3, 
the computational time in the static Nact is nearly equal to that in the dynamic one. It is 
caused that wk

(n+1) is updated without a shift in a lot of case. An adoption of a shift accerelates 
a convergence to singular values. Thus, when a shift is not adopted, iteration number 
increases and accuracy becomes wrong. Consequently, the dynamic Nact is effective in these 
test matrices. 

To evaluate matrices with a large dimensional size, we construct 100 10,000-dimensional 
test matrices, of which elements are randomized on the interval from 1 to 100 and any true 
singular values can not be obtained. Table 1 shows computational time in the matrices, where 
Nproc=1, 2, 4, 8, 16, 32, 64. More Nproc is large, more computational time is small. 
Consequently, computational time in a singular valu calculation becomes shorter by using the 
proposed sequential algorithm. 

 
 

         
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Concept of a parallel algorithm 

5. An expansion for parallel system with distributed memory 

In the singular vector computation of the I-SVD scheme, each singular vector is computed 
independently. Therefore, the singular vector computation can be paralleled. On the other 
hand, since the computation using the original mdLVs scheme has dependency relation, this 
unfits for parallelization. 

On the other hand, the algorithm proposed in Section 3 can be improved a parallel 
algorithm for distributed memory systems. We adopt pipline progress for the parallel 
algorithm. Figure 5 shows a concept in the case of 4 processors, where each number means a 
processor id. Note that computational time in each Step is difference, although each square for 
Steps is drawn at the same size in Figure 5. 

In Step(I), uk
(n) is calculated using uk-1

(n). In Eq.(6) and (7) of Step(IV),  to update wk
(n+1), 

we need wk-1
(n+1). Consequently, these step should be calculated using pipeline progress. 

In Step(II) and si
(n) of Step(III), each element can be calculated independently. And also, 

when wk
(n+1) is updated without the shift S(n), each element does not has relationship. 

Consequently, these calculations can be paralleled. 
Let Nproc be a processer number. The calculation for S(n) in Step(III) is calculated on the 

Pend-th processor. Then, the calculated shift S(n) is sent to each processor by using asynclonus 
communications. The calculated shift S(n) is used in Step(IV) after Nact-th iteration. Therefore, 
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each processor has only to recieved until Step(IV) at Nact-th iteration. Since we choose 
asynclonus communications, the other steps can be carried on its calculations in each 
processor. 

In Step(VI), SPLIT is occured on arbitraly processors. Thus, Nact may be changed on all 
processors. We adopt pipline for parallel systems. Consequently, the Nact, which is changed 
on an arbitraly processor, is sent to the Pend-th processor. Then, the Pend-th processor is sent 
the changed Nact to the 1+Pend-Nact-th or later processors. 

In Step(VI), a defration is occured only the Pend-th processor. Therefore, when Pend is 
chnaged, the Pend+1-th processor is sent the changed Pend to each processor. In the another 
case, the defration have no effect on calculations on processors other than Pend-th one. 

To avoid communication barriers, the canged Nact and Pend must be finished 
communicating until Nact -th iteration like as Step(III). Consequently, Step(VI) should be 
calculated only in the case of L=Pend-1. 

In this parallel algorithm, errors may be equal to the case of the sequential proposed 
algorithm. 

6. Conclusion 

A shift calculation occupies most of the computational time of the mdLVs scheme. To 
decrease the computational time, we propose an improvement of the mdLVs, which has a 
limitation of the number of shifts. Moreover, we expand it to a parallel algorithm, to which 
pipeline progress is adopted, for distributed memory systems. To evaluate the proposed 
sequential algorithm, we experiment using 100 1,000-dimentional matrices. Since wk

(n+1) is 
updated with the shift S(n-Nact), which has been calculated before Nact iteration, we determined 
that errors in the proposed algorithm are smaller than that in the original algorithm (Nproc=1). 
In the proposed algorithm, Nact is changed dynamicaly at each iteration. Therefore, we 
compared with a static Nact and the dynamic one. By using the proposed sequential algorithm, 
computational time becomes about half. In this regard, we finded out that extrimery large 
number of Nproc does not influence decrease of computational time. It is caused that the 
calculation number to update  wk

(n+1) without shift increases. In these results, we conclude 
that the proposed algorithm is effective. 

In a future work, we should develop a parallel program based on the proposed parallel 
algorithm. 
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