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Bayesian Forecasting of WWW Traffic

on the Time Varying Poisson Model

Daiki Koizumi,†1 Toshiyasu Matsushima†2

and Shigeichi Hirasawa†1

Traffic forecasting from past observed traffic data with small calculation com-
plexity has been one of important problems for planning of servers and networks.
Focusing on World Wide Web (WWW) traffic as fundamental investigation,
this paper would deal with Bayesian forecasting of network traffic on the time
varying Poisson model from a viewpoint from statistical decision theory. Under
this model, we would show that the forecasting estimate is obtained by simple
arithmetic calculation with a known constant of time varying degree parameter
and expresses real WWW traffic well from both theoretical and empirical points
of view.

1. Introduction

Under network environment such as Internet, planning of servers and networks
has been one of important problems for stable operation. For example, World
Wide Web (WWW) server administrators have often made their operation plans
by combination of their experience and intuition with log analysis tools1)8). In
this case, traffic forecasting rule is not clearly formulated and those summarized
logs remain in the field of descriptive statistics from the statistical point of view.

On the other hand, researchers in the field of traffic engineering have been
suggesting a lot of analysis models. Some of desirable conditions of traffic models
are to express non-stationarity5)3), long-range dependence (LRD)4)5), and self-
similarity4) of network traffic. For these characteristics, the point estimation of
parameter is often performed at first6), then the point estimator is plugged into
the parameter of model if the traffic forecasting is needed. This approach has
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been wide-spread in the field of inferential statistics from the statistical point of
view.

However, substituting the estimated parameter as a constant for the model’s
parameter is not always suitable for forecasting problems. This is because there
is often no guarantee that the assumptions under the parameter estimation of the
model always hold for future unknown data set. Bayesian approach in terms of
statistical decision theory2) , which assumes the prior distribution of parameter,
is one of alternatives for this point.

This paper would deal with Bayesian forecasting of WWW traffic on the non-
stationary i.e. time varying Poisson model. In this model, a random-walking
type of transformation function of parameter is clearly defined to obtain the
Bayes optimal prediction for WWW traffic. Another feature in the model is that
the traffic forecasting value is obtained by simple arithmetic calculations with
known constant k (0 < k ≤ 1) where k denotes time varying degree of parameter.
Then the effectiveness of our approach would be evaluated with real WWW traffic
data.

The rest of this paper is organized as the followings. Section 2 gives some
definitions and explanations of the forecasting model with time varying Poisson
distribution. Section 3 shows some analysis examples of real WWW traffic data
to validate this paper’s approach and Section 4 gives their discussions. Finally,
Section 5 concludes this paper.

2. The Time Varying Poisson Model

2.1 Definitions
Let t = 1, 2, · · · be discrete time and xt = 0, 1, · · · be number of WWW request

arrivals at time t, respectively. This paper focuses on xt for traffic analysis
by assuming probability distribution p(xt

∣∣ θt) where θt > 0 is a time varying
density parameter at time t. On the time varying Poisson model, a sequence
xt

1 = x1x2 · · ·xt is taken as input and x̂t+1 is calculated as an output estimator
where the prior distribution of parameter p(θt) and time variation rule of θt are
known. The overview of the inferential process is depicted in Fig.1.

In Fig.1, xt is assumed to be the Poisson distribution with a time varying
density parameter θt as follows:
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Fig. 1 The overview of inferential process.

For xt = 0, 1, 2, · · · ,

p(xt

∣∣ θt) =
exp (−θt)

xt!
(θt)

xt , (1)

where θt > 0 is a time varying density parameter.
For density parameter θt, the following time varying model is assumed:
For θt+1, θt > 0,

θt+1 =
ut

k
θt, (2)

where k is a constant such that 0 < k ≤ 1, and 0 < ut < 1 is a continuous
random variable which is independent from θt.

(2) represents a transformation of θt+1 from both θt and ut under a known
constant k. This transformation can be regarded as a kind of random-walk.

Furthermore, θt and ut are assumed to be the following Gamma and Beta
distributions, respectively:{

θt ∼ Ga(αt, βt) ;
ut ∼ Be(kαt, (1 − k)αt) ,

(3)

where αt is the shape parameter, βt is the scale parameter of Gamma distribution,
and kαt, (1 − k)αt are also the shape and scale parameters of Beta distribution.

Finally, the initial condition of parameters in (3) at t = 1 is defined as follows:

{
α1 = x1 ;
β1 = 1 .

(4)

Remarks 2.1 In (2), a constant 0 < k ≤ 1 expresses time varying degree of
θt. If k = 1, (2) simply becomes θt+1 = utθt. In this case, θt+1 does not vary
since the variance of ut , which equals to k(1−k)/(αt+1) according to the nature
of Beta distribution, becomes zero. This means that the Poisson distribution of
xt in (1) is stationary.
If k < 1, on the other hand, θt+1 varies depending on the previous θt which
expresses the time varying Poisson model. If k = 0.5, the time varying degree of
θt becomes maximum since the variance of ut takes the maximum value. Thus
the proposed model defined in (1)–(3) includes a classical stationary Poisson
distribution as a special case if k = 1.

Remarks 2.2 The initial condition defined in (4) corresponds to the following
prior distribution in Bayesian context:

p(θ1) =
1
θ1

. (5)

This is called non-informative prior2) which assumes no anomalies for objective
traffic.

2.2 Updating Rule of Parameter θt

2.2.1 The Posterior Distribution of Parameter
As defined in (3), the prior distribution of parameter p(θt) is the Gamma

distribution with parameter αt, βt. If new xt is observed, the Bayes theorem
gives the following posterior distribution:

p
(
θt

∣∣ xt
1

)
=

(βt+1)αt+xt

Γ (αt+xt)
exp[−θt(βt+1)](θt)

(αt+xt)−1
, (6)

where t ≥ 2. In the denominator on the right side of (6), Γ (x) is the Gamma
function defined below:

Γ (x) =
∫ ∞

0

yx−1 exp (−y) dy , (7)

where x > 0.
(6) means that the posterior distribution p

(
θt

∣∣ xt
1

)
is also Gamma, which is
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same distribution as (3), with parameter (αt + xt) and (βt + 1). This is because
Gamma distribution is the conjugate prior2) of the sample distribution of Poisson.

2.2.2 Time Variation of Parameter
To obtain p

(
θt+1

∣∣ xt
1

)
, a time variation of density parameter defined in (2) is

used. This is actually a transformation of random variables among ut, θt, and
constant k and its updating rule is obtained as follows:

p
(
θt+1

∣∣∣ xt
1

)
=

[k (βt + 1)]k(αt+xt)

Γ [k (αt + xt)]
exp[−θt+1k (βt + 1)](θt+1)

k(αt+xt)−1
. (8)

(8) means that the transformed distribution of θt+1 becomes the Gamma distri-
bution with the following parameters:{

αt+1 = k (αt + xt) ;
βt+1 = k (βt + 1) .

(9)

If (9) is recursively applied with respect to t, the following equations are obtained:{
αt+1 = ktα1 +

∑t
i=1 kt+1−ixi ;

βt+1 = ktβ1 +
∑t

i=1 ki−1 .
(10)

The above equations contribute drastic reduction of calculation complexity.
Remarks 2.3 Even if a transformation is newly defined after the posterior

distribution in (6), the distribution family of p(θt+1|xt
1) remains same as that of

the conjugate prior distribution under certain class of transformations. Such class
has been discussed under Simple Power Steady Model (S.P.S.M.)7). Therefore the
time varying Poisson model in this paper with transformation function defined
in (2) is included in S.P.S.M.

2.3 Output Estimator x̂t+1

In Fig.1, x̂t+1 is a prediction of number of request arrivals at time (t+1). From
the point of statistical decision theory2), the Bayes optimal prediction2) under the
squared-error loss L(x̂t, xt) = (x̂t − xt)2 is obtained as follows:

x̂t+1 =
ktα1 +

∑t
i=1 kt+1−ixi

ktβ1 +
∑t

i=1 ki−1
, 0 < k ≤ 1. (11)

Remarks 2.4 In (11), x̂t+1 is obtained by simple arithmetic calculation. This
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Fig. 2 Examples of log-likelihood functions. Each maximum likelihood estimator on the left
is k̂ = 0.804, on the right is k̂ = 0.775, respectively.

point can be effective not only theoretical point of view but also the real imple-
mentation such as server log analysis software tools. The second term of numer-
ator in (11) has a form of Exponentially Weighted Moving Average7) with a time
varying constant k. As k becomes larger in (11), the weighting of past observed
sequence xt

1 increases. This means that k can be considered as a parameter of
long-range dependence (LRD)4)5).

3. Analysis Examples of WWW Traffic Data

3.1 Maximum Likelihood Estimation (MLE) for k

If real data is dealt with, k should be estimated. Taking the maximum likeli-
hood estimation (MLE) of k, the objective likelihood function L(k) becomes the
following:

L(k) = p
(
x1

∣∣ θ1

) t∏
i=2

[
(βi)αiΓ(αi + xi)

(βi + 1)αi+xiΓ(αi)xi!

∣∣∣∣∣ αi = ki−1α1+
Pi−1

j=1 ki−jxj

βi = ki−1β1 +
Pi−1

j=1 kj−1

]
. (12)

Note that αi, βi in (12), the previously obtained results in (10) should be ap-
plied.

Some plots of function log L(k) are shown in Fig.2. In (12), the solution can
be obtained by numerical calculation. The interval 0 ≤ k ≤ 1 is divided into
1,000 sub-intervals and value of log L(k) is calculated for each k to obtain the
MLE solution numerically.
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3.2 Point Estimation for WWW Traffic Forecasting
The real WWW data (from Server A on campus) was processed to evaluate

the proposed model. For the performance comparison, the point estimates on
the classical stationary Poisson model were also calculated. On the proposed
model, each MLE of k̂ was calculated from the previous day’s log. To evaluate
performance on both models, the mean squared error between each point estimate
and observed value of request arrivals was calculated.

Table 1 shows mean squared error of proposed and stationary models. In the
third row of Table 1, the MLEs of k̂ from the previous day’s logs are shown.
Fig.3 shows point and interval estimates v.s. observed values plot of server A
on Mar. 25, 2005 where k̂ = 0.804. In Fig.3, the vertical axis is the number of
request arrivals and the horizontal axis is time interval index t. The solid line,
dotted line, and histogram represent the point estimates, the interval estimates
(95% confidence limit) on the proposed and classical stationary Poisson model,
and observed values of request arrivals, respectively.

Table 1 Mean squared error on server A.

Server A Proposed Model k̂ Stationary Model

Mar. 19 2.829 × 102 0.716 4.988 × 102

Mar. 20 2.657 × 102 0.762 3.297 × 102

Mar. 21 3.816 × 102 0.753 4.802 × 102

Mar. 22 7.111 × 102 0.805 9.534 × 102

Mar. 23 8.202 × 102 0.759 1.335 × 103

Mar. 24 1.356 × 103 0.804 3.458 × 103

Mar. 25 9.523 × 102 0.804 2.062 × 103

Mar. 26 4.811 × 102 0.783 6.479 × 102

Mar. 27 8.596 × 102 0.771 1.239 × 103

Mar. 28 1.980 × 103 0.754 4.041 × 103

Mar. 29 1.657 × 103 0.777 4.019 × 103

Mar. 30 4.940 × 102 0.788 7.568 × 102

Mar. 31 8.088 × 102 0.787 1.218 × 103

Apr. 01 8.967 × 102 0.775 1.887 × 103

Apr. 02 1.258 × 101 0.753 1.220 × 101

Apr. 03 4.184 × 100 0.826 4.375 × 100

Apr. 04 4.206 × 101 0.914 4.317 × 101

Apr. 05 4.095 × 101 0.666 3.808 × 101

Apr. 06 3.612 × 101 0.710 4.723 × 101

Apr. 07 2.813 × 102 0.661 5.183 × 102

Apr. 08 2.295 × 101 0.786 2.325 × 101

Apr. 09 7.589 × 100 0.803 8.127 × 100
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Fig. 3 Point and interval estimates v.s. observed values plot of server A on Mar. 25, 2005
(k̂ = 0.804).

3.3 Interval Estimation for WWW Traffic Forecasting
Table 2 shows interval estimation example of server A on Mar. 25, 2005.

In Table 2, t = 104 is taken since it gives max observed value x104 = 210 as
the numbers of request arrivals. The second, third, and forth rows show the
expected value, 95% confidence limit, and 99% confidence limit, respectively on
the proposed and stationary models.

Table 2 Interval estimation of server A on Mar. 25, 2005.

t = 104 on Server A Proposed Stationary

x̂104 (Expected Value) 111 69
x̂104 (95% Confidence Limit) 129 83
x̂104 (99% Confidence Limit) 136 89
x104 (Max Observed Value) 210

4. Discussion

4.1 Maximum Likelihood Estimation for k

According to Fig.2, it is showed that there exist some cases where their like-
lihood functions of log L(k) are convex. Actually, all likelihood functions were
convex to the best of numerical calculations in this paper. Fig.2 also shows that
the absolute value of gradient in log L(k) around MLE of k̂ becomes quickly larger
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as k increases beyond k̂. This fact shows that the under estimation for k causes
less error than its over estimation.

Table 3 shows Akaike Information Criterion (AIC) on server A. According to
Table 3, most of AIC on the proposed model are smaller than those of stationary
model to select the proposed model. Exception is that absolute values of AIC
on the two models suddenly become smaller around Apr. 01, 2005 on server A.
This is actually because the average traffic on server A drastically decreased to
less than 1,000 request arrivals per a day. In this period, the traffic in each time
interval stayed at lower level and could be regarded as the stationary Poisson
model. As a whole, it can be concluded that the proposed model has stronger
validity for real WWW traffic data than the stationary model from the viewpoint
of model selection.

4.2 Point Estimation for WWW Traffic Forecasting
For point estimation of future request arrivals, Table 1 shows that the pro-

posed model has the better performance than that of the stationary model in
terms of mean squared error. Fig.3 also depicts that the point estimates on the
proposed model are following more closely to the observed values than those on
stationary model. As mentioned in Remarks 2.1, the proposed model contains
the stationary model as a special case when k = 1.000. Therefore, regardless
of stationarity or non-stationarity of WWW traffic, the proposed model can be
applied to traffic forecasting and would help WWW server setting and network
planning etc. among administrators.

However, it should be noted that this result strongly depends on the MLE
performance of k̂. In Table 1, each MLE of k during days in April often differs
from k̂ = 1.000 in spite of stationarity on the real traffic. In such situation, the
mean squared error on the proposed model becomes larger than that of stationary
model. Another example is that if k = 0.300 on the proposed model with server
A, the mean squared error of the proposed model becomes 5.41× 103 where that
of stationary model becomes 3.46 × 103. Fig.4 depicts this poor performance of
the proposed model. Fig.5 is a plot of mean squared errors v.s. k. In interval
of k < 0.800, the extremely smaller estimate of k could causes larger mean
squared error. The under estimation near MLE of k, however, causes relatively

smaller error than the over estimation as previously described in subsection 4.1.
In Fig.5, mean squared errors takes minimum values around k = 0.800. In fact,
Table 1 shows that corresponding maximum likelihood estimate is k = 0.783.
This result suggests that data length in this simulation was sufficient for the
maximum likelihood estimation for k.

4.3 Interval Estimation for WWW Traffic Forecasting
For interval estimation, time interval indices that give the maximum number

of request arrivals are taken on Table 2. This is because one of administrators’
concerns can be the maximum number of the request arrivals in terms of stable
server operations. As a result, confidence limits of xt derive larger values than
those of point estimates of xt (=expected values) and reduce the mean squared
errors than point estimates. This effect on the proposed model would be stronger
than that on the stationary model, since the performance of point estimates of
xt on the proposed model is superior to that of stationary model. Thus the
advantage of Bayesian approach was observed.

Table 3 Akaike Information Criterion (AIC) on Server A.

AIC on Server A Proposed Stationary

Mar. 19, 2005 −3.562 × 103 −3.367 × 103

Mar. 20, 2005 −3.102 × 103 −3.011 × 103

Mar. 21, 2005 −5.085 × 103 −4.960 × 103

Mar. 22, 2005 −8.316 × 103 −8.108 × 103

Mar. 23, 2005 −1.052 × 104 −1.018 × 104

Mar. 24, 2005 −1.797 × 104 −1.715 × 104

Mar. 25, 2005 −1.088 × 104 −1.031 × 104

Mar. 26, 2005 −3.917 × 103 −4.649 × 103

Mar. 27, 2005 −9.023 × 103 −8.723 × 103

Mar. 28, 2005 −1.875 × 104 −1.795 × 104

Mar. 29, 2005 −1.869 × 104 −1.774 × 104

Mar. 30, 2005 −5.825 × 103 −5.610 × 103

Mar. 31, 2005 −1.003 × 104 −9.784 × 103

Apr. 01, 2005 −6.456 × 103 −5.783 × 103

Apr. 02, 2005 −1.538 × 101 −2.313 × 101

Apr. 03, 2005 +1.763 × 101 +8.860 × 100

Apr. 04, 2005 −1.655 × 102 −1.615 × 102

Apr. 05, 2005 −1.821 × 102 −1.803 × 102

Apr. 06, 2005 −1.771 × 102 −1.516 × 102

Apr. 07, 2005 −2.826 × 103 −2.675 × 103

Apr. 08, 2005 −1.170 × 102 −1.184 × 102

Apr. 09, 2005 +6.273 × 100 +4.767 × 10−1
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Fig. 4 Point and interval estimates v.s. observed values plot of server A on Mar. 25, 2005
(k = 0.300).

5. Conclusion

This paper showed Bayesian forecasting of WWW traffic on the time varying
Poisson model. This model is obtained by defining a random-walk type of time
varying parameter function on Simple Power Steady Model (S.P.S.M.). The
forecasting estimator of this model guarantees the Bayes optimality in terms of
statistical decision theory and is calculated by simple arithmetic calculation. The
latter point especially can be effective for the real implementation such as server
log analysis software tools.

Furthermore, the non-stationarity of traffic is expressed by a time varying de-
gree constant k in the model. This paper pointed out that the constant k can
be considered as a parameter of long-range dependent (LRD) for real traffic data
and the model includes stationary Poisson model as a special case if k = 1.

For evaluation of Bayesian approach, the real WWW traffic data is applied to
the model in this paper. The maximum likelihood estimation (MLE) method
of k from real traffic data with sufficient length is also discussed. According
to its result, the proposed model has stronger validity than classical stationary
Poisson model in terms of model selection. Furthermore, under the estimated
value of k, the point and interval estimates on the proposed model showed smaller
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Fig. 5 Mean squared error v.s. k plot of server A on Mar. 25, 2005.

mean squared error comparing to those on the stationary model for the traffic
forecasting. Thus the advantage of the proposed model is shown from both
theoretical and empirical points of view.

References

1) Bradford L. Barrett, The Webalizer. [Online]. http://www.webalizer.org/
2) Jose M. Bernardo and Adrian F. M. Smith, Bayesian Theory, John Wiley & Sons,

Chichester, 2003.
3) T. Karagiannis, M. Molle, M. Faloutsos, A. Broido, “A Nonstational Poisson View

of Internet Traffic, ” Twenty-third Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2004), Mar. 2004.

4) W.E.Leland, M.S.Taqqu, “On the Self-Similar Nature of Ethernet Traffic,” SIG-
COMM’93, Sep. 1993.

5) Vern Paxon and Sally Floyd, “Wide Area Traffic: The Failure of Poisson Modeling,
” IEEE/ACM Trans. on Networking, vol.3, no.3, Jun. 1995.

6) Antoine Scherrer, Nicolas Larrieu, Philippe Owezarski, Pierre Borgnat, Patrice
Abry, “Non-Gaussian and Long Memory Statistical Characterizations for Internet
Traffic with Anomalies,” IEEE Trans. on Dependable and Secure Computing, vol.4,
no.1, pp.56–70, 2007.

7) J. Q. Smith, “A Generalization of the Bayesian Steady Forecasting Model, ” Jour-
nal of the Royal Statistical Society, Series B, vol.41, pp.375–387, 1979.

8) Stephen Turner, Analog. [Online]. http://www.analog.cx/

c© 2009 Information Processing Society of Japan

Vol.2009-MPS-74 No.5
2009/7/13

6




